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ABSTRACT

The strong need for a robust and real-time transmission classification can be found both in civil and non-civil
applications. In this paper, we propose a new technique based on modern low- and high-complexity object
detection approaches. The transmission scanner uses a combination of Haar-like and technical features to
detect and classify different, co-occurring narrowband transmissions within wideband signals. The trans-
mission scanner is evaluated with recorded real world data in order to fulfill real conditions. The evaluation
shows that this system performs very well with 99.5% accuracy.

1.0 INTRODUCTION

To know what is on air has always been a strong interest of civil and non-civil institutions. The civil area
of research has the aim to detect white spaces in frequency bands in order to establish secondary usage, as
it is done in Cognitive Radio (CR) [1, 2]. In contrast to this, the non-civil institutions try to identify every
signal or a special type of signal. This signal interceptionis called Communications Intelligence (COMINT).
Both benefit from increasing instantaneous receiver bandwidths, made possible by Software-Defined Radio
(SDR) [3]. The wider the bandwidth, the higher the knowledge gain canbe. The drawback of such a wide-
band receiver is that the requirements for a real-time signal processing in CR and COMINT applications are
higher than before, as the search space increases.

In Fig. 1 a traditional procedural method is shown, which is often applied in COMINT applications. A
Wideband Receiver (WBR) digitizes the antenna signal with aspecific sampling frequency. The typical sam-
pling frequencies for the High Frequency (HF), Very and Ultra High Frequency (VUHF) bands vary between
fS = 625 kHz andfS = 20 MHz. The discretized signal is led to a Wideband Signal Detection (WDET).
Most of the approaches for this stage are based on an energy detection. A priori knowledge is not used
to extract the information regarding the center frequency,bandwidth, transmission start and duration. The
resulting information of WDET is used within the Digital Down Conversion (DDC) to cut the narrowband
signals out of the wideband signal and transfer them to the Narrowband Transmission Classification (NTCL).
The NTCL extracts specific features, e. g., modulation type and baud rate, in order the get the information
about the used transmission standard, e. g., STANAG-4285 orPACTOR II [4], which can be found in the
High Frequency (HF) between 3 MHz and 30 MHz. Approaches for the modulation classifier are presented
in [5–8]. The evaluation of most of these algorithms was done without consideration of inaccuracies of the

RTO-MP-IST-092

UNCLASSIFIED/UNLIMITED

14- 1

mailto:dirk.kolb@medav.de?subject=RTO%20paper
mailto:ulla.uebler@medav.de?subject=RTO%20paper
mailto:noeth@informatik.uni-erlangen.de?subject=RTO%20paper


A Novel Transmission Scanner Framework for Real-Time Appli cations

UNCLASSIFIED/UNLIMITED

WBR WDET DDC NTCL

STANAG-4285

PACTOR II

Wideband Processing Narrowband Processing

Figure 1: Processing chain with separated wideband signal d etection and narrowband transmission classification.

first stage and furthermore almost all test signals were created without consideration of transmission stan-
dards. Therefore, two problems arise in real applications.First, most of the classification approaches used
in NTCL extract features or technical parameters which loose their quality in case of detection inaccuracies,
e. g., frequency offset. Second, some technical parameters, especially the modulation type, are unambigu-
ous: a STANAG-4285 transmission changes the modulation type periodically and a PACKET-RADIO [4]
transmission is additionally frequency modulated in the VUHF bands. Therefore, a feature, which is able
to distinguish specific modulation types, might fail in applications where a signal with different modulation
types commonly occurs. Another problem, as shown in the block diagram in Fig.1, is the separation of
wideband and narrowband processing. The resulting qualityof WDET degrades in case of lower signal-to-
noise ratios (SNRs) or stronger fading effects. This leads to incorrect information for the DDC block and to
useless narrowband signals for the NTCL stage. In most of thecases the classification results are incorrect.
Thus, it is advisable to avoid a separation between widebandand narrowband processing or to combine sig-
nal detection and classification.

With tremendously increased processing power, more research was done in SDR and CR. Both CR and
SDR gained importance in civil projects, e. g. the reorganization of public safety communications or the
establishment of Wireless Regional Area Networks (WRANs) in rural environments [9]. With this ongoing
development new strategies of an improved combined detection and classification emerged. Beside the typ-
ical energy based detectors [10] the first detectors using a priori knowledge came up. These detectors are
based on features, for example, second-order cyclostationarity [11, 12] or autocorrelation [13]. They are re-
liable even at very low SNR values, but the computational effort is very high. Within the presented literature
it is mostly assumed that the center frequencies of the signals of interest are well known, which is true for
most so-called cooperative applications. In non-civil or non-cooperative applications the only assumption
that can be made is that there might be a signal of interest at an unknown position. This requires a scanning
classification system which is possible to perform the scanning and classification process in real-time.

In this paper we combine the knowledge from the COMINT background with new techniques from CR
and modern pattern recognition approaches. We present a flexible combined transmission detection and
classification for both cooperative and non-cooperative applications. It will be trained for a common HF
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transmission standard. The system is evaluated with real signals in order to show the robustness.

The paper is organized as follows: Section2.0 describes the principle of transmission scanning. In
Section2.1, we present the features used for the classification. Section 2.2analyzes the classification system.
Section3.0 reports on the performance of our system. In Section4.0, we present conclusions along with
recommendations for future improvements.

2.0 TRANSMISSION SCANNER FRAMEWORK

The basis of our approach is the spectrogram of a wideband signal. In Fig.2 only a small part of a wideband
spectrogram is shown. Many experts are able to detect and classify transmissions only by looking at this
special visualization. Thus, the principle of our proposedtransmission scanner is comparable to well-known
object detection techniques (e. g., face detection [14]), which are applied to images. In short, the scan is a
series of detections and classifications of different maskswhich are moved over the image. In our case, the
image is comparable with the complex spectrogramX
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, (1)

where|xi| are the bins of the power spectrum andtN is the number of short-time spectrums used for classifi-
cation.xi is computed within the wideband receiver, a ComCatTM-Tuner, delivered by MEDAV [15]. With
an applied FFT lengthfFFT = 4096 samples, a sampling frequencyfS = 625 kHz and a Hann window with
50% overlapping, we receive a frequency resolution∆f = 153 Hz and a time resolution∆t = 0.003 sec1.
The mentioned mask is fitted to the transmission we are looking for. In Section3.0the transmission of inter-
est is a STANAG-4285 signal. It is a continuous, fixed frequency and about3.0 kHz wide signal. It became
evident that 0.500 s signal length is sufficient for a robust classification. Thus, the mask is3.3 kHz wide and
0.500 sec long. Lower time lengths are possible, but will result ina lower classification rate. This leads to a
maskXM , fM = 22 bins wide andtM = 168 bins long,

XM (u, v) =







X [u, v] . . . X [u, v + fM]
...

. . .
...

X [u+ tM , v] . . . X [u+ tM , v + fM ]






, (2)

whereu = [1, ..., tN − tM ] is the position in time direction andv = [1, ..., fFFT − fM] the position in fre-
quency direction ofX. In Fig. 3 the block diagram for the new system is shown. By sweeping ofXM or
rather varyingu andv, all possible mask positions withinX are sent to the wideband feature extraction
and then to the wideband classification. The wideband feature extraction is described in Section2.1and the
wideband classification in Section2.2.

1These resolutions are adapted to the HF range. For the VUHF bands other resolutions should be chosen.
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Figure 2: Part of an absolute, logarithmic wideband spectro gram. It contains several transmissions, for example, STAN AG-
4285 and BAUDOT. A STANAG-4285 mask XM with fM = 22 bins and tM = 168 bins is exemplarily swept over the spectrogram.
In Fig. 2(a) XM lies not on a STANAG-4285 transmission. In Fig. 2(b) XM lies on a STANAG-4285 transmission.
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Figure 3: Processing chain with a combined wideband signal d etection and transmission classification.

2.1 Wideband Features

For transmission classification, it is desirable to defineNFeatdifferent feature types. There are features which
are very efficient but not definite, and there are features which allow exact decisions but are very inefficient.
Thus, the proposed framework gives us the possibility to include different feature groups and to benefit from
the different advantages. At the end of the feature extraction, we obtain a feature vectorf

f = [f1, . . . , fNFeat] (3)

with N

N = N1 + . . .+NNFeat (4)

dimensions.

In the research area of object detection optical features, like Haar-like features, are state of the art.
They are very efficient and obtain a good quality. In our approach, we apply the Haar-like features to the
logarithmic, absolute maskXM,log

XM,log = 10 · log10

(

|XM |2
)

. (5)

The original, complex maskXM gives us the possibility to extract more information, whichis invisible
in the logarithmic, absolute spectrogram. In addition to the optical Haar-like features, we use technical,
phase-related features, too.
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2.1.1 Haar-like Features

The evaluation of every single bin within the mask does not give any information other than signal power
and phase information, which is not sufficient for the classification process. So, first of all we need features
that encode the relation of different signal power values within one observed maskXM,log. Haar-like features
are typically used to describe contrasts within images. Applied to our problem, these features characterize
the two-dimensional energy distribution.

Our Haar-like feature set, which is shown in Fig.4, was inspired by Papageorgiouet al. in [16]. We
reduced the number of Haar-like features to a radio signal specific set. It contains now 20 2-D windows,
and can be used for different transmission types. Dependingon the Haar-like feature, which is used for
extraction, different tasks can be fulfilled. Fig.4(f) and Fig.4(g) are for the symbol alternations of a 2-FSK
transmission, whereas Fig.4(h) is useful for the bandwidth estimation.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: Haar-like features used for detection and classifi cation. Dark-colored areas have negative and light-colore d areas
positive weights.

The Haar-like features are applied to different positions with variable scale factors within the maskXM ,
as it is shown in Fig.5. In this case, the resulting feature value is the differencebetween the rectangleA and
rectangleB. Considering all possible positions and scaling factors,NHaar = 362.720 Haar-like features are
extracted. Violaet al. showed in [14] a very fast computation scheme based on integral images, which was
adapted in our implementation.

2.1.2 Phase-related Feature

In this paper we introduce a new technical feature which is especially suited to detect periodic sequences
within a transmission. These sequences are part of a standard and often used, to enable equalization algo-
rithms, like it is done within the STANAG-4285 standard, or to avoid interference among transmissions in
Orthogonal Frequency-Division Multiplexing (OFDM) communications. The proposed feature is based on a
cepstral analysis, which is suitable for the detection of periodic values, as described by Bogertet al. in [17].
Similar to the cyclostationary feature, presented by Gardner et al. in [11], the cepstral feature is modulation
type independent. Thus, it is suitable for transmissions with changing modulation types or some double
modulated content. The distance between training sequences is generally unique for different transmission
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Figure 5: The Haar-like feature, which is shown in Fig. 4(a), is applied to the mask XM at a certain position and with specific
scaling factors.

standards. The cepstrumqCeps(t) of a complex signalq (t) can be expressed as a function, as follows
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, (6)

whereQ (w) is

Q (w) =

∫

+∞

−∞

q (t) e−jwtdt. (7)

In our case,q (t) is the downsampled narrowband signal, dependent on the position of the maskXM within
X. In Fig.6 the cepstrum of two transmissions is plotted. It shows the position of a training sequence and its
harmonics. Exploiting the harmonic structure within the cepstrum, the distance between the sequences can
be extracted and used for classification. In both cases a peakanalysis gives the correct result of 106.6 msec
between the sequences. In Fig.6(b) it emerged that the cepstrum is very robust against fading and low SNR.
With NCepst= 1 and according to (3), we obtain a feature vectorf with N = 362.721 different elements.

2.2 Wideband Classifier

Given a set of labeled feature vectors, which are computed from the signal and rejection patterns, any ma-
chine learning approach can be used to learn a functional relationship between feature values and classes.
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Although the Haar-like features can be computed very efficiently, extracting the complete set is very expen-
sive. So, we decided to use the Adaptive Boosting (AdaBoost)algorithm, which is well-known in object
detection and first published by Freundet al. in [18]. AdaBoost trainsT weak classifiersht (XM) repeatedly
with t = 1, . . . , T . The final strong classifier is a weighted combination of the iterated hypothesesht. Gen-
erally, for every iteration a weak classifier which evaluates a thresholdΘt on a single featureft is trained to
distinguish between the signal classc1 and the rejection classc2:

ht (XM) =

{

c1, ft (XM) < Θt

c2, otherwise
(8)

After each iteration, the training set is reweighted with respect to the error rate of the last weak classifier.
As T is chosen to be smaller than the overall number of available featuresN , the number of features will be
reduced during the training process.N ′ will remain after the training:

N ′ << N with N ′ = N ′

Haar+N ′

Cepst. (9)

It can happen thatN ′

Haar or N ′

Cepst is zero. In this case the corresponding feature group will not be used for
the classification process. For more details regarding AdaBoost, see [18].

3.0 EXPERIMENTAL RESULTS

The task is to detect STANAG-4285 transmissions in widebandsignals without prior knowledge, e. g., the
exact position, and reject noise and all other transmissions. For the experiments, we trained three different,
monolithic AdaBoost classifiers withT = 10 weak classifiers. The first classifier is trained with both feature
groupsfHaar andfCeps, while the others are trained each with feature groupfHaar or fCeps.

Unfortunately, there exists no realistic labeled data fromreal world transmissions. Thus, the wideband
signals used for this work were acquired and manually labeled by MEDAV. Researchers, interested in a
comparison with their own approach, can have access to the data upon request. The wideband signal for
training has a sampling frequencyfs = 625 kHz and a center frequencyfc = 8.350 MHz. The wideband
signal for the evaluation has the same sampling frequency but a center frequency offc = 8.800 MHz.
To provide typical rejection samples for this scenario, therejection class contains examples of noise and
examples of common HF transmissions, e. g., SITOR-ARQ, BAUDOT, GW-PACTOR, GW-OFDM, J3E-
USB and A1E (described by Prösch in [4]). The used wideband signals are an important part of the realistic
evaluation, as they represent a typical HF scenario. They contain a lot of unknown transmissions and time-
variant wideband noise. In Table1 the class distribution is shown.

Table2 shows the results of the evaluation. Compared to the trainings with only one feature group, we
obtained the best classification rate of 99.5% for real worldscenarios with the combination offHaar andfCeps.
In Fig. 7, only a part of the results is plotted.

The total positive rate for the rejection class is about 99.7%, and the total positive rate for the signal class
is 96.3%. This indicates the fact that the combination of both groups is necessary for a robust classification.
A high accuracy for the rejection class is highly appreciated in COMINT applications, because the post pro-
cessing of miss-classified signals is very expensive.
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Class Name Training Test
c1 STANAG-4285 4887 1581
c2 NOISE 12434 4646
c2 SITOR-ARQ 2898 2844
c2 GW-PACTOR 13386 6960
c2 BAUDOT 5544 6336
c2 GW-OFDM 9504 5244
c2 J3E-USB 2088 7032
c2 A1E 8730 0

Table 1: Number of patterns for training and test set. Due to t he realistic properties of the wideband signals, it is possi ble that
some classes have more or less samples, e. g., A1E. Both train ing and test set contain transmissions with a SNR between
7 dB and 30 dB.

Training and evaluation forT = 10

Feature vector
[

fHaar, fCeps
]

TP Rate FP Rate Precision Recall F-Measure
c1 = STANAG-4285 0.963 0.003 0.932 0.963 0.947
c2 = REJECTION 0.997 0.037 0.998 0.997 0.997
Weighted Avg. 0.995 0.035 0.995 0.995 0.995

Feature vector[fHaar]

c1 = STANAG-4285 0.822 0.019 0.671 0.822 0.738
c2 = REJECTION 0.981 0.178 0.991 0.981 0.986
Weighted Avg. 0.973 0.171 0.977 0.973 0.975

Feature vector
[

fCeps
]

c1 = STANAG-4285 0.917 0.015 0.745 0.917 0.822
c2 = REJECTION 0.985 0.083 0.996 0.985 0.990
Weighted Avg. 0.982 0.080 0.985 0.982 0.983

Table 2: Evaluation of the classifiers with real world signal s. All possible combinations of the feature groups fHaar and fCeps
were considered.

Using the integral feature computation and some other optimizations, we could greatly reduce the overall
complexity. We were able to run about 13.108 classificationsper second2, which is a great step to real-time
CR and COMINT applications.

4.0 SUMMARY AND OUTLOOK

The paper introduced a novel method for transmission scanning based on well-established object detection
techniques and new CR approaches. In order to improve the accuracy we used beside the typical Haar-like
features, also a new cepstral feature. A combination of bothfeature groups exploited the particular benefits.
With signal recordings provided by MEDAV, we could show thatour system is capable of handling difficult
scenarios, in which different transmission standards and types of fading appear. We obtained very good re-
sults for a common, real HF scenario.

2A single threaded implementation ran on a IntelR©CoreTM2 Duo CPU T8300 at 2.40 GHz.
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As future work, one important issue is to build an efficient multiclass version of the proposed transmis-
sion scanner, based on feature sharing. New features, e.g. the correlation-based feature, shown in [13], will
be added to the framework. In order to demonstrate the flexibility and the real-time capabilities of our sys-
tem, we will focus on VUHF transmission standards and scenarios. This step will allow the framework to be
used as a monitoring system within CR applications, e.g. therobust emergency or disaster communication
systems.
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Figure 6: Spectrograms and cepstra of both a high SNR and a low SNR STANAG-4285 transmission. The dimensions of the
spectrogram are equivalent to the dimensions of XM.
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Figure 7: Part of an absolute, logarithmic wideband spectro gram. It contains the results of the transmission scanner, m arked
as green boxes. This classifier was trained with a combinatio n of fHaar and fCeps . Every STANAG-4285 transmission was
tagged. There is no incorrect hit in this part of the wideband spectrogram.
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