
 
Abstract— In 3D medical imaging, the size of the 
reconstructable field-of-view (FOV) is a factor that 
significantly defines the clinical benefit of medical X-ray 
systems. Due to the small detector size, the diameter of the 
FOV of C-arm devices is limited, but it is known that the FOV 
can be enlarged by using a horizontally displaced detector for 
data acquisition in a full rotation. For such geometries 
recently new reconstruction algorithms were proposed, with 
which the image quality of the reconstructions could be 
improved compared to previously known ramp filtered 
backprojection algorithms [3]. The proposed algorithms 
however require a rebinning step involving complementary 
rays, making an online reconstruction almost impossible. We 
present a new algorithm, modifying the algorithm of Kunze et. 
al. [4] allowing an online reconstruction. 
 
Index Terms—displaced detector, cone-beam CT, large volume 

I. INTRODUCTION 

C-arm computed tomography has become an integral part 
of interventional radiology procedures. It is a useful tool 
during liver lesion embolisation to visualize feeding arteries 
or during drainage insertions to guide the placement of 
tubes[1 ,2]. 
However, conventional C-arm devices often suffer from a 
limited reconstructable field of view (FOV) which prohibits 
the imaging of complete organs or both the target and the 
entry point of needle applications. 
It is known that the diameter of the FOV can be almost 
doubled by performing an acquisition with a shifted 
detector in a full rotation. Various algorithms are known for 
this geometry: 
In [3], a FDK algorithm with a specific detector weighting 
scheme applied before the filtering step (W-FDK) is 
proposed which computes an artifact-free reconstruction for 
the plane in which the tube moves, but for large cone angles 
severe artifacts occur. 
These artifacts can be reduced by the algorithms proposed 
in [4] and [5] which are based on the reconstruction scheme 
introduced by Noo [6]. 
Compared to the differentiation backprojection filtration 
algorithm described in [7] these algorithms have the 
advantage that smaller regions in the FOV can be 
reconstructed in high resolution without the need of 
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reconstructing long stripes of the FOV to perform the 
Hilbert transform in the reconstruction domain. 
Unlike the W-FDK algorithm, the algorithms described in 
[4] and [5] have the disadvantage that they require a 
rebinning to synthesize virtual projections of approximately 
double width from the original data to perform a high 
quality Hilbert transform. This property of the 
reconstruction algorithm prohibits an online reconstruction 
during data acquisition. However the ability of online 
reconstruction is an important feature for reconstruction 
algorithms in an interventional environment, as the result 
has to be available shortly after the last projection was 
acquired to influence the progress of the procedure. 
Therefore, we have reviewed the data extension step of [4] 
to provide an algorithm which enables online reconstruction 
without the disturbing reconstruction artifacts. 

II. RECONSTRUCTION ALGORITHM 

A. Large Volume Cone-Beam Reconstruction Formula 

This section starts with a review of the algorithm Kunze et. 
al. described in [4] for the reconstruction of large FOV 
from data acquired with a displaced, equally spaced flat 
panel detector. This algorithm can be described as a 
generalization of the fan-beam inversion formula suggested 
in [6] to reconstruct the x-ray linear attenuation coefficient 
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 is the source position parameterized by the polar 
angle λ and αr  the unit vector directing from the source to 
the detector coordinate (u, v) 
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 a unit 
vector in column direction and )(λwe
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 a unit vector ortho-

gonal to the detector, see figure 1. The detector coordinate 
(0, 0) corresponds to the orthogonal projection of the source 
point onto the detector. The distance between detector and 
source is D.  
In the following we assume that the detector is displaced in 
positive u direction. The detector could be totally displaced 
in one direction, so that only data for 0≥u  is considered. 
But for stability reasons, we use a small overlap εu2 so that 

),,( vug λ  is measured in the interval ];[ muuε− . 

Online cone beam reconstruction with 
displaced flat panel detector 

Michael Manharta, Frank Dennerlein and Holger Kunzeb 



x

y

z

e
v
(λ)

e
w
(λ)

e
u
(λ)

a(λ)
α(λ,u,v)

(u,v)

D

 
Fig. 1: Illustration of the cone-beam geometry 

 
Given a set of such projection data, the object density can 
be obtained according to [4] as follows: 

1. Compute the extended projection using the 
rebinning formula  
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2. Calculate the partial derivative of the extended 
data with respect to the parameter of the source 
trajectory 
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3. Multiply the differentiated data with a length 
correction weight 
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4. Perform a Hilbert transform  
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Multiply the Hilbert transformed data with a 
smooth weighting function to suppress artifacts 
due to the data extension. 
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5. Back project the filtered data using a linear 
distance weighting 
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where ( )** ,vu  are the coordinates of the cone 
beam projection of x

r
 onto the detector. 

B. Separate reconstruction of measured and extended 
data 

To achieve the goal of online reconstruction, it is necessary 
to process the measured data of a projection and its data 
extension separately, each at the moment when they can be 
retrieved.  
For that reason the extended projection ),,( vug E λ  needs 
to be written as a linear combination of the measured data 

),,( vug λ  and the data extension ),,( vug e λ  
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with ),,( vuλφ  a weighting function blending from the 
original data to the data extension. In the above reviewed 
algorithm ),,( vuλφ  is the Heaviside step function in the 
parameter u shifted by εu− . 
Due to the linearity of the reconstruction algorithm we can 
process both components of ),,( vug E λ  separately 
obtaining the volumes )(xfm

r
 of the measured projections 

and )(xf e

r
 of the projection extension. 

C. Approximate data extension 

In the algorithm described in section A, the data extension 
was done using a rebinning formula. This algorithm 
guarantees for the plane z = 0 an artifact free 
reconstruction, but is suboptimal with respect to 
computational effort and memory requirements: To be able 
to extend one projection several complementary projections 
are required. 
Therefore, we propose a different data extension scheme. 
Due to the large extend of truncation and due to the fact that 
many high frequent structures are typically located at the 
position of truncation in such a geometry, the commonly 
used data extension algorithms based on the fitting of the 
projections of circles or ellipses are not good choices [8]. 
In our case, however, we can make use of the additional 
knowledge about the object structure contained in the 
opposite projections. We thus propose to use the data 
acquired at the position πλ +  to extend the current 
projection. This extension can then be written as 

),,(),,( vugvug e −+= πλλ . 



Thus only data from one single projection is used for the 
projection extension. 
Of course, this approach yields only a coarse approximation 
of the missing projection data. Note, however, that the 
extended data values are only required for the Hilbert 
filtering and not used during backprojection, so that the 
impact on image quality caused by this approximation is 
very low. 

D. Online reconstruction algorithm 

Using the linearity property of the reconstruction algorithm 
described in section B and the approximate data extension 
proposed in section C we propose the following online 
algorithm for a large FOV reconstruction using a displaced 
detector: 
First, the reconstruction algorithm of section A is applied 
for the weighted projection ),,(),,( vugvu λλφ  skipping 
step 1. Thus only the measured data for the projection at 
source position )(λa

r
 are processed. 

In a second step, the same projection data are flipped to 
obtain the projection extension ),,( vug e πλ −  for the 
complementary source position )( πλ −a

r
. Note that λ is a 

polar angle and thus )(λa
r

 is a π2  periodic function. After 
weighting with )),,(1( vuπλφ −− , they are processed 
once again by the algorithm of section A without step 1, but 
this time using the geometry of the source position 
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. 
For ),,( vuλφ , a cosine square function is chosen, 
ramping down from 1 to 0 within the range from ]0;[ εu− . 

III.  NUMERICAL EVALUATION  

We compared our new algorithm of section II D to the 
algorithm that has been suggested in [4]. 
In both algorithms, we implemented the differentiation 
(step 3) according to the scheme described in [9]. The 
Hilbert transform was computed using the half pixel shift 
formula; see for instance [10]. 
As test object we chose the Schaller head phantom [11]. 
Cone beam projections were simulated using the parameters 
listed in table 1. 
 

source isocenter distance R = 570 mm 

source detector distance D = 1200 mm 

detector pixel size ∆u = ∆v = 1 mm 

# of projections 720 

overlap  
εu  = 25 mm 

Table 1: Geometry parameters used for data simulation 

Figure 2 presents two slices (at z = 0cm and z = -2.4cm) 
through the reconstructions of the head phantom. Note that 
the visible stripes are a result of the low number of the 
projections and are not caused by the displaced detector. 

Additionally to simulation studies we compared the 
reconstruction result using scanned phantoms. In figure 3 
the reconstruction result of an abdomen phantom is shown. 

IV. CONCLUSION 

We presented a new algorithm for full scan cone beam 
reconstruction using a displaced detector. The results are 
comparable to these of the algorithm described in [4] 
however the new algorithm enables an online 
reconstruction of the investigated object. This property is 
gained for the computational cost of one additional back 
projection; however the rebinning step could be skipped 
which allows online reconstruction, eases data handling and 
reduces memory requirements. 
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Fig. 2: Comparison of the reconstruction result using the proposed method (left) and method proposed in [4] (right) for z = 0 cm (top) and z = -2.4 cm (bottom) 
in the gray scale window [-100 HU; 100 HU] 

  

  
Fig. 3: Comparison of the reconstruction result using the proposed method (left) and method proposed in [4] (right) for z = 0 cm (top) and z = -2 cm (bottom) in 
the gray scale window [-200 HU; 400 HU] 


