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Abstract— In 3D medical imaging, the size of the
reconstructable field-of-view (FOV) is a factor tha

significantly defines the clinical benefit of medial X-ray

systems. Due to the small detector size, the diareetof the

FOV of C-arm devices is limited, but it is known ttat the FOV

can be enlarged by using a horizontally displacededector for

data acquisition in a full rotation. For such geomgies

recently new reconstruction algorithms were proposa, with

which the image quality of the reconstructions cod be
improved compared to previously known ramp filtered
backprojection algorithms [3]. The proposed algorihms

however require a rebinning step involving complemetary

rays, making an online reconstruction almost imposble. We

present a new algorithm, modifying the algorithm ofkKunze et.
al. [4] allowing an online reconstruction.

Index Terms—displaced detector, cone-beam CT, large volume

. INTRODUCTION

C-arm computed tomography has become an integréal pa
of interventional radiology procedures. It is a fukeool
during liver lesion embolisation to visualize femgliarteries
or during drainage insertions to guide the placenan
tubesl1 ,2].

However, conventional C-arm devices often sufferfra
limited reconstructable field of view (FOV) whichghibits
the imaging of complete organs or both the target the
entry point of needle applications.

It is known that the diameter of the FOV can be adtn
doubled by performing an acquisition with a shifted
detector in a full rotation. Various algorithms &rewn for
this geometry:

In [3], a FDK algorithm with a specific detector iglting
scheme applied before the filtering step (W-FDK) is
proposed which computes an artifact-free reconstnudor
the plane in which the tube moves, but for largeecangles
severe artifacts occur.

These artifacts can be reduced by the algorithrapgsed

in [4] and [5] which are based on the reconstruciocheme
introduced by Noo [6].

Compared to the differentiation backprojection réiton
algorithm described in [7] these algorithms have th
advantage that smaller regions in the FOV can be
reconstructed in high resolution without the neefd o
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reconstructing long stripes of the FOV to perforhe t
Hilbert transform in the reconstruction domain.

Unlike the W-FDK algorithm, the algorithms descdbim
[4] and [5] have the disadvantage that they require
rebinning to synthesize virtual projections of apgpmately
double width from the original data to perform ahi
quality Hilbert transform. This property of the
reconstruction algorithm prohibits an online redandion
during data acquisition. However the ability of iael
reconstruction is an important feature for recargion
algorithms in an interventional environment, as thsult
has to be available shortly after the last propectivas
acquired to influence the progress of the procedure
Therefore, we have reviewed the data extension cft¢f]
to provide an algorithm which enables online retresion
without the disturbing reconstruction artifacts.

Il. RECONSTRUCTIONALGORITHM

A. Large Volume Cone-Beam Reconstruction Formula

This section starts with a review of the algoritKiomze et.
al. described in [4] for the reconstruction of kr§OV
from data acquired with a displaced, equally spaitatd
panel detector. This algorithm can be describedaas
generalization of the fan-beam inversion formulggasted
in [6] to reconstruct the x-ray linear attenuatmoefficient
f (X) with X = (X, Y, Z) from the cone beam projections

g(/l,c?):Tdtf (A(A) +td) .

a(A) is the source position parameterized by the polar
anglei and @ the unit vector directing from the source to
the detector coordinate (u, v)

- D&, (1) + g, () + V&, (A)

Vu? +v2 + D?

with €,(A) a unit vector in row directiong, (A1) a unit
vector in column direction ané, (A) a unit vector ortho-
gonal to the detector, see figure 1. The deteatordinate
(0, 0) corresponds to the orthogonal projectiothefsource
point onto the detector. The distance between ttetemd
source is D.

In the following we assume that the detector ipldised in
positive u direction. The detector could be totaligplaced
in one direction, so that only data for=0 is considered.
But for stability reasons, we use a small overfi, so that
g(A,u,v) is measured in the intervitu,;u,,].
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Fig. 1: lllustration of the cone-beam geometry

Given a set of such projection data, the objeckitigrcan
be obtained according to [4] as follows:

1. Compute the extended projection using the

rebinning formula

gE (A ’ﬁ(A’u’V)) :{ g(A ,ﬁ(/]aulv))

with
Ae = A+ 2tan™ —

2. Calculate the partial derivative of the extended
data with respect to the parameter of the source
trajectory

9o (1,U,) =digE WaAu)
W

u=A

3. Multiply the differentiated data with a length
correction weight

D
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4. Perform a Hilbert transform
0n(4,0,9) = [ dih(u-d)g. (4,T,V)

Multiply the Hilbert transformed data with a
smooth weighting function to suppress artifacts
due to the data extension.
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5. Back project the filtered data using a linear
distance weighting

Idﬂ gW(A i)
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where (U ,V are the coordinates of the cone
beam projection ofX onto the detector.

B. Separate reconstruction of measured and extended
data

To achieve the goal of online reconstruction, imésessary
to process the measured data of a projection andaita
extension separately, each at the moment whenctreye
retrieved.

For that reason the extended projecti@p (4,U,V) needs
to be written as a linear combination of the meadutata
g(4,u,v) and the data extensiag, (4,U,V)

9e (4,u,v) =9(A,u,v)g(A,u,v) +

(L= ¢A,u,v)g.(A,u,v)

with ¢(A,U,v) a weighting function blending from the
original data to the data extension. In the abaxéewed
algorithm ¢(A,u,V) is the Heaviside step function in the
parameter u shifted by u, .

Due to the linearity of the reconstruction algarithve can
process both components ofJ; (4,u,V) separately
obtaining the volumesf, (X) of the measured projections
and f_(X) of the projection extension.

C. Approximate data extension

In the algorithm described in section A, the dateersion
was done using a rebinning formula. This algorithm
guarantees for the plane z = 0 an artifact free
reconstruction, but is suboptimal with respect to
computational effort and memory requirements: Tabke

to extend one projection several complementaryegtimns
are required.

Therefore, we propose a different data extensidrerse.
Due to the large extend of truncation and due edlet that
many high frequent structures are typically locagé¢dhe
position of truncation in such a geometry, the camin
used data extension algorithms based on the fittinthe
projections of circles or ellipses are not goodicks [8].

In our case, however, we can make use of the additi
knowledge about the object structure contained hHe t
opposite projections. We thus propose to use thea da
acquired at the positiond + 77 to extend the current
projection. This extension can then be written as

g. (A, u,v) =g(A +m-u,v).



Thus only data from one single projection is usedthe
projection extension.

Of course, this approach yields only a coarse amation
of the missing projection data. Note, however, tte
extended data values are only required for the esilb
filtering and not used during backprojection, sattithe
impact on image quality caused by this approxinmai®
very low.

D. Online reconstruction algorithm

Using the linearity property of the reconstructedgorithm
described in section B and the approximate datansitn
proposed in section C we propose the following ranli
algorithm for a large FOV reconstruction using spthced
detector:

First, the reconstruction algorithm of section Aaisplied
for the weighted projectiong (A,u,v)g(A,u,V) skipping
step 1. Thus only the measured data for the piojectt
source positioré(A) are processed.

In a second step, the same projection data arpeflipto
obtain the projection extensiogy (A — 77,u,V) for the
complementary source positi@(A — 727) . Note that is a
polar angle and thud(A) is a 271 periodic function. After
weighting with (1—¢(A — 71,u,V)), they are processed
once again by the algorithm of section A withoweipsl, but
this time using the geometry of the source position
a(A-n).

For ¢(A,u,v), a cosine square function is chosen,
ramping down from 1 to 0 within the range frdmu, ;0] .

I1l. NUMERICAL EVALUATION

We compared our new algorithm of section Il D te th
algorithm that has been suggested in [4].

In both algorithms, we implemented the differemtiat
(step 3) according to the scheme described in T8
Hilbert transform was computed using the half pighkift
formula; see for instance [10].

As test object we chose the Schaller head phantdh [
Cone beam projections were simulated using thenpeteas
listed in table 1.

source isocenter distance R =570 mm

source detector distance D = 1200 mm
detector pixel size Au=Av=1mm
# of projections 720

overlap u, =25mm

Table 1: Geometry parameters used for data siroulati

Figure 2 presents two slices (at z = Ocm and z.4cf)
through the reconstructions of the head phantonte Nwat
the visible stripes are a result of the low numbertthe
projections and are not caused by the displacexttbet

Additionally to simulation studies we compared the
reconstruction result using scanned phantoms.duardi 3
the reconstruction result of an abdomen phantashasvn.

IV. CONCLUSION

We presented a new algorithm for full scan conenbea
reconstruction using a displaced detector. Theltesue
comparable to these of the algorithm described 4h |
however the new algorithm enables an online
reconstruction of the investigated object. Thispemy is
gained for the computational cost of one additiopatk
projection; however the rebinning step could beppé&d
which allows online reconstruction, eases data livegnand
reduces memory requirements.
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Fig. 2: Comparison of the reconstruction resulbhgghe proposed method (left) and method propaséd i(right) for z = 0 cm (top) and z = -2.4 cnoftom)
in the gray scale window [-100 HU; 100 HU]

Fig. 3: Comparison of the reconstruction resulhgshe proposed method (left) and method propasé4] i(right) for z = 0 cm (top) and z = -2 cm () in
the gray scale window [-200 HU; 400 HU]



