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Abstract
This paper investigates the use of speech-to-text methods for
assigning an emotion class to a given speech utterance. Previ-
ous work shows that an emotion extracted from text can con-
vey complementary evidence to the information extracted by
classifiers based on spectral, or other non-linguistic features.
As speech-to-text usually presents significantly more compu-
tational effort, in this study we investigate the degree of speech-
to-text accuracy needed for reliable detection of emotions from
an automatically generated transcription of an utterance. We
evaluate the use of hypotheses in both training and testing, and
compare several classification approaches on the same task.
Our results show that emotion recognition performance stays
roughly constant as long as word accuracy doesn’t fall below
a reasonable value, making the use of speech-to-text viable for
training of emotion classifiers based on linguistics.
Index Terms: speech-to-text, emotion detection, meta-data ex-
traction, rich transcription, children’s speech

1. Introduction
Speech utterances not only contain the literal meaning (se-
mantics) of the words spoken, but convey a wealth of addi-
tional information to the listener [1]. The language spoken, the
speaker’s dialect, accent and sociolect as well as the specific
choice of grammatical construct, words chosen over synonyms,
emphasis, articulation etc. – all convey a rich context to the na-
tive listener of the speaker’s language. The human listener is
particularly finely tuned to the detection of a range of emotions
in the speaker’s utterance. A native listener is able to detect
certain emotions by recognizing salient words, which are asso-
ciated with those emotions. However, a speaker’s emotions are
also accessible to some extent to non-native listeners who are
able to utilize acoustic cues to distinguish emotions in speakers
whom they otherwise do not understand.

This dual association of human emotion with the linguistic
content of an utterance and with some of its acoustic character-
istics has motivated us to explore a combination of the acous-
tic and the linguistic features of utterances, in order to detect
an angry disposition of the speaker. Linguistically based ap-
proaches obviously require transcriptions for the training and
the test data. Two models have been used to derive an emotion
from a transcription of an utterance, one based on emotional
salience [2], and one based on several bag of word models [3].
The quality of the result (i. e. the accuracy of the classification

of emotions) depends on the quality of the model, which will
ideally be computed on automatic hypotheses rather than man-
ual transcriptions of the training data, and the quality of the hy-
potheses generated on the test data. In this paper, we will inves-
tigate the resulting trade-offs, i. e. how does the speech-to-text
error rate affect the quality of emotion recognition.

This paper builds on earlier work [4, 3], which was partly
used in the 2-class (negative and neutral) sub-challenge of the
INTERSPEECH 2009 Emotion Recognition Challenge on the
FAU Aibo Emotion Corpus [5].

2. Database and Task
The FAU Aibo Emotion Corpus [6] comprises recordings of
German children’s interactions with SONY’s pet robot Aibo;
the speech data are spontaneous and emotionally coloured.

The children were led to believe that the Aibo was respond-
ing to their commands, whereas the robot was actually con-
trolled by a human operator. The wizard caused the Aibo to per-
form a fixed, predetermined sequence of actions; sometimes the
Aibo behaved disobediently, thereby provoking emotional reac-
tions. The data was collected at two different schools, called
MONT and OHM, from 51 children (age 10–13, 21 male, 30
female); it contains about 8.9 hours of speech without pauses.

Speech was transmitted with a high quality wireless head
set and recorded with a DAT-recorder (16 bit, 48 kHz down-
sampled to 16 kHz). The recordings were segmented automati-
cally into ‘turns’ using a pause threshold of 1 s.

Turns were then transcribed manually at the word level, and
time-aligned. Five labellers (advanced students of linguistics)
listened to the turns in sequential order and annotated each word
independently from each other as neutral (default) or as belong-
ing to one of ten other classes. This procedure was iterative and
supervised by an expert. Data was labelled on the word level,
as many utterances are short commands only, and rather long
pauses can occur between words due to Aibo’s (or the wizard’s)
reaction time; the emotional/ emotion-related state of the child
can change also within turns.

A label was attributed to a word, if three or more labellers
agreed on it. The following labels were used, with frequency
of occurence: joyful (101), surprised (0), emphatic (2 528),
helpless (3), touchy, i. e. irritated (225), angry (84), motherese
(1 260), bored (11), reprimanding (310), rest, i. e. non-neutral,
but not belonging to the other categories (3), neutral (39 169);
4 707 words had no majority vote, they also received a neutral
label. All in all, there were 48 401 words.



# NEG IDL
P

train 3 358 6 601 9 959
test 2 465 5 792 8 257P

5 823 12 393 18 216

Table 1: Number of instances for the two classes NEG and IDL,
at the chunk level.

Classification experiments on a subset of the corpus [6,
Table 7.22, p. 178] showed that manually defined ‘chunks’,
based on syntactic-prosodic criteria developed in [7], cf. [6,
Chap. 5.3.5], give the best compromise between length of unit
and homogeneity of units, so that these were used here. In con-
trast to other recent publications, the whole corpus consisting
of 18 216 chunks is used under the very same conditions as
for the INTERSPEECH 2009 Emotion Challenge [5]. School
OHM (9 959 chunks) was used for training, while school MONT
(8 257 chunks) was used for testing.

In this paper, we concentrate on the two-class problem con-
sisting of the main classes NEGative (subsuming angry, touchy,
reprimanding, and emphatic) and IDLe (consisting of all non-
negative states); emphatic has to be conceived as a pre-stage of
anger because on the valence dimension, it lies between neutral
and anger, cf. [6, p. 100].

A heuristic approach similar to [6, Chap. 5.3.8] is used to
map the raw labels of the five labellers on the word level onto
one label for the whole chunk: if 50 % of these raw labels are
NEG, then the whole chunk is labelled as NEG. The whole
chunk is also considered to be NEG, if at least one third of all
raw labels is NEG, and the remaining raw labels are mostly
neutral, i. e. at least 90 % of all raw labels are either negative
(angry, touchy, reprimanding, emphatic) or neutral. Still, the
class distribution is quite unbalanced (see Table 1).

Our systems were developed for the optimality criterion
also used in the INTERSPEECH 2009 Emotion Challenge: the
systems are tuned to optimize first the un-weighted average re-
call of emotion classes (UAR), and second the weighted average
recall (WAR or accuracy) of the classification. UAR is defined
as the unweighted average of the class-specific recalls achieved
by the system, while for the WAR calculation the class-specific
recalls are weighted by the prior probabilities of the respective
classes. It requires that all classes be recognized with (equally)
good recall, which boosts the relative importance of minority
classes for imbalanced data.

3. Emotion Recognition
This paper compares two different approaches to the identifica-
tion of emotions in utterances by linguistic analysis: emotional
salience and bag-of-word based classifiers, computed over the
full recognition vocabulary.

3.1. Emotional Salience Classifier

Emotional Salience [2] seeks to identify the words which are
saliently associated with a specific emotional category, i. e.
words which are frequent in one category, but not in others. In
[4] we had extended this approach to include word confidence
scores, and higher-order n-grams, but in order to allow for fair
comparison with the bag-of-words (BOW) approach described
below, in this work we only compare systems based on bi-grams
for emotional salience, but not confidences.

To provide insight into which words carry meaning, and

Hypotheses References
sal word emo sal word emo

... ...
0.41 fein IDL 0.41 fein IDL
0.41 schon IDL 0.41 aber IDL
0.42 stehen NEG 0.45 bleib NEG
0.44 nein NEG ...
0.44 sollst NEG 0.49 stehen
0.45 stehenbleiben NEG 0.53 halt NEG

... 0.56 Aibolein NEG
0.46 bleiben NEG 0.56 bleiben NEG

... ...
0.56 Aibolein NEG 0.63 nein NEG
0.58 Neid NEG 0.63 pfui NEG

... 0.65 tanzen NEG
0.71 stoppen NEG 0.99 stoppen NEG

Table 2: Selection (deletions marked by “...” for brevity) of
most salient uni-grams, with a minimum count of 10, for models
trained on CMU/ T-Labs (see below) hypotheses and references.
Higher values for “sal” denote higher salience.

how this is different between references and hypotheses, Table 2
shows the most salient uni-grams. Most salient words have a
negative connotation, and training on references generally pro-
duces higher saliences. However, “Neid” (meaning “grudge”)
seems to be a systematic mis-recognition of “nein” (“no”), if
this word is said negatively, as it appears with higher emotional
salience. The recognizer sometimes contracts “stehen bleiben”
into “stehenbleiben”, diminishing frequency and salience of the
component words. These two effects (other examples were ob-
served, too) seem to balance each other, so that emotion clas-
sification using hypotheses generally works as well as emotion
classification using references.

3.2. Bag of Words Classifier

Our second approach to linguistic analysis is based on the bag
of words (BOW) concept [8]: the idea behind this approach
is the representation of text in a numeric feature space. Each
feature thereby represents the occurrence of a specific word in
a sentence. To classify these BOW features, we used Support
Vector Machines (SVM) and a discriminatively learned simple
Bayesian Network, namely Discriminative Multinomial Naive
Bayes (DMNB) [9]. Both are capable of dealing with high
dimensional feature spaces. DMNB is a statistical classifier,
learning its parameters from the data distribution. SVM is a
distance classifier based on the expansion of the feature vector
using kernel functions and spanning of a hyperplane in a high
dimensional space to optimally separate classes.

3.3. Speech Transcription

Transcriptions were generated using two different systems, in
order to be able to analyze effects pertaining to specifics of a
particular ASR setup, like normalization, noises, etc. However,
no systematic effects could be identified so far, see Table 3.

A speaker-independent ASR system CMU/ T-LABS was
first trained on about 14 h of close-talking, clean 16 kHz ‘back-
ground’ speech, recorded from adults reading German news-
paper texts, using JRTk/ Ibis [10]. The acoustic model uses
2 000 context-dependent acoustic models. These were trained
using Maximum Likelihood (ML) and employ 32 Gaussians



WA (in %) FAU Hypos CMU/ T-Labs Hypos
dev 76.3 (2.9|5.6) 82.9 (5.0|3.1)
test 77.4 (2.4|5.7) 81.0 (6.5|1.7)

Table 3: Word accuracy of adapted CMU/ T-Labs and un-
adapted FAU recognizers (deletions|insertions in brackets).

with diagonal covariance matrices each in a 42-dimensional
MFCC-based feature space after Linear Discriminant Analysis
(LDA), also using Vocal Tract Length Normalization (VTLN)
and speaker-based Cepstral Mean Subtraction/ Cepstral Vari-
ance Normalization. A baseline language model was also
trained using tri-grams on German Broadcast News type text
data and transcripts, using a 60 k vocabulary.

For the INTERSPEECH 2009 Emotion Challenge, we used
a vocabulary of about 5 000 words, and 4 500 word types includ-
ing 300 domain-specific words, appearing at least two times.
Out-of-Vocabulary (OOV) rate is around 2 % on the test data
(including fragments).

These models were adapted to the childrens’ speech using
Maximum A-Posteriori (MAP) adaptation. For development on
the training data, we used 10-fold Cross-Validation (CV) on the
speakers, in order to match conditions on unseen test data as
much as possible. The Language Model (LM) was also adapted
to the target domain using a matching context independent in-
terpolation of 3-gram background and in-domain LMs for de-
velopment. Averaged perplexity on the training data is 55.

During tests, the baseline acoustic model was adapted to
the test speaker incrementally using feature-space unsupervised
constrained Maximum Likelihood Linear Regression (MLLR),
and VTLN. For tests on the unseen evaluation test data, we
loaded an acoustic and language model trained on the full train-
ing set. Speaker adaptation was performed using automatically
determined speaker clusters, which was found to give virtually
the same error rate as when using known speakers.

A second set of experiments has been conducted using the
speech-to-text engine FAU SYSTEM developed at FAU Uni-
versität Erlangen-Nürnberg [11]. The first 12 standard MFCC
features are being used, while the first MFCC coefficient is re-
placed by the sum of the energies of the 22 Mel filterbanks,
together with first derivatives.

This system is based on semi-continuous hidden Markov
models (SC-HMM) modelling polyphones. A polyphone is
modelled by its own HMM if it can be observed at least 50
times in the training set. All HMM states share the same set
of Gaussian densities; the size of the codebook is 500. How-
ever, full covariance matrices are used in contrast to most other
systems based on continuous HMMs. We use Baum-Welch
re-estimation for training and Viterbi decoding. As language
model we use back-off bi-grams.

It is interesting to note that the children in the training par-
tition of the database (OHM) have a higher vocabulary of 703
words and 253 fragments than the MONT students in the test set,
which has a vocabulary size of 383 words and 158 fragments.
The vocabulary of this ASR system consists of all words (but no
word fragments) of both the training and the test set – all in all
813 words. Hence, 158 vocabulary words (types) of the test set
are out of OOV, which amounts to a total of 2.1 % OOV tokens.

4. Experiments
To investigate robustness of the approaches, we report results
on development and independent test sets. The development
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Figure 1: Recall versus word accuracy using 10-fold CV on the
training data and an emotional salience classifier trained on
CMU/ T-Labs hypotheses.

data was used to train the speech recognition, even though pa-
rameters were optimized using cross-validation. For brevity of
presentation, some results will only be presented on the CMU/
T-Labs hypotheses, which have a lower WER.

4.1. Hypothesis quality dependency on development data

Figure 1 shows weighted and unweighted recall for different
word accuracies of training and testing hypotheses, achieved
by varying the decoding beam, using emotional salience. Be-
cause of OOV words and spontaneous speech, 100% accu-
racy cannot be achieved. The baseline performance on refer-
ences is UAR=71.2 % and WAR=70.5 %, while the priors are
UAR=50.0 % and accuracy or WAR=66.3 %. As the model
shown in Table 2 is more ‘compact’ for the training on hy-
potheses (it contains 422 words, instead of 797), it is also
more consistent, so that performance degrades only minimally
(to UAR=70.6 %, WAR=70.0 % for the best hypotheses), when
compared to training and testing on the references. For word ac-
curacies below about 60 %, the performance can even become
worse than chance.

4.2. Dependency on hypothesis quality on independent data

Figure 2 shows results on independent test data. Using the ref-
erences results in UAR=67.0 % and WAR=64.6 %, so there is a
mismatch in absolute performance, but not with respect to the
training method. Although the word accuracy of the recognizer
is not affected (see Tables 3 and 4), the emotion recognition de-
grades slightly, but gradually, as the word accuracy falls below
≈65 %. As there is no big discrepancy between “matched” and
“best” training, it does not pay to transcribe training or adapta-
tion data with more care than testing data.

Figure 3 shows the performance using a BOW SVM classi-
fier instead of one using emotional salience. This exhibits gen-
erally better performance, but UAR degrades sharply at ≈77 %.

Using the best hypotheses, emotional salience seems to be
more affected by the training/ testing mis-match. On the other
hand, BOW SVM classifiers seem to be more affected by the
quality of the hypotheses used for training. For all systems,
training on good word hypotheses is superior to training a model
on references, presumably due to the match between training
and testing conditions. This is especially true, if word confi-
dences or other side information from the speech recognizer can
be incorporated, which is not available for transcripts. In addi-
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Figure 2: Recall versus word accuracy using independent test
data, for an emotional salience model as in Figure 1. “Matched
training” refers to a system trained on CMU/ T-Labs hypotheses
with roughly the same word accuracy as in the test case, while
“best training” refers to a system trained on the best available
hypotheses (with 82.9 % word accuracy).
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Figure 3: Recall versus word accuracy using BOW SVM classi-
fier, comparable to Figure 2, on CMU/ T-Labs hypotheses. The
weighted average recall is above chance level for the best train-
ing, but the “matched training” case degrades with decreasing
word accuracy of the training transcriptions.

tion, systematic mistakes such as the frequent mis-recognition
of “nein” as “Neid” by the German recognizer will be trained
into the model automatically.

5. Summary and Outlook
This paper compares approaches to automatically discriminate
between utterances labeled as “angry” and “non-angry”, using
only the words of children, who are engaged in a dialog with an
Aibo robot dog. Previous experiments have shown that worth-
while gains can be achieved by combining linguistic and acous-
tic features for emotion recognition, which is also what humans
do. In this paper, we investigated the accuracy level needed in
order to be able to use speech recognition hypotheses during
training and testing of classifiers based on linguistic features, so
that these can be used without word-level manual transcriptions.

Our results show that word accuracy can be well below
100 % for both training and testing with a model, with a grad-

Recall on FAU on CMU/ T-Labs
(in %) Hypotheses Hypotheses

BOW Model Emotional
SVM DMNB Salience

UAR train 65.9 66.1 70.3 74.2
WAR train 71.4 70.6 69.5 72.8
UAR test 62.4 64.9 64.2 64.3
WAR test 72.8 67.1 62.2 61.5

Table 4: Comparison of FAU and CMU/ T-Labs hypotheses for
training emotional salience, and using various classifiers.

ual deterioration to even sub-chance levels occuring for low
word accuracies. An emotional salience model seems to be
less sensitive to training with imperfect transcriptions than a
BOW model, which also exhibits sharper drop-off points, as
the “matched” and “best” curves in Figures 1 and 3 deviate less
when using emotional salience. Also, as some speech recogni-
tion mistakes tend to be systematic for emotional speech, refer-
ences are not crucial in order to obtain best overall performance.

Future experiments will therefore address the integration of
linguistic and acoustic parameters, using word-level segmenta-
tions. Also, word confidences generated by ASR could suc-
cessfully be included in emotional salience [4], so that their in-
clusion in BOW based approaches should be investigated, too.
Separate acoustic models could also be trained for separate,
known emotions, whose use could provide even more side in-
formation for an integrated classifier.
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