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Abstract. The goal of blind image forensics is to distinguish original
and manipulated images. We propose illumination color as a new indi-
cator for the assessment of image authenticity. Many images exhibit a
combination of multiple illuminants (flash photography, mixture of in-
door and outdoor lighting, etc.). In the proposed method, the user selects
illuminated areas for further investigation. The illuminant colors are lo-
cally estimated, effectively decomposing the scene in a map of differently
illuminated regions. Inconsistencies in such a map suggest possible image
tampering. Our method is physics-based, which implies that the outcome
of the estimation can be further constrained if additional knowledge on
the scene is available. Experiments show that these illumination maps
provide a useful and very general forensics tool for the analysis of color
images.

Keywords: Blind image forensics, scene analysis, physics-based illumi-
nant color estimation

1 Introduction

The goal of image forensics is to assess image authenticity. This can be achieved
by actively embedding a security scheme in the image, like a digital watermark.
However, current hardware does not typically provide such signatures. Therefore,
blind image forensics aims at assessing image authenticity and origin without
having an embedded security scheme available. In the past few years, different
branches of blind image forensics have evolved.

For a more complete overview on the methods in blind image forensics, see
e.g. [37, 33].Some of the existing approaches are classification based [6, 22]. Un-
fortunately, the outcome of these algorithms is often hard to interpret for non-
technical surveyors, e.g. in court. Other approaches search for artifacts of a spe-
cific tampering operation, like the algorithms for copy-move forgery detection
(see e.g. [20, 2, 3, 32, 31]), resampling detection [35], or methods for the analysis of
double JPEG compression (see e.g. [29, 15, 7]). In general, these methods are suit-
able for an automated analysis of an image. Unfortunately, researchers are also
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working on methods to hide image manipulation artifacts, thus effectively coun-
teracting the aforementioned methods [23]. A third family of algorithms aims
at verifying expected image-sensing artifacts. One prominent example of these
methods is the recovery of the characteristic noise pattern of camera sensors [30].
Other methods estimate the camera response function [17], demosaicing [12], or
lens properties [21].

Lastly, the examination of scene properties is another approach in image
forensics. Unlike the aforementioned methods, it often involves (to a limited ex-
tend) user interaction, especially if human knowledge about the scene content is
required. In this respect, methods for the assessment of scene properties often
serve as a computational tool for a human surveyor. The advantage of such tech-
niques is that it is frequently not straightforward to hide traces of tampering
from these methods. Disguising scene inconsistencies is typically a tedious man-
ual process, that may additionally require high algorithmic knowledge. Thus,
scene consistency assessment can provide powerful tools for forensic analysis. To
our knowledge, only a small amount of work has been done in this direction.
For instance, Johnson and Farid demonstrated the recovery of the illumination
direction of objects [19] and compared the estimated position of light sources
in the scene [18]. Yu et al. examined specularity distributions for recapturing
detection [40]. Lalonde and Efros used color distributions in pictures in order to
detect spliced images [25].

We propose a new method for the assessment of illumination-color consis-
tency over the scene by extracting local illumination estimates. To our knowl-
edge, no similar approach has been proposed in image forensics. Our method is
based on an extension of an illumination estimation method that is grounded
on the physical principles of image formation. In contrast, most state-of-the-art
methods for illuminant color estimation are machine-learning based. However, it
is our belief that deviations from the expected result can be easier explained using
a physics foundation than by machine-learning results, as detailed in Sec. 4.2. We
believe this is a highly desirable property in forensics applications. Depending on
the number of light sources of the scene, we show that these local estimates can
provide further insights on the scene construction. For instance, if a photogra-
pher took an image at night using flashlight (which is typically a relatively bluish
light source), we can obtain a rough relative depth estimate from the decay of
the blue channel in the illuminant estimates. Inconsistencies in the illumination
distribution can be used to distinguish original and spliced images.

The contributions of this paper are:

1. The development of a physics-based method for the recovery of the illumi-
nant color for different objects in the scene.

2. The introduction of an illumination map based on a distance measure
on the estimated results.

3. The demonstration of the feasibility of employing this illuminant map in
forensic analysis.



2 Overview of the Method

We present a system for the assessment of the illuminant color consistency over
the image. The method involves the following steps.

1. The image is segmented in regions of approximately the same object color.
These segments are called superpixels. A superpixel is required to a) be
directly illuminated by the light sources under examination and b) roughly
adhere to the physical model presented in Sect. 3.

2. A user selects such superpixels whose incident illuminant he wants to further
investigate. Every group of superpixels represents one illuminant color under
investigation.

3. Estimation of the illuminant color is performed twice. First, the estimation
is done on every superpixel separately. Second, the estimation is done on the
user-selected superpixel groups for greater robustness.

4. The user-selected groups form the reference illuminants. A distance measure
from these illuminants to every superpixel estimate is computed. We visualize
these per-superpixel distances in what we call a distance map to support the
analysis of the illumination color consistency.

In special cases, this method can be fully automated. On the other hand,
since the estimation of the illuminant color is an underconstrained problem, there
will always exist scenes that can not be correctly processed. We believe that a
limited degree of human interaction is a valid tradeoff between the accuracy of
the method and its usability.

3 Estimation of the Illuminant Color

There is a large body of work on the estimation of illuminant color. Most of these
methods process the entire scene globally for the recovery of a single dominant
illumination color. To overcome the fact that illuminant color estimation is an
underconstrained problem, many (especially physics-based) techniques make re-
strictive assumptions that limit their applicability (e.g. [26, 13, 24]). As a result,
machine learning methods have been more successful in processing arbitrary
images, e.g. [4, 9, 10, 14, 28]. However, since illuminant estimation is an under-
constrained problem, every method has its individual failure points. We chose a
physics-based method, since the failures typically result from broken underlying
assumptions. As such, they can (by human observers) more easily be predicted
and explained, which we consider highly important for forensics applications.

3.1 Inverse-Intensity Chromaticity Space

We extend a physics-based approach that was originally proposed by Tan et al [39]
so that:

1. it can be applied on a wider range of real-world images, and



2. it can be applied locally, so that illuminants at selected regions can be inde-
pendently estimated.

The foundation of [39] is the dichromatic reflectance model [38], which states
that the amount of light reflected from a point, x, of a dielectric, non-uniform
material is a linear combination of diffuse reflection and specular reflection. Fur-
ther assumptions are that the color of the specularities approximates the color
of the illuminant, and that the camera response is linear.

When an image is taken with a trichromatic camera, the sensor response
Ic(x) for each color filter c, c ∈ {R,G,B} is:

Ic(x) = wd(x)Bc(x) + ws(x)Gc(x) , (1)

where wd(x) and ws(x) are geometric parameters of diffuse and specular re-
flection respectively. B(x) and Gc(x) are the sensor responses for diffuse and
specular reflectance. Note that in [39], Gc does not depend on x due to the as-
sumption that the specular color is globally constant. In this paper, we estimate
illumination locally and thus write Gc(x). Let σc the image chromaticity, i.e.

σc(x) =
Ic(x)∑
i Ii(x)

where i ∈ {R,G,B} . (2)

For the remainder of the paper, we define i ∈ {R,G,B} and use this index
for summing over the color channels. In a similar manner, we can define the
diffuse chromaticity Λc(x) and the specular chromaticity Γc(x) as

Λc(x) =
Bc(x)∑
iBi(x)

, (3)

Γc(x) =
Gc(x)∑
iGi(x)

. (4)

Equation (1) can be rewritten as

Ic(x) = md(x)Λc(x) +ms(x)Γc(x) , (5)

where
md(x) = wd(x)

∑
i

Bi(x) , (6)

ms(x) = ws(x)
∑

i

Gi(x) . (7)

Tan et al. [39] showed, that there exists a linear relationship between diffuse,
specular and image chromaticities,

σc(x) = pc(x)
1∑

i Ii(x)
+ Γc(x) , (8)

where
pc(x) = md(x)(Λc(x)− Γc(x)) . (9)



pc(x) is the slope of a line with intercept Γc(x), i.e. the specular chromaticity,
which is also the illuminant chromaticity. The domain of the line is determined
by 1/

∑
i Ii(x) and the range is given by 0 ≤ σc ≤ 1. Domain and range together

form the inverse-intensity chromaticity (IIC) space [39].
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Fig. 1. Sample pixel distributions in IIC space (blue chromaticity). Left: ideal image,
middle: synthetic image (violet and green bowls). Right: specular pixels converge to-
wards to the blue portion of the illuminant color (recovered at at the y-axis intercept).
Highly specular pixels are shown in red.

This space can be used to estimate the illumination color in an image. Ev-
ery color band c ∈ {R,G,B} is projected in a separate IIC diagram. One can
then obtain estimates for each of these three color channels. All three channels
together form the illuminant estimate. Fig. 1 shows a synthetic example for the
blue channel. The x-axis corresponds to the inverse-intensity 1/

∑
i Ii(x), and

the y-axis to σc. In Fig. 1 the y-axis shows the blue chromaticities. An idealized
distribution is shown in Fig. 1(a). On a uniformly colored surface, pixels with
a mixture of specular and diffuse chromaticities form roughly a triangle that
points towards the illuminant chromaticity (the y-axis intercept). Purely diffuse
pixels form a straight line. Fig. 1(b) shows a rendered image of two balls of
distinct colors, and Fig. 1(c) shows the distributions of the balls-image in the
blue chromaticity IIC space. In this synthetic setup, the triangles can be clearly
captured, as well as the diffuse horizontal lines. Any method for finding the in-
tersection of the triangle with the y-axis gives then the illuminant chromaticity
estimate in the respective channel. The final estimate of the illuminant color is
obtained by considering all three color bands red, green and blue. In [39], this
is done by first segmenting highly specular pixels in the image (marked red in
Fig. 1(c)) and then performing a Hough transform on these specular pixels.

3.2 Local Analysis of Pixel Distributions

On real-world images, the automatic extraction of highly specular pixels is a
very challenging task with unreliable performance (see e.g. [36]). Furthermore,
the basic method [39] does not handle cases with multiple light sources. We



analyzed and extended the exploitation of pixel distributions in IIC space, so
that it can overcome these two weaknesses.

In order to avoid specularity segmentation, we chose to perform simple shape
checks on the pixel distributions in IIC space in order to identify specular re-
gions. Instead of examining the entire pixel distribution, we perform the analysis
over small connected image regions of roughly uniform object color (albedo). De-
pending on the outcome of our shape analysis, we can either use this local region
to obtain an illuminant estimate, or reject it if it does not seem to fulfill the un-
derlying assumptions of the proposed model. Using local regions allows us to
incorporate multiple sampling and voting in the estimation of local illuminants.
Ultimately, this improved exploitation of the IIC space makes the method more
robust to real-world analysis and also enables us to examine multiple illuminants.
More specifically, the proposed algorithm works as follows.

1. For every dominant illuminant in the scene, select regions that a) follow the
dichromatic reflectance model and b) are mostly lit by that light source.

2. Segment these regions in superpixels with roughly uniform chromaticity.
3. Further subdivide these superpixels in a rectangular grid. We call each such

rectangular subregion a patch.
4. Transform every patch to inverse intensity space.
5. Apply tests on the shape of the patch’s pixel distribution. If the distribution

passes, obtain a local illuminant color estimate for this patch.
6. Obtain a color estimate for each dominant illuminant, based on a majority

vote on local estimates of the user-selected regions.

For the superpixel segmentation, we used the publicly available code by
Felzenszwalb and Huttenlocher [8] on the image chromaticities, though any
segmentation method could be used. We choose the segmentation parameters
0.1 ≤ σ ≤ 0.3 and 100 ≤ k ≤ 300. Typically σ = 0.3 and k = 300 gave satisfying
results, dividing the image in not too small regions of similar object color. The
grid size is adaptive to the image size, typically between 16 and 32 pixels in the
horizontal and vertical directions.

Pixel distributions that are assumed to exhibit a combination of specular and
diffuse reflectance should have: a) a minimum x-axis elongation in IIC space,
and b) a non-horizontal slope (as long as the object albedo is different from
the illuminant color, which is typically the case). Thus, we use the following
criteria to examine whether a patch satisfies these two properties and hence has
an increased probability of providing a reasonable estimate.

– The superpixel segmentation is performed for increasing the probability of
uniform underlying albedo.

– The elongation of a patch in IIC space is tested by computing the eccentricity
of the distribution of the pixels in the patch,

ecc(PIIC) =

√
1−
√
λ1√
λ2

, (10)



where λ1 and λ2 are the largest and second largest eigenvalues, respectively.
A value close to 1 is matches the model best, while lower values lead to more
estimates. In our experiments, we chose as a limit 0.6.

– The slope of a patch in IIC space is approximated by the direction of the
eigenvector λ1, and should be slightly larger than 0. In our experiments, we
chose a minimum slope of 0.003.

The vote for a patch is computed as the intercept of the eigenvector of λ1

with the y-axis. Note that duplicate entries in the IIC diagram are discarded
from these computations, as well as pixels that are very close to the limits of the
camera sensor response.

4 Illuminant Color for Image Forensics

Once the illuminant color estimates for the user-annotated regions are computed,
the whole image can be examined for illumination color inconsistencies, as de-
scribed in Sect. 4.1. Since the estimation of the illuminant color is a severely un-
derconstrained problem, we briefly discuss failure cases and possible workarounds
in Sect. 4.2. Please note that, as will be shown in Sect. 5, our illumination esti-
mation method performs comparably to other state-of-the-art single illuminant
estimation methods.

4.1 Detecting Inconsistencies in Illumination

The same process (see Sect. 3.2) that was used in computing the illuminant color
estimates at the user-specified regions is now extended to the entire image. The
voting, however, is now performed for every superpixel. Thus, every superpixel
contains an individual illuminant estimate. We store these illuminant estimates
in a new image, where each superpixel is colored according to its estimated
illuminant color ΓI(x). We call this new image illumination map, see Fig. 2.
This map gives already quite meaningful results for the analysis.

For forensic analysis, we aim to quantify the relationship between the illumi-
nant estimates. In a scene with truly one dominant illuminant, this can be done
by comparing the angular errors of the individual illuminant estimates. However,
most real-world scenes contain a mixture of illuminants. Their influence on the
scene is closely connected to the positions of the objects relative to the positions
of the light sources. Since the geometric composition of the scene is typically
unknown, we resort to developing a tool for supporting the visual assessment of
the scene, which we call distance map.

The distance map captures how well the illuminant estimation at each super-
pixel fits to the estimated dominant illuminants. For improved clarity, we assume
two dominant illuminants I1 and I2 that were obtained from two user-selected
regions. The methodology can however easily generalize to more illumination
sources. We aim to create a grayscale-image that depicts the relative influence
of both light sources. The distance map is created by assigning the value 0 (black)



to the user-defined region corresponding to illuminant I1. Similarly, the second
user-defined region, which gave rise to dominant illuminant I2, is assigned the
value 1 (white). Then, for all the remaining pixels, the distance value Id(x) is
computed as

Id(x) = (ΓI(x)− I1) ◦ (I2 − I1) , (11)

where ◦ denotes scalar multiplication. The distance map is then a grayscale
image with values in the range [0, 1]. Such a map captures the relative influence
of both light sources in this pixel.

The illumination map and the distance map are used together for the analysis
of the image. In order to be consistent, a local illuminant estimate in an image
must a) either exhibit a relative illuminant contribution that fits in the spatial
layout of the scene or b) fail to fulfill the underlying physical model. In the latter
case, it must be ignored for the analysis.

Fig. 2. Original Image, illumination map and distance map for the image under exam-
ination. Foreground persons are estimated with a bluish color, probably due to flash-
light, while persons in the background are increasingly red illuminated. The distance
map between foreground and background illumination spots captures this relationship
as a black-to-white transition.

By adjusting the values of the criteria on the pixel distributions, it is possible
to obtain fewer estimates that fit the physical model better (at the expense of
larger regions with sparse or no estimates). Alternatively, less strict parameters
lead to a more complete map, where also more outliers are expected. In general,
we preferred in our experiments lenient settings. For the slope we set a lower
bound of 0.003, and for the eccentricity 0.5. A stricter set of values, i.e. 0.01 for
the slope and 0.95 for the eccentricity, typically results in fewer outliers.

4.2 Caveats and Workarounds

In some cases, the estimation of the illuminant color can not be successfully ap-
plied. Fortunately, for a physics-based method like the proposed one, the reason-
ing about failure cases is often easier than for machine-learning methods. While
failures in the latter case often arise due to limitations of the training data
or algorithm-dependent assumptions on the color distributions, physics-based



methods mainly fail due to violations of the assumed reflectance model. This
makes it possible to argue about possible problems and look for workarounds.

We present some cases where our method is problematic. First, the camera
response is assumed to be linear. This is leveraged by the fact that we exploit
only the relationship between illuminant estimates, and do not consider absolute
estimates. Nevertheless, a gamma estimation method, e.g. [27], can be used to
normalize the image. Some non-dielectric surfaces are especially difficult to han-
dle, e.g. fluorescent materials (see Fig. 3) and metals. Other failure cases involve

(a) (b) (c) (d)

Fig. 3. Failure cases for the proposed illuminant color estimation method. Figures 3(a)
and 3(c) are the original images, Figures 3(b) and 3(d) the respective illumination
maps. In Fig. 3(b), the illuminant estimate in the shadowed area under the head of the
left actor is biased towards the object color. In Fig. 3(d), the fluorescent suit of the
actor overproportionally pushes the illuminant estimate towards extreme values.

areas that are mostly diffuse, or highly textured, or in shadow (see Fig. 3).
Finally, the method is inherently limited by the assumption that the color of the
specularity closely approximates the color of the illuminant.

We found, that by visual inspection it is often possible to distinguish failure
cases from real inconsistencies. However, it is possible to follow specific rules to
minimize the risk of misjudging the scene under observation. The most robust
approach is to use only identical or very similar materials for the analysis, e.g.
faces in a crowded scene. We reflect this by demanding the user to select regions
that a) are of interest for the examination and b) roughly adhere to the model.

5 Experiments

Section 5.1 demonstrates the effectiveness of our core algorithm in accurately re-
covering the color of the illumination. In Sect. 5.2, we demonstrate its usefulness
in forensics applications. The code is publicly available on our webpage1.
1 http://www5.informatik.uni-erlangen.de/code



5.1 Evaluation on Benchmark Databases

Until today, the color research community focused mostly on single-illuminant
scenes. Therefore, to the best of our knowledge, no ground-truth illuminant
color dataset exists for scenes containing multiple illuminants. We evaluated the
proposed illuminant estimation method on two widely used publicly available
ground-truth databases. The error between ground truth Γl and estimated illu-
minant color Γe is typically measured as angular error in RGB-space, defined
as

e = cos−1

(
Γl · Γe

‖Γl‖‖Γe‖

)
(12)

Somewhat unusual compared to other fields of computer vision, the success of
illuminant-estimation methods is typically measured using the median over mul-
tiple images [16].

Fig. 4. Examples of benchmark laboratory images by [1].

Table 1. Algorithm performance on benchmark laboratory images (left) and on real-
world images (right). The results are taken from [14, 28].

Method Median e

Gamut mapping 3.1◦

Gray-World 8.8◦

White-Patch 5.0◦

Color-by-Correlation 8.6◦

Proposed method 4.4◦

Method Median e

Regular gamut with offset-model 5.7◦

Gray-World 7.0◦

White-Patch 6.7◦

Color-by-Correlation 6.5◦

1st-order Gray-Edge 5.2◦ (∗)

2nd-order Gray-Edge 5.4◦ (∗)
Tan et al. [39] 5.6

Proposed method 4.4◦

The first dataset, introduced by Barnard et al. [1], contains high-quality lab-
oratory images. We used the “dielectric specularities” part of the dataset. It



Fig. 5. Examples of benchmark real-world images.

contains 9 scenes, each under 11 different illuminants, since this part contains a
mixture of specular and diffuse pixels. Example images are shown in Fig. 4. The
proposed method performs comparable to other state-of-the art illuminant esti-
mation methods, as shown in Table 1 (left). The results from the other methods
were taken from [34].

The second dataset, presented by Ciurea and Funt [5], contains a wide variety
of real-world scenes. The ground truth is estimated from a fixed matte gray ball
that is mounted in front of the camera, as shown in Fig. 5. For the evaluation
of the methods, the ball has to be masked out. Table 1 (right) shows that the
proposed method is highly competitive on this dataset. The results marked with
(*) are taken from [28], the remaining results are from [14].

5.2 Exposing Digital Forgeries

For qualitative results on multiple illuminants, we collected from various sources,
mostly flickr [11], approximately 430 images containing scenes with multiple
illuminants or unusual single-illuminant setups. Besides these images, which were
assumed (or known, respectively) to be original, 10 forgeries have also been
examined using the proposed method. In the following, we present three cases
where image geometry and illumination create discontinuities. Fig. 6 shows a
case where the change in the illumination color is barely explicable with the
scene setup. Both the illumination map as well as the distance map exhibit a
sharp transition between the two persons in the foreground and the third in the
back, which could only be feasible if there was a greater distance between them.

The example in Fig. 7 shows outdoor illumination with one dominant illumi-
nant. Again, we compare the skin regions of the people, in order to have roughly
comparable object materials. The selected regions are the directly lit skin of
the inserted person versus the directly lit skin of other guests. The illumination
map shows blueish estimates for the inserted man. The distance map makes this
difference even more visible. Note that the estimates of the coast line in the
background should be ignored (although they fit well, in this particular case).
The underlying pixels must be assumed to be purely diffuse, and thus do not
satisfy our underlying assumptions.

Fig. 8 contains a more complex case. The woman in the right is inserted
in the image. Illumination map and distance map are plausible, compared to



Fig. 6. Tampered image. Illumination map as well as distance map show a clear differ-
ence between the first two and the third person. Since the three stand close together
in the image, it can be assumed that this difference is due to tampering.

the people that stand similarly close to the restaurant. However, adding again
the scene geometry gives a strong clue that this scene is not original. Since the
woman is turned away from the restaurant, the illuminant color on the woman’s
chest should share greater similarity with the body parts of the other people
that are turned away from the restaurant lights.

6 Conclusion

We presented a method that estimates the color of the illuminant locally and
applied it to the detection of tampered images. A user interactively marks re-
gions whose illuminants should be further investigated. On these regions, the
illuminant color is estimated. Then, the local illuminant estimation process is
extended to the whole image. In scenes with multiple illuminants, one can typi-
cally observe a transition between these illuminants that is consistent with the
scene geometry. In order to verify this, we introduced the illuminant map, con-
sisting of all local illuminant estimates, and a distance map, that captures the
influence of every illuminant. If an image has been manipulated, the transition
between these illuminants should accordingly be disturbed.

This is preliminary work. In the future, we will extend this approach in two
directions. First, the user interaction can further be reduced by postprocessing of
the illuminant map and the distance map. Secondly, we aim to develop more rig-
orous methods for a more detailed analysis of inconsistencies in the illumination
map and the distance map.



Fig. 7. Original image (top left) and tampered image (top right). A comparison of the
skin regions of the people exposes the inserted man in the distance map.
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30. Lukáš, J., Fridrich, J., Goljan, M.: Digital Camera Identification From Sensor Pat-
tern Noise. Information Forensics and Security 1(2), 205–214 (2006)

31. Luo, W., Huang, J., Qiu, G.: Robust Detection of Region-Duplication Forgery in
Digital Images. In: Pattern Recognition. vol. 4, pp. 746–749 (2006)

32. Mahdian, B., Saic, S.: Detection of Copy-Move Forgery using a Method Based on
Blur Moment Invariants. Forensic Science International 171(2), 180–189 (2007)

33. Ng, T., Chang, S., Lin, C., Sun, Q.: Passive-Blind Image Forensics. In: Multimedia
Security Technologies for Digital Rights, chap. 15, pp. 383–412. Academic Press
(2006)

34. Personal communication: Arjan Gijsenij, University of Amsterdam
35. Popescu, A., Farid, H.: Exposing Digital Forgeries by Detecting Traces of Resam-

pling. Signal Processing 53(2), 758–767 (Feb 2005)
36. Riess, C., Angelopoulou, E.: Physics-Based Illuminant Color Estimation as an Im-

age Semantics Clue. In: International Conference on Image Processing (2009)
37. Sencar, H., Memon, N.: Overview of State-of-the-art in Digital Image Forensics.

Algorithms, Architectures and Information Systems Security pp. 325–344 (2008)
38. Shafer, S.A.: Using Color to Separate Reflection Components. Journal Color Re-

search and Application 10(4), 210–218 (1985)
39. Tan, R., Nishino, K., Ikeuchi, K.: Color Constancy through Inverse-Intensity Chro-

maticity Space. Journal of the Optical Society of America A 21(3), 321–334 (2004)
40. Yu, H., Ng, T.T., Sun, Q.: Recaptured Photo Detection Using Specularity Dis-

tribution. In: IEEE International Conference on Image Processing. pp. 3140–3143
(2008)


