
Genetic Programming for Expert Systems

Konrad Sickel, Member, IEEE and Joachim Hornegger, Member, IEEE

Abstract— Genetic programming is the usage of the paradigm
of survival of the fittest in scientific computing. It is applied
to evolve solutions to problems where dependencies between
multiple input factors are unknown. In this paper we propose
and evaluate the application of a specifically adapted genetic
programming framework to optimize the rule base of an
expert system. The expert system controls a computer-aided-
design software and targets the automation of a manufacturing
process.

The used steady state genetic programming framework intro-
duces some variations on the selection and evolution operators
normally used in genetic programming. In particular: size en-
forcing mutation, dynamic fitness calculation and size constraint
ranking. The genetic programming system is evaluated with
real data and led to an improved expert system performance
of about 22 percent.

I. INTRODUCTION

Genetic programming (GP) was popularized by Koza [1]

as a method for using natural selection for the creation of

new computer programs.

GP has already been applied as an optimization technique

on a wide variety of problems and applications [2], [3].

Examples vary from the analysis of high energy physics

data [4] over recognition of handwritten digits on mail [5],

improvements in robot control [6] to solving of the ocean

coloring problem [7]. Furthermore GP itself was topic of high

research interest. Especially the influence and performance

of selection, crossover and mutation operators are discussed

and compared [8], [9], [10], [5], [11].

GP has the advantage that it yields programs or in our

case rules, which can be analyzed and interpreted afterwards.

This is one of the reasons why we consider GP for our

optimization problem. The problem we are dealing with is

an expert system for computer-aided design (CAD) man-

ufacturing. The expert system framework is similar to the

one described in [12]. The framework consists of an expert

system controlling a CAD software supported by a feature

detection unit. The expert system designs a customized

medical prosthesis constraint by the input data and on the fly

detected features. The framework performs well on several of

the steps to design the prosthesis and unfortunately, mediocre

on others. Aim of this work is to evaluate GP as a way to

improve the weak points of the framework.

Konrad Sickel is with the Pattern Recognition Lab, Department of
Computer Sciences, Friedrich-Alexander-University Erlangen-Nuremberg,
Martensstr. 3, 91058 Erlangen, Germany (phone: +49 9131 85 27826; email:
konrad.sickel@informatik.uni-erlangen.de).

Joachim Hornegger is head of the Pattern Recognition Lab, De-
partment of Computer Science, Friedrich-Alexander-University Erlangen-
Nuremberg and with the Erlangen Graduate School in Advanced Optical
Technologies (SAOT) Martensstr. 3, 91058 Erlangen, Germany (email:
joachim.hornegger@informatik.uni-erlangen.de).

Since we are dealing with a rule based system, we

assume that we know how certain rules should work and

be applied. Nevertheless, we might be wrong. One of the

excellent properties of GP is that it can be applied, when the

interrelationships among the relevant variables are unknown

[2]. In our case, we assume that some of the detected features

together define a certain design step. In other words, we

assume a certain relationship of these features. GP provides

us with an objective method to verify these assumptions.

Rule definition with help of GP has already been suc-

cessfully applied, for instance by [13], [14] and [15]. These

approaches focus on developing rules for classification pur-

poses, like optical-character-recognition (OCR) or data min-

ing. Applying GP in the field of medical prosthesis was

already applied by Collet et al. [16]. They addressed the

problem of fitting the various parameters of a Cochlear

Implant for a patient. They evaluated an interactive evo-

lutionary algorithm approach with a micro-population and

compared the results with an expert. Tsakonas et al. [17]

proposed an evolving rule-based system for medical decision

support. They focused on generating short and simple rules

for diagnosis of aphasia’s subtypes and the classification of

pap-smear examinations.

In contrary to these works, we want to apply GP as

a tool to optimize the definition of a plane in 3-D for

the design of customized hearing aids. The generated rules

include complex matrix and vector based computations using

anatomical features. We evaluated our GP framework with

the given data and could extract new knowledge for our rule

base. The resulting programs provided us with several new

dependencies between the input features as well as new ideas.

Our main contribution is to apply GP in the field of

rule optimization for expert systems with complex rule

syntax. In this work we explain the used GP framework, the

encountered problems and adaptations developed to solve the

optimization problem.

This paper is structured as follows: Section 2 gives a brief

overview of the targeted automation framework. Section 3

describes our GP framework in detail. In Section 4, the

example data is introduced and the experiments and results

are presented. Finally, some conclusions are drawn in Section

5.

II. EXPERT SYSTEM FRAMEWORK

The expert system for our particular optimization problem

is described in detail in [12]. It consists of five major parts:

• rule base,

• feature detection unit,

• modeling software,

• rule interpreter and

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 2695

Fig. 1. Unprocessed impression of a right ear. The impression is acquired
by scanning the surface of moldable material, which was allowed to settle in
the ear yielding a negative of the ear. The ear canal is indicated by the upper
right (red) rectangle. It continues downward into the tragus area indicated
by the ellipse (blue). The major structure on the left is called helix indicated
by the dashed rectangle (green).

Fig. 2. Samples of different customized hearing aids in different styles.

• performance data acquisition unit.

The rule base for the considered application represents the

knowledge about modeling a customized in-the-ear hearing

aid (HA). Modeling with a specialized CAD software like

[18] consists mainly of cutting, rounding, smoothing and

component placement actions. Fig. 1 shows an example

of the input data and Fig. 2 some samples of customized

HAs. The developed rule base consists of 44 guide rules

correlating to design steps in the workflow. To design a

customized HA approximately 20 of these rules are applied.

The applicability depends on the various input constraints for

a customized HA (size type, amplification needed, feedback,

etc.) as well as the input shape. All rules are encoded in if-

then-else rules. The approach is quite common for rule based

systems. Such procedural knowledge representation gives us,

in contrast to a declarative representation, the possibility of

defining rules that match the manual HA design process and

can be easily interpreted by the process experts. Despite

its simplicity the representation is sufficiently powerful to

encode the knowledge for the surface shaping process.[19]

To transcribe the rules we have developed a simple script

language with a context free grammar similar to PASCAL.

The developed language supports the standard data types,

like Booleans, integers, floats, strings and arrays of all types.

In addition 3-D points, planes and matrices are added as

special data types. For each data type the standard calculation

and comparison operators are available, which allow vector

and matrix based computations. The script language supports

several control structures, such as if-then-else blocks

as well as for, while and repeat-until loops. Further-

more,the definition of functions and procedures is possible.

Fig. 3. The figure shows a subset of features detected on the ear impression.
Features can be points (helix peak), planes (second bend), ridges (intertragal
notch) and areas.

The script parser and interpreter were implemented with

the tools bison and flex [20]. In addition to the knowledge

description, the script language provides the interface to the

modeling software and the feature detection. A simplified

example of a cutting rule is given in the following. The

currently used rule in the knowledge base consists of ap-

proximately 150 lines.

if Option(1) == "ITE" then

OpenGuideStep(Shaping, "Initial Cut")

plane cutting_plane = Plane(AntiTragusPoint,\\

TragusPoint, AntiHelixPoint)

cutting_plane = MovePlane(cutting_plane,\\

CanalTipPoint, -2.0)

point ref_point = TragusPoint

CloseGuideStep(OpenCut, cutting_plane)

endif

The given example is enclosed by a simple if con-

dition, which decides based on an option if the rule is

applicable for a certain device type. The OpenGuideStep

and CloseGuideStep define the interface to the mod-

eling software. This includes setting up the environ-

ment (Shaping), a rule name displayed to the user,

the tool applied (OpenCut) and the parameters used

cutting plane. The rule body consists of a simple plane

definition using three feature points. This is followed by a

movement of the just defined plane about 2 mm along its

normal. The movement direction is made non-ambiguous

using another feature point.

The feature detection adapted to ear impression is able to

identify the typical anatomical features as well as additional

features defined by process experts. Overall the feature vector

consists of 44 elements. Features are either points, planes,

area or ridges (paths). Fig. 3 shows a selection of the detected

features. A detailed description of the features and used

algorithms is given in [21].

The modeling software is a CAD software which provides

the tools to cut and round 3-D meshes [18], [22]. It contains

tools to integrate additional mesh structures like a ventilation

tube [23] or to compute an inner wall. Furthermore it

is possible to virtually place electric components like the

2696

receiver or a battery, which enables the user to verify if the

chosen component will fit in the device.

The rule interpreter connects rule base, feature detection

and modeling software. It executes every active rule, retrieves

the needed features and applies the operations to the given

mesh.

The automation framework is currently used by a HA

manufacturer in a semi-automatic version. Semi-automatic

in this context means that an operator has to confirm the

rule result before it is applied to the mesh.

To analyze the performance of the system and to be able to

improve it we store the result of these checks. Performance in

this case is defined as the number of rules applied without

user interaction. For example, if the user modifies a plane

generated by the expert system, both planes are stored. This

allows the identification of weak rules in the knowledge base.

III. GENETIC PROGRAMMING

FRAMEWORK

We implemented our genetic programming framework on

basis of the field guide by Poli et al. [2]. The imple-

mentation is done in C++, uses the boost libraries [24], a

tree implementation by Gottschlich [25] and OpenMP [26]

for parallelization. The implemented framework follows the

common scheme depicted in Fig. 4.

A. Terminals, operators and functions

Each genome is represented by a syntax tree, which is

made up of nodes. Each node has zero or more inputs. A

special node is a terminal, these can be either zero-argument

functions or constants like the input features. A node with

one or more inputs is either an operator or a function.

The available functions, operations and terminals are a

subset of the script language introduced in [12]. The func-

tionality allows the definition and modification of Boolean,

integer, float, 3-D point and plane terminals. Arithmetic

operators for standard data types as well as 3-D vectors

(points) are available. It is possible to compare values if they

are equal (==) or greater (>) and use boolean combinations

with OR and AND. Finally the definition of while and for

loops as well as if conditions is possible, see Tab. I.

B. Population members

A population member (genome) is represented by a syntax

tree, which itself is a rule. Each member can make use of

all input features, but is not required to do so.

C. Methods

For each generation of our population the following steps

are applied:

1) Generate - Create new members from the existing

population by applying GP operators.

2) Evaluate - Assign a fitness value and rank to each

member of the population.

3) Select - Select from all individuals those to keep and

those to discard.

Initialize

population
Parameter

Compute

dynamic

fitness

Training data

Finished?

Selection

One-point

crossover

Tournament

selection

Best Half

selection

FUSS

selection

Mutation

Point

mutation

Subtree

mutation

Return best

individual

yes

no

Fig. 4. Scheme of our genetic programming framework. It supports three
different selection strategies and two different mutation operators. Note:
Only one of the selection strategies or mutation operators is used at a time.

1) Selection strategies: The selection strategy includes the

select and the generate step mentioned above. It defines,

which members of the population reproduce and how the

reproduction is achieved. The selection method defines the

evolutionary pressure applied by the system. If the pressure

is too strong, the population diversity drops. If it is too

low, the system has no pressure to evolve. Based on a

literature research we implemented tournament selection [1],

[2], fitness uniform selection (FUSS) [9] as well as a simple

greedy algorithm we named best half selection.

Tournament selection is the classical selection strategy

described in [1], [2]. It involves running several tournaments

among N individuals chosen at random. The winner of each

tournament is selected for crossover. Selection pressure is

adjusted by tunning N.

The FUSS scheme is a relatively new approach to preserve

diversity in a population [9]. FUSS biases selection toward

sparsely populated fitness values instead of biasing it toward

higher fitness. The scheme first computes the interval of the

2697

TABLE I

TERMINAL AND FUNCTION SET OF THE GENETIC PROGRAMMING

FRAMEWORK.

Terminal set

Kind of Example(s)

primitive

Feature point TragusPoint, AntiTragusPoint, . . .
Feature plane FirstBendPlane, SecondBendPlane, . . .
Variables bool var 1, point var 3, int var 2, . . .

Function set

Kind of Example(s)

primitive

Arithmetic +, -, *, /
Boolean AND, OR, ==, >
Conditional if-then
Looping while, for
Vector functions dot product, cross product, Normalize, . . .
Plane functions MovePlane, getNormal, RotatePlane, . . .

fitness values in the current generation. Randomly a value in

this interval is chosen. The genome with the closest fitness

value is taken as parent. If this fitness value is shared by

more than one genome a tree size based ranking is used. It

was demonstrated that this approach works well for complex

learning tasks

The best half scheme simply ranks the individuals by the

fitness values and selects the fittest 50 percent.

2) Reproduction: In our GP-framework reproduction is

implemented similar to a pipeline. In the first step a genome

is picked following one of the selection strategies. After-

wards, depending on the used crossover probability another

genome may be picked and an offspring may be produced.

Thereupon the original genome or the offspring will be

mutated. The mutation may produce the input without mod-

ifications. Consequently, a member of the next generation

may be a simple copy, an offspring, a mutation or a mutated

offspring of a given genome. An exception is the usage

of elitism in which case the best genome will be copied

without modification into the next generation. Elitism can

have positive and negative effects. On the one hand it ensures

that the best genome will be kept in the population. On

the other hand if only a limited number of new genomes

is created it causes some kind of unfairness in the selection

of parents.

Our homologous crossover operator is type-constrained.

Crossover points are always chosen between similar nodes.

Similarity of nodes is defined by their return type. Similar re-

turn types, for example have a terminal node for a 3-D point

and a function node computing a 3-D point. Furthermore

the crossover point selection is done following Koza’s [1]

suggestion to select crossover points not uniformly. We select

terminals 10 percent of the time and function or operation

nodes 90 percent of the time.

For sampling the solution space adequately it is important

to keep the population diverse. This allows computing better

solutions while maintaining the performance of the so far

best solutions. In [8] it was shown that using mutation,

especially allowing root node mutation, is crucial for keeping

a good population diversity without using explicit diversity

operations. Our GP-framework supports subtree as well as

point mutation. In subtree mutation one node of the tree

is chosen randomly and replaced by a randomly generated

subtree with fitting return type. Subtree mutation will be

applied only once per genome. Point mutation (sometimes

referred as node mutation) is more gentle to the tree and can

be interpreted as a rough equivalent of the bit-flip mutation

used in genetic algorithms. If point mutation is used every

node in the tree may be target of mutation. If a node is

chosen it will be flipped for example by replacing a terminal

with another terminal or an operation with another operation

while keeping the inputs of the operation.

3) Tree size and bloat: For runtime considerations and

later analysis of the created rules it is crucial to limit the tree

growth. Restricting the tree size can be achieved in multiple

ways. One way is to border the tree depth. We agree with

Parkins [5] that this is a poor choice, because it limits the

power of crossover and mutation operators and forces us

to select a suitable depth. A more suitable way is to fix

the number of allowed nodes in the tree. This preserves the

strength of the genetic operators, while stopping the tree to

grow infinitively. The constraint on the maximum number of

nodes is enforced as a special type of size enforcing mutation.

Our idea is inspired by the work of Crawford-Marks [27].

In contrast to them we incorporate the size constraint in the

mutation operator. If a tree exceeds the maximum number

of nodes, instead of standard mutation randomly selected

branches of the tree are deleted.

4) Fitness computation and rank: The goal of our GP

optimization is to improve several of the cutting plane

rules. Therefore we compare a plane defined by a genome

with a cutting plane set by an expert user. The similarity

measure includes orientation and localization of the planes.

The orientation measure dO compares the normals ~nA and

~nB of plane A respectively plane B.

dO (A,B) = 1− |< ~nA, ~nB >| (1)

In eq. (1), < ,> denotes the inner product. The localization

measure dL compares the distance of plane A to the origin

dA respectively dB .

dL (A,B) = |dA − dB | (2)

The fitness function combines both measure with a weighting

factor α (0 ≤ α ≤ 1).

dW (A,B) = α · dO (A,B) + (1− α) · dL (A,B) (3)

The genomes with the smallest fitness value dW will be

ranked best. If there are genomes with the same fitness then a

size constrained ranking is used which incorporates the tree

size of the genomes as a second criterion. If this still does

not solve the ranking uniquely, a random selection is done.

2698

Initialize

population

Repeated 10

times for each

parameter set

Parameter

evaluation set

Compute

fitness

Random

training

data sample

Validation

data

Finished?

Compute

next

generation

Return

evaluation

data

yes

no

Fig. 5. Scheme of evaluation done with the genetic framework. A training
sample is chosen randomly from the training set. Validation is done with all
samples in the validation set. For statistically significant results the whole
scheme is repeated 10 times for each parameter set.

IV. RESULTS

A. Data set

The data set consists of 105 samples. Each sample contains

the ear impression as a triangulated mesh, the result of the

feature detection as well as the expert defined target plane.

The detected and used features are composed of nine feature

points and five feature planes, a subset is shown in Fig. 3.

One interesting fact about the data is that the coordinate

system is different for each sample. The samples are rotated

and translated due to the acquisition procedure [22]. One

claim about GP is, that there is no need to preprocess the data

[2]. This might not be true for any GP-problem, but in our

case the data preprocessing would only involve rotation and

translation correction. We assume, that our GP-framework

can handle this and consequently did no preprocessing.

To simplify the data we only chose samples of left ears,

which reduced the sample set to 65. 35 samples were used

as training samples and 30 for validation. Fig. 5 shows a

scheme of the evaluation procedure applied.

B. Parameter selection

Since GP has many parameters to tweak we did some

preliminary experiments and used parameters settings pub-

lished in the literature as a starting point for the following

experiments (Tab. II). In our experiments we focused on the

influence of the selection strategies, crossover probability,

mutation method, mutation probability as well as population

and tree size.

TABLE II

DEFAULT PARAMETERS VALUES FOR THE GP-FRAMEWORK.

Parameter Value

Population size 200
Max number of generations 100

Stopping threshold 10−6

Fitness weighting factor 0.9 (see eq. 3)
Initial tree size 350
Max tree size 1000
Selection strategy Tournament 2
Crossover probability 0.5
Crossover non-uniform selection 0.1 / 0.9
Mutation method Subtree mutation
Mutation probability 0.5
Elitism on

C. Experiments

1) Fitness evaluation: Our genome programs target is to

compute a plane while using a certain syntax. Every root

branch of the genome tree represents a line of the program

(rule). Consequently, each line may compute a plane, which

may be used an modified in the following lines. In other

words a genome consists of several trees, which have a

certain execution order. To avoid special restrictions on

the genetic operators we developed a special performance

evaluation scheme: dynamic fitness. The scheme will take

all planes defined by the tree into account. The final fitness

value of a genome is equal to the fitness value of the fittest

plane defined in its syntax tree. Note: In the following fitness

evaluation graphs the fitness value is very good from the

beginning. The reason for this is that one of the input feature

planes is a good starting point for the plane we want to

optimize.

2) Population size and number of generations: Before

starting the detailed evaluation we did some experiments

with different values for maximal number of generations

and population size. We could verify the statement by Poli

et al. [2] that usually the best solutions are found in early

generations. In our case the best solutions were generated

between the 16 and 253 generation. Most of the time the best

rule was generated in the first 100 generations. Consequently

we did the detailed evaluation with 100 as parameter for the

maximum number of generations.

For the population size our experiments indicated that a

good trade-off between execution speed and performance is

to use a population size of about 200.

3) Selection strategies: To find the best selection strategy

for our system we compared the simple best half (b2), tour-

nament 2 (t2), 5 (t5) and the FUSS strategy. The evaluation

results are given in Fig. 6 and Tab. III.

The performance graph rules out FUSS as a suitable

selection strategy. In spite of the very good best fitness value

the strategy does not converge very well. The other three

strategies behave very similar. In the end we decided to go

on with t2, because the development of the program size

showed a better diversity. Diversity is defined as the standard

deviation of the tree size in the population. The selection

2699

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

F
it
n
e
s
s

Generation

Selection Strategy

b2
t2
t5

fuss

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

F
it
n
e
s
s

Generation

Selection Strategy

b2
t2
t5

fuss

Fig. 6. Graph showing the fitness development for different crossover strategies. Note: The graph shows the averaged fitness of the validation set in
contrast to Tab. III, which contains the training values.

pressure for b2 and t5 is very similar comparing the mean

and standard deviation of the tree size. For t5 and b2 the

mean was more or less constant after 10 generations. The

standard deviation of the program size dropped for t5 and b2

after 10 generations below 10. In contrast to that, the mean

size for t2 varied between 250 and 400 nodes. The standard

variation dropped below 10 after approximately 30 gener-

ations. Hence, t2 allows a higher population diversity with

similar performance compared to t5 and b2 (see, Tab. III).

TABLE III

RESULTS OF THE SELECTION STRATEGY EVALUATION, SHOWING THE

AVERAGE RESULTS OF ALL EVALUATION RUNS.

Selection Best fitness Best

strategy value generation

Best half 0.01392 35
Tournament selection 2 0.01592 21
Tournament selection 5 0.01275 18
FUSS 0.00600 54

4) Crossover: After fixing the selection strategy on tour-

nament 2 we evaluated the influence of the crossover prob-

ability. We started with 0.5, which was inspired by the

parameter default setting described in [2].

For evaluation we varied the crossover probability between

0 and 1 with step size 0.25. The results in Tab. IV show that it

is reasonable to use higher probability rates. This is supported

by the fact that the diversity of the population is higher in

these cases. In addition, an analysis of the evolved programs

showed that more branches of the syntax tree had influence

on the final outcome with higher crossover probability.

We selected 0.75 as default value for the next experiments,

because it achieved the lowest fitness value and had similar

diversity properties compared with 1.0.

5) Mutation: Having the crossover probability set we

focused on the mutation parameters. We started with com-

paring the two implemented mutation methods. The results

TABLE IV

RESULTS OF THE CROSSOVER PROBABILITY EVALUATION SHOWING THE

AVERAGE OF ALL RUNS. THE MUTATION PROBABILITY WAS SET TO 0.

Probability Best fitness Best

value generation

0.0 0.02307 5
0.25 0.01176 59
0.5 0.00671 42
0.75 0.00407 31
1.0 0.00445 42

are shown in Fig. 7 and Tab. V.

The graph indicates to favor subtree mutation for the

remaining experiments. The point mutation did not converge

very well in our experiments unlike the subtree mutation

which reached its optimum in generation ≈ 46 and afterwards

remained at this level. Concerning population diversity both

methods performed quite similar. Point as well as subtree

mutation induce a high standard variation for the tree size in

all generations.

TABLE V

COMPARISON OF SUBTREE AND POINT MUTATION WITH MUTATION

PROBABILITY 0.5 SHOWING THE AVERAGED RESULTS OF ALL RUNS.

Mutation Best fitness Best

method value generation

Subtree mutation 0.00376 65
Point mutation 0.00408 60

After choosing subtree mutation as mutation method we

evaluated the mutation probability similar to the crossover

probability by evaluating the range [0,1] with step size 0.25.

The results are shown in Tab. VI. The results indicate that

high mutation probabilities should be used. This is supported

by the fact that the evolved rules were using more complex

rules – cooperation of several tree branches, while lower

2700

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

F
it
n
e
s
s

Generation

Mutation method

PM
SM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

F
it
n
e
s
s

Generation

Mutation method

PM
SM

Fig. 7. Graph showing the fitness development of subtree (SM) and point (PM) mutation. Note: The graph shows the averaged fitness of the validation
set in contrast to Tab. V, which contains the training values.

values evolved rules which rely only slightly modified input

features. In the end we decided to use 0.75 for the final

experiments. It did not only compute the best fitness values

and converged faster than 1.0, but also created a good

population diversity with a standard deviation in tree size

of about 150 nodes in each generation.

TABLE VI

COMPARISON OF DIFFERENT MUTATION PROBABILITIES USING SUBTREE

MUTATION.

Probability Best fitness Best

value generation

0.0 0.02347 4
0.25 0.00637 66
0.5 0.00376 65
0.75 0.00275 54
1.0 0.00282 70

6) Initial genome size: The last parameter we evaluated

was the initial genome size. We used as default value 350

which approximately is the number of nodes needed to

encode the current rule in the expert system. Note: For each

genome the initial size is modified by a random factor. To

verify this estimated value we run experiments with initial

size equal to 50, 100, 200, 350 and 500. Our experiments

showed that the initial starting size did not have high impact

on the mean and standard deviation of the genome size. In all

cases the mean converged to approximately 700 nodes and

the standard deviation varied between 100 and 200 nodes.

Comparing the fitness value in Tab. VII we decided to use

200 nodes as initial genome size. This setting outperformed

the others in respect to the fitness value as well as the

convergence speed.

D. Resulting rule

For final evaluation we used the settings defined in Sec-

tion IV-C. We manually analyzed the rules defined by the best

TABLE VII

COMPARISON OF DIFFERENT INITIAL VALUES FOR THE GENOME SIZE

SHOWING THE AVERAGED RESULTS OF ALL RUNS.

Initial Best fitness Best

size value generation

50 0.01183 63
100 0.00512 60
200 0.00492 27
300 0.00548 68
350 0.01849 25
400 0.03488 32
500 0.01143 33

TABLE VIII

FITNESS EVALUATION WITH AND WITHOUT RULE UPDATE. µ0

INDICATES THE MEAN FITNESS VALUE FOR THE OLD RULE AND σ1 THE

STANDARD DEVIATION OF THE NEW RULE.

Side µ0(±σ0) µ1(±σ1) Improvement

left 0.333 (0.235) 0.259 (0.266) ≈ 22 %
right 0.246 (0.078) 0.158 (0.067) ≈ 35 %

genomes of each run. On average approximately 70 percent

of the program does not influence the computed plane. The

two major findings are:

1) an indication to update the target plane with a simple

shift along the normal of a feature plane and

2) a rotation of the target plane defined by feature points

not taken into account so far.

To verify these findings we compared the performance of

the expert system before and after including the new rules

into the knowledge base. Tab. VIII shows that the fitness

improved about 22 percent on the left samples and 35 percent

on the right samples. The latter surprised us positively since

we only used samples of the left side during our evaluation.

However, since we could rely only on a small data set,

the result should be interpreted with care. In addition, the

2701

labeling was done by one expert only and the result may

differ, if we acquire a second data labeled by a different

expert.

V. CONCLUSIONS

In this paper, we introduced the idea of utilizing genetic

programming to enhance the rule base of an expert sys-

tems. Therefore we used a general genetic programming

framework with syntax trees as genomes. The tree nodes,

terminals, operations and functions follow the syntax in

which the rule base is defined. To adapt our general genetic

programming framework to the optimization task we intro-

duced size enforcing mutation, dynamic fitness calculation

and size constraint ranking.

In an extensive evaluation using real data, we identified

the GP-parameters such as crossover and mutation rate, that

suited the problem at hand best. The manual analysis of

rules generated by the GP-framework, on one hand offered

new knowledge about dependencies between several input

features and yielded to a significantly improved rule in the

expert system (22 percent). On the other hand it verified

several assumptions about feature dependencies used in the

rule based system.

Our next steps will be to acquire a larger sample set and

extend our evaluation on the other cutting and rounding

planes in the rule base. To improve the evaluation speed

and for simpler integration of other evolutionary computation

techniques we plan to employ to utilize the Open BEAGLE

framework.

REFERENCES

[1] J. R. Koza, Genetic programming: on the programming of computers

by means of natural selection. Cambridge, MA, USA: MIT Press,
1992.

[2] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic

programming. Published by http://lulu.com, 2008, available
at http://www.gp-field-guide.org.uk.

[3] M. Willis, H. Hiden, P. Marenbach, B. McKay, and G. A. Montague,
“Genetic Programming: An Introduction and Survey of Applications,”
in Second International Conference on Genetic Algorithms in Engi-

neering Systems: Innovations and Applications, GALESIA, A. Zalzala,
Ed. University of Strathclyde, Glasgow, UK: Institution of Electrical
Engineers, 1-4 Sep. 1997, pp. 314–319.

[4] J. Link, P. Yager, and J. Anjos, “Application of genetic programming
to high energy physics event selection,” Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, vol. 551, no. 2-3, pp. 504 – 527,
2005.

[5] A. Parkins and A. Nandi, “Genetic programming techniques for hand
written digit recognition,” Signal Processing, vol. 84, no. 12, pp. 2345
– 2365, 2004.

[6] P. Nordin, W. Banzhaf, and M. Brameier, “Evolution of a world
model for a miniature robot using genetic programming,” Robotics

and Autonomous Systems, vol. 25, no. 1-2, pp. 105 – 116, 1998.
[7] C. Fonlupt, “Solving the ocean color problem using a genetic pro-

gramming approach,” Applied Soft Computing, vol. 1, no. 1, pp. 63 –
72, 2001.

[8] K. Badran and P. I. Rockett, “The influence of mutation on population
dynamics in multiobjective genetic programming,” Genetic Program-

ming and Evolvable Machines, 2009, online First.
[9] M. Hutter, “Fitness Uniform Selection to Preserve Genetic Diversity,”

in Proceedings of the 2002 Congress on Evolutionary Computation

(CEC-2002). IEEE, 2001, pp. 783–788.
[10] P. Kouchakpour, A. Zaknich, and T. Bräunl, “Population variation in

genetic programming,” Information Sciences, vol. 177, no. 17, pp.
3438–3452, 2007.

[11] R. Poli and W. B. Langdon, “Genetic Programming with One-Point
Crossover and Point Mutation,” in Soft Computing in Engineering

Design and Manufacturing. Springer-Verlag, 1997, pp. 180–189.
[12] K. Sickel, S. Baloch, V. Bubnik, R. Melkisetoglu, S. Azernikov,

T. Fang, and J. Hornegger, “Semi-automatic manufacturing of cus-
tomized hearing aids using a feature driven rule-based framework,” in
Proceedings of the Vision, Modeling, and Visualization Workshop in

Braunschweig, 2009.
[13] D. Andre, “Learning and Upgrading Rules for an OCR System Using

Genetic Programming,” in In Proceedings of the 1994 IEEE World

Congress on Computational Intelligence. IEEE Press, 1994, pp. 27–
29.

[14] R. R. F. Mendes, F. de B. Voznika, A. A. Freitas, and J. C. Nievola,
“Discovering Fuzzy Classification Rules with Genetic Programming
and Co-Evolution,” in Principles of Data Mining and Knowledge

Discovery, Lecture Notes in Artificial Intelligence. Springer Verlag,
2001, pp. 314–325.

[15] J.-Y. Potvin, P. Soriano, and M. Valle, “Generating trading rules on the
stock markets with genetic programming,” Computers & Operations

Research, vol. 31, no. 7, pp. 1033 – 1047, 2004.
[16] P. Legrand, C. Bourgeois-Republique, V. Péan, E. Harboun-Cohen,

J. Levy-Vehel, B. Frachet, E. Lutton, and P. Collet, “Interactive
evolution for cochlear implants fitting,” Genetic Programming and

Evolvable Machines, vol. 8, no. 4, pp. 319–354, 2007.
[17] A. Tsakonas, G. Dounias, J. Jantzen, H. Axer, B. Bjerregaard, and

D. G. von Keyserlingk, “Evolving rule-based systems in two medical
domains using genetic programming,” Artif. Intell. Med., vol. 32, no. 3,
pp. 195–216, 2004.

[18] 3Shape A/S, “3Shape Hearing Aids, ShellDesigner,”
http://www.3shape.com/our-products/

hearing-instruments/shelldesigner.aspx, June 2009.
[19] J. C. Giarratano and G. D. Riley, Expert Systems: Principles and

Programming, 4th ed. Course Technology, 2004.
[20] C. Donnelly and R. M. Stallman, The Bison Manual, Using the YACC

Compatible Parser Generator, 8th ed. Free Software Foundation,
2003.

[21] S. Baloch, V. Bubnik, R. Melkisetoglu, S. Azernikov, and T. Fang,
“Automatic Detection of Anatomical Features on 3D Ear Impressions
for Canonical Representation,” in Proceddings of Geometric Modeling

and Processing (GMP), 2010, (under review).
[22] T. Gao and S. S. Jarng, “Design and realization of hearing aids based

3d rapid shell molding cadcam,” in IEEE International Symposiumon

Industrial Electronics, 2009. ISIE 2009., july 2009, pp. 1488 –1492.
[23] K. Sickel, “Shortest Path Search with Constraints on Surface Models of

In-ear Hearing Aids,” in 52. IWK, Internationales Wissenschaftliches

Kolloquium, P. Scharff, Ed., vol. 2, Ilmenau, 2007, pp. 221–226.
[24] boost.org, “Boost C++ Libraries,” http://www.boost.org/,

November 2009.
[25] J. Gottschlich, “C++ Trees Part 1 and 2,”

http://www.gamedev.net/reference/programming/

features/coretree2/, November 2009.
[26] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and

R. Menon, Parallel programming in OpenMP. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2001.

[27] L. Spector, R. Crawford-Marks, and R. Crawford-marks, “Size control
via size fair genetic operators in the pushgp genetic programming
system,” in In. Morgan Kaufmann Publishers, 2002, pp. 733–739.

2702

