Iterative Closest Point Algorithm for Rigid Registration of Ear Impressions

09 Nov 2010

Ι.		0	
)			~
		-1	
	1	Ň	

Konrad Sickel¹, Vojtech Bubnik²

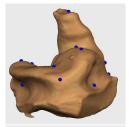
¹Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg Germany

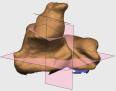
²Siemens Hearing Instruments, Inc. Piscataway, NJ, US

Outline

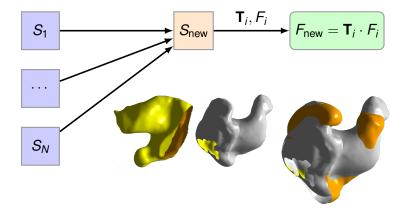
1 Motivation and Background

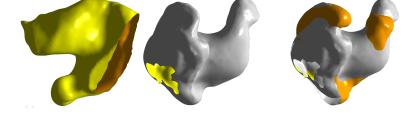
- 2 Iterative Closest Point Algorithm for Ear Impressions
- 3 Experiments and Results
- 4 Summary and Outlook


Automatic design of customized in-the-ear hearing aids



- Automation framework based on an expert system and anatomical features
 - Integrated into CAD software
 - Feature detection performance crucial for design quality

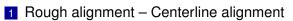

- Currently surface-analyzing algorithms employed (peaks, concavities, ridges)
 - Good results on average
 - Unstable or total failure in case of bad or unusual ear impressions


Labeled set \mathcal{S}_{rep}

Alignment Feature transformation

Requirements

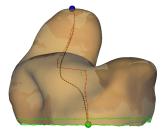
- Robust and accurate ear impression alignment
- Feature projection / transformation



The Iterative Closest Point (ICP) Algorithm

- Iterative algorithm to minimize differences between two or more point clouds
- Point matching (associate $\mathbf{p}_i \in P$ with $\mathbf{q}_i \in Q$)
- **2** Estimate transformation $\mathbf{T} \leftarrow \arg\min \sum_{i=1}^{N} \omega_i \|\mathbf{T} \cdot \mathbf{p}_i \mathbf{q}_i\|^2$
- 3 Transform point cloud $P' = \mathbf{T} \cdot P$
- 4 Iterate

ICP for Ear Impressions


- Reduced representation centerline
- Point-to-point error metric
 - Closed form solution available, based on SVD
 - Robust and easy to implement

2 Final alignment

- Sub-sampled representation
- Point pair rejection and weighting
- Point-to-plane error metric
 - No closed form solution available, but can be linearized if rough alignment available
 - Very accurate in case smooth or planar areas have to be aligned

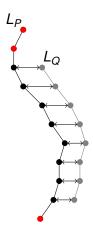
Centerline Alignment

- Centerline representation of ear impression L = (I₁,..., I_N)
- Initial centerline computed by slicing ear impression parallel to bottom opening
- Centerline refinement using internal and external energies

$$\begin{split} \boldsymbol{E}_{\text{ext},i} &= \frac{1}{N_{v}} \sum_{v=1}^{N_{v}} \frac{\mathbf{x}_{v,i}}{\left|\mathbf{x}_{v,i}\right|_{1}},\\ \boldsymbol{E}_{\text{int},i} &= \mathbf{I}_{i-1} + \mathbf{I}_{i+1} - 2\mathbf{I}_{i} \end{split}$$

• Update rule: $\mathbf{I}'_i = \mathbf{I}_i + \alpha \mathbf{E}_{\text{int},i} + \beta \mathbf{E}_{\text{ext},i}$

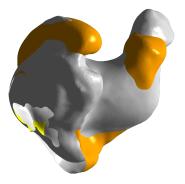
 $\mathbf{x}_{v,i} =$ random ray intersection point $N_v =$ number of rays lpha, eta = weights


Centerline Alignment

Point matching:

- Centerlines are ordered from top to bottom
- Iteratively shift centerlines along each other
- Point matching by centerline indexes i
- Very fast but rough alignment

Result:
$$T = {\mathbf{T}_1, \dots, \mathbf{T}_N}$$

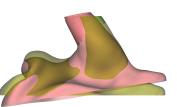

Final Alignment

Point matching:

- Sub-sampling of mesh resulting in 1000 vertices (25k original)
- Grid structure similar to an octree

Properties:

- Usage of initial alignment
- Point-to-plane error metric
- Application of point pair rejection techniques
- Application of point pair weighting techniques


K. Sickel, V. Bubnik – Russian Bavarian Conference on Bio-Medical Engineering 2010

Experiments, Data

Experimental setup

- 400 ear impressions *S* two copies *S*_{cut}, *S*_{rot}
- S_{cut}: cutting of each sample (25% loss)
- S_{rot} rotation (10°) and random noise
- Alignment of \mathcal{S}_{cut} and \mathcal{S}_{rot}
- \mathcal{S} used for error computation

Sub-sampling of meshes, resulting in 1000 vertices

- uniform
- random

point selection	average error	average time	average # pairs ¹
full	0.0244223	25.8 sec	13182.1
random	0.0477856	1.6 sec	748.2
uniform	0.0657007	1.7 sec	719.4

¹Meshes do not overlap, therefore less than 1000 point pairs available.

Evaluation – Point Pair Rejection

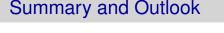
15/18

Point pair rejection techniques

- Single or double threshold (2 iterations)
- Worst pairs: reject the worst 10% based on point pair distance
- Standard deviation: reject all pairs exceeding 2.5σ (σ standard deviation of point pair distance)

rejection	average error	average time	average # pairs
no rejection	1.10885	1.8 sec	1000
one threshold	0.0800223	1.1 sec	814.6
two thresholds	0.0477603	1.7 sec	749.1
worst pairs	0.0488082	1.2 sec	732.9
standard deviation	0.0490695	1.1 sec	748.7

Evaluation – Point Pair Weighting


Objective function: $\mathbf{T} \leftarrow \arg\min \sum_{i=1}^{N} \omega_i \|\mathbf{T} \cdot \mathbf{p}_i - \mathbf{q}_i\|^2$

Point pair weighting techniques

- Distance penalty: ω_i = 1 d(**p**_i,**q**_i)/d_{max}
 Normal compatibility: ω_i = **n**_{pi}**n**_{qi}

weighting	average error	average error without noise
no weighting	0.0467054	0.011522
distance penalty	0.0471554	0.005563
normal compatibility	0.0502212	0.010572

- Adapted ICP for ear impressions: robust, accurate, reasonably fast
 - Centerline alignment using point-to-point
 - 2 Final alignment using point-to-plane
- Evaluation on large data set
 - Point selection: random
 - Point pair rejection is crucial, double threshold best error, but slow
 - Point pair weighting not crucial and can have negative effects
- Outlook: First results of feature projections show an improvement about 30 %

Thank you!

Thank you for your attention!