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Abstract. Valve replacement is the most common therapy for diseased
aortic valves. Percutaneous approaches are becoming increasingly popu-
lar, due to reduced procedural complications and lower follow-up rates.
Still there is a lack of efficient tools for valve quantification and preoper-
ative simulation of replacement and repair procedures. Thus the success
of the intervention relies to a large portion on experience and skills of
the operator. In this paper we propose a novel framework for preopera-
tive planning, intraoperative guidance and post-operative assessment of
percutaneous aortic valve replacement procedures with stent mounted
devices. A comprehensive model of the aortic valvular complex includ-
ing aortic valve and aorta ascendens is estimated with fast and robust
learning-based techniques from cardiac CT images. Consequently our
model is used to perform a in-silico delivery of the valve implant based
on deformable simplex meshes and geometrical constraints. The predic-
tive power of the model-based in-silico valve replacement was validated
on 3D cardiac CT data from 20 patients through comparison of pre-
operative prediction against postoperatively imaged real device. In our
experiments the method performed with an average accuracy of 2.18
mm and a speed of 55 seconds. To the best of our knowledge, this is
the first time a computational framework is validated using real pre- and
postoperative patient data.

1 Introduction

Percutaneous aortic valve implantation (PAVI) has the potential to revolution-
ize the treatment of aortic valve disease, offering a less invasive alternative to
open heart surgery. PAVI is already emerging as a feasible treatment for pa-
tients with high-surgical risk [1], over 30% of the symptomatic cases, and will
account for 41.1% of the procedures by 2012 (Millennium Research Group 2008)
[2]. The prosthetic implants are delivered through catheters using transvenous,
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Fig. 1. Schematic description of the proposed PAVI computational decision support
workflow.

transarterial or transapical techniques, while clinicians do not have direct view
and access to the affected valve and surrounding anatomies.

Hence, critical decisions such as, type of procedure, implant type and siz-
ing, deployment location and timing, and treatment assessment, are exclusively
based on imaging techniques [3]. A misplaced implant can block the coronary
ostia inducing a life threatening ischemic condition. Suboptimal deployment lo-
cation can result in poor hemodynamic performance with severe paravalvular
leakages and/or high gradients and suboptimal effective orifice. Wrong implant
sizing may require re-operation or can damage the vessel tissue and cause catas-
trophic events as arterial dissection or rupture. Therefore advanced image anal-
ysis and computational models for precise planning, procedure guidance, and
outcome assessment, may significantly improve percutaneous valve implantation
techniques.

In this paper, we propose a computational framework for percutaneous aortic
valve implantation, which supports decisions throughout the clinical workflow
and is summarized in Sec. 2. Modeling of the aortic valve and ascending aorta
and patient-specific estimation from pre- and post- operative cardiac CT images
is described in Sec. 3. Sec. 4 presents the computational environment, which
allows for in-silico valve implantation for evaluation and prediction of procedure
success under various treatment scenarios. Comprehensive validation and per-
formance evaluation is given in Sec. 5 by comparing the simulation results from
preoperative data with the real device imaged in the postoperative data.

2 Computational Decision Support for PAVI

The proposed PAVI computational decision support workflow is illustrated in
Fig. 1:

Pre-operative workflow: 1) Pre-operative cardiac CT volume acquisition for pro-
cedure planning purposes 2) Patient-Specific anatomical model estimation and
automatic quantification for valve assessment and patient selection 3) In-silico
valve implantation under various interventional procedure conditions for identifi-
cation of optimal device type, size and deployment location as well as treatment
outcome prediction until optimal predicted performance is observed.
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Fig. 2. Aortic valve and ascending aortic root model. (a) shows a generic model of
the aortic valve including nine anatomical landmarks. (b) shows our point distribution
model of the aortic root. (c) presents the aorta leaflets model - the N leaflet is depicted.
(d) demonstrates the ascending aortic root model. (e) represents the full model with
the corresponding anatomical parameterization.

Post-operative workflow: 4) Post-operative cardiac CT volume acquisition for
treatment evaluation 5) Patient-Specific anatomical model estimation for quan-
titative anatomical assessment 6) Patient-Specific deployed device estimation for
quantitative implant assessment.

3 Patient-specific anatomical modeling and estimation

This section summarizes the anatomical model of the aortic valve and ascending
aorta as well as the patient-specific estimation of its parameters from imaging
data as in [4].

3.1 Aortic Valve and Ascending Aortic Root Modeling

The aortic root provides the supporting structures for the leaflets of the aortic
valve and forms the bridge between the left ventricle and the ascending aorta.
The root extends from the basal attachments of the leaflets, defined by the L
(left) / R (right) / N (none) Hinges, to the sinutubular junction. The L / R /
N aortic leaflets, are attached to the root on semilunar structures. Valve leaflets
can be thought of as shirt pockets, with one edge stitched to the shirt and one
free of attachment with is center marked by the L / R / N leaflet tips. These
attachment structures interlink at the level of the sinutubular junction forming
the LR / RN / NL commissures. The employed model represents the complete
anatomy of the aortic valve and ascending aorta, which includes the aortic root,
left / right / none aortic leaflets, ascending aorta and 11 anatomical landmarks.

Anatomical Landmarks: Represented by three-dimensional points in the Eu-
clidean space, the considered anatomical landmarks are: L / R / N Hinges, LR
/ RN / NL commissures, L / R / N leaflet tips, and L / R coronary ostia.



Fig. 3. A survey of our hierarchical model estimation schema.

Aortic valve root and leaflets: The aortic valve root is constrained by the com-
missures, hinges and ostia and represented as a tubular surface mesh. The mesh
is aligned with the aortic circumferential u and ascending directions v and in-
cludes 36 × 10 vertices. The left / right / none aortic leaflets, are modeled as
hyperbolic paraboloids on a grid of 11×7 vertices. Each leaflet is defined by one
hinge, two commissures and one leaflet tip.

Ascending aortic root The ascending aorta emerges from the aortic root and
incorporates a variable length. The anatomy is composed of a fixed number of
circumferential coordinates u = 36 and a variable number of coordinates along
the ascending direction v. The first ring starts at from the commissures.

3.2 Patient-Specific Model Estimation

The patient-specific parameters of the aortic valve and ascending aorta model de-
scribed in Sec. 3.1 are estimated from volumetric images using a robust learning-
based algorithm as in [5]. The a posteriori probability p(M |I) of the model M
given the image data I, is hierarchically estimated within the Marginal Space
Learning (MSL) [6] framework. Detectors are successively trained using the
Probabilistic Boosting Tree (PBT) [7] with Haar and Steerable features, and
consequently applied to estimate the anatomical landmarks and structures from
cardiac CT volumes as illustrated in Fig. 3. For further details the reader is
referred to [4].

4 Device Modeling and In-Silico Deployment

4.1 Stent Model

A library of virtual devices/implants was created based on manufacturers’ de-
scription to incorporate realistic geometrical properties. In this work two models
of the CoreValve Revalving System by Medtronic (Minneapolis, MN, USA) are



treated, namely the models CRS-P3-640 and CRS-P3-943 (Fig. 4(a)). The im-
plant consists of 165 cells formed by the struts. The two models have length of 53
and 55 mm and diameters at the inflow, middle and outflow levels of 26, 22, 40
and 29, 24, 43 mm respectively. The Xenograft artificial valve consist of porcine
pericardial tissue, out of which the leaflets are manufactured and mounted to
the implant’s stent. The library can be easily extended with future devices using
the methods described in the following. The device is modeled out of two parts:
a geometric representation, which precisely mimics the exact geometry of the
device, the so-called stent mesh, and a second superimposed 2-simplex mesh,
named in the following computational mesh, which is used for computation and
to guide the expanding deformation [8, 9]. Fig. 4(b) depicts the topological rela-
tionship between the computational mesh and the stent mesh, which is composed
of struts connecting a subset of points of the computational mesh. In order to
infer the geometrical properties of the stent model various dimension were mea-
sured from stereolithographic scans of the modeled implants. These are the strut
lengths, the characteristic angles in each cell and the device’s circumferences at
each level, where each level is defined by the strut joints.

(a) (b) (c)

Fig. 4. (a) CoreValve implant, (b) long axis cross section of stent mesh (orange) with
superimposed computational mesh (blue) and (c) CoreValve implant with sketch of
target anatomy. (Sources a & c: http://www.medtronic.com)

4.2 Virtual Stent Deployment

To simulate valve replacement under various conditions, different devices are
chosen from the library and virtually deployed under different parameters, into
the previously extracted patient-specific model of the affected valve. The ex-
pansion of the device is modeled by balancing external and internal forces as
encountered in the actual procedure, using iterative optimization methods. Fol-
lowing the works of Larrabide et. al. and Montagnat et. al. [8, 9], the expansion
is described by a finite difference discretization of a second order differential
equation:

pn+1
i = pn

i + (1− γ)(pn
i + pn−1

i ) + fint(pn
i ) + fext(pn

i ) + freg(pn
i ) (1)



where pi is a point on the computational mesh, n is the iteration number,
fext, fint and freg external, internal and regularizing forces and the weight-
ing parameter γ. Fig. 5 shows a visual description of each of the forces. An
outline of the algorithm is given in Fig. 6. The internal forces fint(pn

i ) =
flength(pn

i ) + fangle(pn
i ) + fcirc(pn

i ) model the intrinsic properties of the stent
and enforce deformation along it’s surface normals and long axis as the device
is self-expandable. Hence they are parameterized by strut lengths, characteristic
angles and device circumferences, which were measured from the expanded tem-
plate. Accordingly, these forces are adapted, such that the implant attempts to
achieve the targeted dimensions, and they induce different expanding pressures
at different levels. Particularly fcirc(pn

i ) = ni(ck −
∑
∀j∈Nk

||pn
j − pn

j+1||)/2π
pushes the points pn

i ∈ Nk along the surface normal ni to satisfy the reference
circumference ck of the stent shape, where Nk is the set of strut joints at a
level k. It is important to note, that fcirc does not enforce the stent diameter di-
rectly but the stent circumference instead to account for expansion into arbitrary
shaped vessel geometries, which have typically non-circular cross sections. flength

and fangle enforce the strut lengths and characteristic angles observed in the ex-
panded shape [8]. The external forces fext(pi) model the interaction of stent and
aortic valve and aorta tissue, and guide the implant deformation by balancing
the internal device forces: fext(pi) = −ni(ni · fint(pi))(||pn

i − ck||/||v − ck||)
with stent centroid ck at level k and the intersection point v of normal and
vessel surface. The regularizing forces freg are solely defined on the computa-
tional mesh to provide smoothness as described in [9]. As mentioned above the
method focusses on self-expanding implants, which inherently exercise forces of
minor amplitudes onto the surrounding vessel tissue. Therefore we argue, that
the resulting minor deformations can be neglected.

(a) (b) (c)

Fig. 5. Forces acting on the model on deployment to converge to the observed geomet-
ric properties: (a) fangle enforces the charateristic angles at the strut joints (green),
(b) flength maintains the strut lengths. (c) fcirc enforces the circumference (green),
while fext dampens and eliminates the all forces acting along the stent mesh normal
wheighted by the fraction of distances of strut joint and vessel wall (red) to the stent
centroid (magenta/yellow). Please note that (c) shows a short axis cross section of the
stent mesh.



Input:

– Patient-specific model of aortic valve and aorta ascendens
– implant placement position and orientation

Output: Deployed Implant
Execute:

– create computational mesh and stent mesh with constant radius of 1 mm at man-
ually selected placement position, oriented along the aortic root centerline

– repeat:
• for each point pn

i on the computational mesh, calculate freg(pn
i ), fangle(pn

i ),
flength(pn

i ), fcirc(pn
i ) and fext(p

n
i )

• for each pn
i , compute pn+1

i according to Eq. 1
• if mean point displacement on the stent mesh < ε, convergence achieved; stop

execution

Fig. 6. The outline of our virtual stent deployment algorithm.

5 Experimental Results

The validation of the proposed framework is divided in two experiments. First we
present results on the performance of the automatic patient-specific model esti-
mation from pre- and post- cardiac CT data, as well as the quantitative variation
between pre and postop ground truth anatomies, which is relevant for the subse-
quent virtual imlant deployment. Second we validate the proposed in-silico im-
plantation, by comparing predicted valve deployment, using pre-operative data,
with real deployment from post-operative data.

5.1 Validation of Patient-Specific Anatomical Modeling and
Parameter Estimation

The data set used for patient-specific model estimation consists of 63 multi-phase
(10 frames per cycle) cardiac CT and 21 single-phase cardiac CT acquisitions,
which sums up to 651 CT volumes. Scans are acquired from different patients
with various cardiovascular diseases (including ascending aortic root aneurysm,
regugitation, calcific stenosis and bicuspid aortic valves), using different pro-
tocols, resulting in volumes with 80 to 350 slices and 153x153 up to 512x512
voxel grid resolution and 0.28mm to 2.0mm spatial resolution. Each data set is
associated with an expert annotation used as ground-truth.

For the automatic patient-specific anatomical model estimation a combined
accuracy of 1.45mm is obtained in 30sec on a standard desktop machine (Intel
Xeon 2.66Ghz, 2GB RAM) for both pre- and post-operative volumes. Perfor-
mance is reported on test data, which represents randomized 20% of the complete
dataset, while the remaining 80% were used for training.

Due to different factors, a bias between the pre- and post-operative anatom-
ical ground truth models can be expected. These are cardiac phase shifts and



image noise but also deformation of the aortic vessel wall due to stent deploy-
ment, where the latter was assumed to be sufficiently small to be neglected in
the deployment algorithm (Sec. 4.2). Therefore we quantified the differences for
each pair of corresponding anatomical models obtained from a subset of 20 pa-
tients with pre- and postoperative image data. The quantitative results in Table
1 support the validity of our assumption, showing a mean relative deviation of
up to 6.46% between pre- and post-operative anatomies.

Table 1. Deviation of pre- and postoperative ground truth anatomical models: Differ-
ences in diameter at sinutublar junction, valsava sinuses and aortic annulus are given
in absolute values as well as relative to the postoperative measurement. Values of Mean
and standard deviation are provided as well as 80-percentile and maximum.

absolute (mm) relative (%)

measurement mean (std) 80% max mean (std) 80% max

sinutublar junction 2.3 (1.7) 3.7 5.7 6.46 (4.6) 10.5 14.9
valsava sinuses 1.1 (0.9) 1.7 4.1 3.49 (2.6) 5.2 9.98

annulus 1.5 (1.2) 2.5 5.2 5.06 (3.2) 7.7 14.3
point-to-mesh distance 1.6 (0.98) 2.4 2.8 - - -

5.2 Validation of In-Silico Implant Deployment

The validation of the in-silico implant deployment is performed on 20 patients
with pre- and post-operative cardiac CT images, affected by various diseases
such as calcific stenosis as mentioned in the previous section. It is important to
note, that for this purpose the preoperative prediction result is compared with
the real device imaged in the postoperative data, where the latter serves as a
ground truth for this experiment.

The implant is virtually deployed into the associated anatomical model of the
preoperative volume using the algorithm described in Sec 4.2. In the postopera-
tive volume the ground truth implant is manually placed and fit to the imaged
stent, which is well visible in image data, using a semi-automatic method based
on the thin-plate-spline transformation. In the envisioned target application the
optimal deployment location and orientation is manually selected by the clini-
cian. For validation purposes this is indirectly available and has to be inferred by
registering pre- and post-operative anatomical models. A selection of virtually
deployed vs. their corresponding ground truth stents is depicted in Fig. 7. The
performance is reported in Table 2 in terms of internal precision, by comparing
only the virtual and real implants shape in isolation via symmetric point-to-
point distance, and external precision. The latter means to compare the virtual
and real implants position relative to clinically relevant locations, in order to
account for the potentially critical conditions due to wrong implant sizing and
placement such as blockage of coronary ostia and more importantly paravalvular
leakages at the annular level as mentioned in Sec 1. This is done by computing



the differences of the pre- and postoperatively measured distances from annulus
ring and coronary ostia to the closest stent point respectively.

Table 2. Accuracy of in-silico valve deployment quantified from preop deployment
prediction vs. postop ground truth stent and measured in mm: besides point-to-point
distance, accuracy relative to the anatomies was estimated from the differences in
distances between aortic valve annulus and coronary ostia and implant. Values of mean
and standard deviation are provided as well as 80-percentile and maximum.

mean (std) 80% max

stent point-to-point 2.18 (1.77) 2.4 8.45
annulus 0.7 (0.73) 1.4 2.14

L coronary ostium 1.42 (1.51) 2.16 4.75
R coronary ostium 1.55 (1.24) 2.02 4.27

In the clinical context, the required accuracy is proportional to the tolerance
between therapeutical alternatives. Considering the diameter differences of 3mm
(at the annular level) of the Medtronic CoreValve implants (Sec 4.1), the system
provides a sufficient approximation in at least 80% of the cases for prevention of
paravalvular leakages, with an external accuracy of up to 1.4mm at the annular
level. The algorithm performed at an average speed of 55sec on a standard
desktop machine (Intel Xeon 2.66Ghz, 2GB RAM). Thus our framework enables
for fast and efficient preoperative planning and risk minimization by finding
the best implant type, size and deployment location and orientation via varying
these parameters until optimal predicted performance is observed.

6 Discussion
In this paper a framework for computational decision support for percutaneous
aortic valve implantation was presented. A fast and robust estimation of an
anatomical model enables for precise modeling of the patient-specific morphol-
ogy and is consequently used for in-silico implant deployment. The approach
was validated with pre- and post-operative data sets from 20 patients and shows
reasonable accuracy within the variation in appearance given by image and mo-
tion artifacts. To the best of our knowledge, this is the first time a computa-
tional framework is validated using real pre- and postoperative patient data. The
framework is targeted for fast and efficient preoperative planning with a library
of different implants, intraoperative guidance and postoperative assessment of
interventional outcome. It may have impact on the cardiology of the future and
improve the OR towards increased transparency.
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