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Abstract

This thesis deals with the fully automatic generation of @etic annotations for medical
imaging data by means of medical image segmentation andirigben particular, we
focus on the segmentation of the human brain and relatedtstes from magnetic res-
onance imaging (MRI) data. We present three novel probébilsethods from the field
of database-guided knowledge-based medical image segtioentWe apply each of our
methods to one of three MRI segmentation scenarios: 1) 3-D M&hlissue classifi-
cation and intensity non-uniformity correction, 2) ped@mbrain cancer segmentation in
multi-spectral 3-D MRI, and 3) 3-D MRI anatomical brain sturet segmentation. All
the newly developed methods make use of domain knowledgededcby probabilistic
boosting-trees (PBT), which is a recent machine learningriecie. For all the meth-
ods we present uniform probabilistic formalisms that grthug methods into the broader
context of probabilistic modeling for the purpose of imaggraentation. We show by
comparison with other methods from the literature thatlithal scenarios our newly devel-
oped algorithms in most cases give more accurate resulteareda lower computational
cost. Evaluation on publicly available benchmarking d&tis £nsures reliable compara-
bility of our results to those of other current and future noels. We also document the
participation of one of our methods in the ongoing onlinedzda segmentation challenge
(www.cause07.org), where we rank among the top five methardbi particular segmen-
tation scenario.






Kurzfassung

Thema dieser Arbeit ist die vollautomatische Bereitstg/lsemantischer Annotationen
fur medizinisches Bildmaterial. Hierzu werden Segmentiged und Segmenterkennungs-
techniken aus der medizinischen Bildverarbeitung verwafvdsgangspunkt der Betrach-
tungen sind Magnetresonanztomographieaufnahmen (MRiiahmen) des menschlichen
Gehirns. Hierfur préasentieren wir drei neuentwickelteeddankgetriebene, wissens-
basierte Segmentierungsverfahren. Alle Verfahren weldemils in einem von drei
Segmentierungsszenarios aus dem Bereich der neuroradadleg Magnetresonanzto-
mographie (MRT) angewandt: Wir befassen uns erstens mitGaevebeklassifikation
und Korrektur von Magnetfeldinhomogenitaten in 3-D MRTfAahmen des Gehirns,
zweitens mit der Segmentierung padiatrischer Hirntumonmaulti-spektralen 3-D MRT-
Aufnahmen und drittens mit der Segmentierung anatomiddhastrukturen in 3-D MRT-
Aufnahmen. Die Probabilistic Boosting-Tree-Technik (PB3cfinik) aus dem Bereich
des maschinellen Lernens bildet die gemeinsame Kernkoemtermer drei neuentwickel-
ten Methoden. Sie alle sind durchgangig wahrscheinli¢gbtezoretisch formuliert und
kénnen daher in den Gesamtkontext der probabilistischeel®dutzenden Bildsegmen-
tierungsverfahren eingruppiert werden. In allen drei @zies zeigen Vergleiche zu an-
deren den neuesten Stand der Technik reprasentierendéodéet dass unsere neuent-
wickelten Algorithmen in den meisten Fallen bei geringefRethenaufwand akkuratere
Ergebnisse liefern. Durch die Verwendung von frei verflighaBenchmark-Datensatzen
wird die verlassliche Vergleichbarkeit unserer Evaluagergebnisse auch hinsichtlich
kunftiger Verfahren gewéhrleistet. Dartiber hinaus dokutieeen wir in dieser Arbeit
die Teilnahme einer unserer Methoden am fortgesetzteniri®@@audate Segmentation
Challenge”-Wettbewerb (www.cause07.org), bei dem wir uden finf besten Segmen-
tierungsverfahren flr das dortige Szenario rangieren.
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Chapter 1

Introduction

1.1 The Human Brain

The brain or encephalon is a component of the human centrauesystem (CNS). It lies
in the cranial cavity and is enveloped by a system of memisrattiee so-called meninges.
According to reference [96], it can be divided into six parts

1. the myelencephalon or medulla oblongata,
2. the pons,

3. the mesencephalon or midbrain,

4. the cerebellum,

5. the diencephalon or interbrain, and

6. the telencephalon, cerebrum, or great brain.

The first three parts form the brainstem, which, for instacoatains cardiac and res-
piratory centers[[96]

The cerebellum primarily holds important parts of the matystem.[[95]

The interbrain contains, among other things, the thalamdslze hypothalamus. The
thalamus relays sensation, special sense and motor sfgmalthe peripheral nervous sys-
tem to the great brain. The hypothalamus contains seven@ilat@enters of the autonomic
nervous system. They regulate a number of vital functidtes body temperature and the
body’s water and energy balandég. [3]

The great brain, being the largest part of the human braseparated into the two equal
sized cerebral hemispheres with respect to the midsagltiak. The corpus callosum is
the only connection between them. The surface of the cemglthat is to say, the cerebral
cortex, consists of elevations or gyri and depressionslor. $Dn a cellular level, the cortex

1



2 Chapter 1. Introduction

is formed by neurons and their unmyelinated fibers causitjsbue to appear gray during
dissection or in anatomical specimens. The hippocampusn$tance, is a cortical part
of the limbic system, which is associated with congenital anquired behavior and the
origin of drive, motivation, and emotior. [96] In contraiie white matter (WM) below
the cortical gray matter (GM) of the cortex is composed of lngged axons interconnect-
ing different regions of the CNS. However, there are subicairGM structures or nuclei
embedded in the cerebral WM like the basal ganglia consistirtge putamen, the cau-
date nucleus, the globi pallidi, the subthalamic nuclend,tae substantia nigra. The basal
ganglia are associated with a variety of functions, amohgrahings, motor control [96].
Also parts of the limbic system like the amygdala are sulticalirmuclei. Figs[ 1J1 and 1.2
give an overview of the anatomical structures within theebeum. [33] 104]

Caudate nucleus

Thalamostriate vein — External capsule

Fornix
Thalamus, anterior part
Thalamus, lateral part
Thalamus, medial part

Extreme capsule

Putamen

Internal capsule

Internal medullary

lamina Globus pallidus

Subthalamic Optic tract

nucleus

Substantia nigra Pes hippocampi

Crus cerebri
Collateral sulcus

Figure 1.1: Coronal section of the human brain. From Gray’s Anatomy [104], p.. 311
Reprinted with permission from copyright holder.

Both the brain and the spinal chord are surrounded by cerspnadl fluid (CSF) or
liquor cerebrospinalis. It is produced and circulates aantricular system consisting of
the right and left lateral ventricles (see Figsl1.1 ar®) the third and fourth ventri-
cle. The ventricular system is connected to the exteriohefdpinal chord and cerebral
hemispheres via the apertures and the cerebellomedulgerc Occupying the space
between the arachnoid mater, that is, the middle layer ofiteeinges and the pia mater,
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Figure 1.2: Axial section of the human brain. From Gray’s Anatomy [104], p. 328.
Reprinted with permission from copyright holder.

that is, the innermost layer of the meninges, the CSF mecalinjorotects the brain but
also distributes neuroendocrine factors and preventa zelemia.[[96]

The brain can be affected by lesions, which can be eithea-gntial, i.e., within the
brain, or extra-axial, i.e., outside the brain. Meningiemahich arise from the meninges,
and acoustic neuromas are typical extra-axial tumorsaiaxial lesions can be primary
or secondary, in which secondary brain lesions are the noystmon type. They can be
metastatic tumor deposits, for example, from breast or karginoma, or can be caused
by metastatic infection. Primary brain lesions are lesguemt and range from benign to
extremely aggressive with a poor prognosis. Arising froffedent cell lines they include
gliomas, oligodendrocytomas, and choroid plexus tumoisough occurring at any age



4 Chapter 1. Introduction

there are two peaks of incidence: one in the first few yeareodhd the other later in the
early to middle age[ [33]

In the case of a conspicuous anamnesis it is a standard prectedguide further neu-
rological differential diagnosis by means of radiologigabging. Amongst the various
Imaging modalities used, magnetic resonance imaging (M&ially shows a higher soft
tissue contrast than computed tomography (CT) or traditXsray imaging, which makes
MRI the method of choice especially for neuroradiologicaminations. Moreover, MRI,
together with ultrasound (US) imaging, does not exposeeptdito any ionizing radia-
tion during image acquisition and is therefore virtuallyréess. Both MRI and US are
therefore also well-suited for the radiological examioatof pediatric patients.

1.2 Magnetic Resonance Imaging

In the following we give a short introduction to the prin@plof MRI, which is also known
as magnetic resonance tomography (MRT). It follows theaggntation of Laubenberger
and Laubenberger [68] with additional information takemnir\Weishaupt et all [117]. A
more detailed description can be found in referehce [15].

The phenomenon of nuclear magnetic resonance (NMR) wasendeptly discovered
by F. Block and G. M. Purcell in 1946. In 1974 P. C. Lauterbur weesfirst to use MRI
to picture a living organism: a mouse. The first magneticmasce (MR) image of the
human body, depicting a thorax, was acquired in 1977 by Psid.

Figure 1.3: Protons with random spin orientation.
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Figure 1.4: Precessing protons after parallel or anti-parallel alignment of spinsodhe
external magnetic fieldy.

All atomic nuclei with an odd number of protons (atomic numkfeature a spin or
magnetic moment, that is, the nuclei rotate about their owes dike spinning tops as
shown in Fig[1.B. Hydrogen, nitrate, sodium, and phosgdooinstance, are some of the
atoms sharing this property. Among these atoms, hydrog#reisnost frequently found
atom in living tissues such that, almost exclusively, hgem atoms contribute to todays
clinical MR image generation.

In an MRI scanner (see Fig._1.5(a)) the protons’ spin axeslayeea, parallel or an-
tiparallel, with the streamlines of the strong external netg field (B, field) of the scanner
building up a stable state longitudinal magnetization gltthre z-axis (see Fid. 115(b)). Ad-
ditionally, due to the external field, the axes start preogsabout the axis of alignment
(z-axis) similar to a spinning top. The characteristic speftiis precession is called Lar-
mor or precession frequency [MHz], which is proportional to the strengthi, [T] of the
external magnetic field, that is,

wo = Yo - Bo (1.1)
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wherev, is the gyromagnetic ratio of the type of nuclei of interesttiBashenomena, paral-
lel or antiparallel alignment and precession, are depictédg.[1.4. The orientation of the
spins as well as their phase coherence can be altered byfregiu@ncy (RF) pulses having
the same frequency as the Larmor frequency90A pulse, for instance, causes the spins
rotating about the-axis to also rotate about the axis induced by the RF pulseshyddue
to having exactly the same frequency, appears to be statittine spins’ relative point of
view. The resulting complex movement of spins statistyca#incels longitudinal magneti-
zation along the:-axis and establishes transversal magnetization rotatippase within
thezy-plane (see Fig._115(b)). The latter can be measured witMfRlescanner’s receiver
coils. Immediately after excitation with an RF pulse, theilgium state longitudinal
magnetization starts to recover causing transverse magten to fade. This process is
called T1, longitudinal, or spin-lattice relaxation. Alpbase coherence gradually van-
ishes thereby additionally decreasing transverse magtietn. The process of dephasing
is called T2, transverse, or spin-spin relaxation.

The duration of both kinds of relaxation is constant for $ffesubstances. Different
pulse sequences make use of this fact and regulate the ssaseesitivity to certain re-
laxation parameters (T1-weighted or T2-weighted imagifg)cording to the weighting,
certain substances or organs appear brighter or darkee iacitjuired image dependant on
their proton density.

In order to spatially resolve the location of the received 8ighal, that is, the measured
change of transverse magnetization over time, additioralignt coils covering the three
dimensions of real space are used. They vary locally thermaitenagnetic field3,. Thus,
in accordance with Equatiof (1.1) excitation can be stetwespecific locations by the
strength of the RF pulses applied. This makes MRI an inherét&diological imaging
modality where no tomographic reconstruction from sev@aatar, that is, 2-D, projections
is required as it is the case, for instance, in CT imaging.

However, the 3-D images acquired need interpretation bgiadd expert radiologist.
He or she knows which part of the body and which organs in @#dr are to be seen
on the images. With the help of his anatomical knowledge biggption is enriched by
a certain understanding of the decomposition of the degpistene into meaningful, not
merely anatomical, entities. A subtle analysis of the imag&and immediately takes
place without being necessarily apperceived as a mentat eveits own behalf by the
observer himself. This differs entirely from how a compufrceives” not only radiolog-
ical but images, in the common sense, in general; namelgrezing them as what they in
fact are by definition—nothing but a volume or matrix of sipmeasurements. Bridging
the gap between mere data and a preferably automaticalraienl semantic description
of the depicted content is an important aspect within thergiic field of medical image
analysis. This general problem can be decomposed intoadesteps ranging from rela-
tively concrete to very abstract interpretations of thegmaontent. In the early stages it
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(@) (b)

Figure 1.5: The modern MRI scanner Siemens MAGNETOM Verio 3T
(www.medical.siemens.com, 07/24/2009) (a) and its associated coordi-
nate system (b).

is mostly useful to address image segmentation and lahehagis, uniquely identifying
certain image regions as meaningful entities.

1.3 Medical Image Segmentation

In the following we give a formal description of the problefneedical image segmenta-
tion and labeling, which is the problem of giving semantifmmmation to coherent image
regions. These preliminary remarks are necessary as imotheeof this thesis three med-
ical image segmentation scenarios will be discussed inr@odexemplify the potential of
our newly developed machine learning-based and datahadeetalgorithms for segment-
ing and labeling 3-D brain MR images.

Let the family X = (x;)ses be a 2-D, thatisS = {1,..., X} x {1,....Y }, or
3-D, thatis,§ = {1,.... X} x {1,....Y} x {1,...,Z7}, X,Y,Z € N*t, medical
image. Its values or measurements € R”, n € NT, can be either scalan, = 1, or
multi-spectraly, > 1. The latter is sometimes also called a vector-valued orirob#innel
medical image[[84]. The:, are usually quantified in an appropriate manner for ele@tron
processing. AsitwillbeS = {1,... X} x {1,...,Y } x{1,...,Z } in most parts of
this thesis we will refer to the as image voxels.
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(@) (b)

Figure 1.6: Coronal (a) and axial (b) section of the human brain in a typical T1-wedyh
3-D MRI scan. From the Internet Brain Segmentation Repository (IBSR),
www.cma.mgh.harvard.edu/ibsr.

Following Pham et al[[84], the problem of image segmentatiaithout labeling) can
be defined as the search for a partition of an image, i.e.,tdiparf the set of its voxels,
into homogeneous and connected regions. Formally, onetssafor

S = CJ S (1.2)
k=1
where
Vijer 1,k Yizi SiNS; =0 (1.3)
and
Vaow e eSpkef 1K } I(s)r.... 1, LENT s1=s,s,—t Vie{1,...L} |Si-1 — 85| <1 (1.4)
or

LNt s1=s,s =t Vie{1,..L} MaX [Si-1), — s;i| <1 (1.5)

vms,mtesk:ke{ 1,...K} EI(31)1 ..... de{19.3}

depending on whether a 3-D 6-neighborhood or 26-neighlmatfi® considered, respec-
tively.

Ideally, everyS;, corresponds to an anatomical structure or other, from aiglays
view, meaningful entity in the image. The requirement ofreectedness is sometimes re-
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laxed such that actually a classification problem insteaal dassical segmentation prob-
lem is addressed. This is occasionally of interest in méditaging when multiple regions
of the same tissue class are about to be detected. The tothlenwf tissue classes;, is
usually determined based on prior knowledge about the amatonsidered. In the case
of brain MR images, for instance, it is common practice taiags/K = 3 tissue classes:
GM, WM, and CSF.[[84]

The process of assigning a descriptive designation to ehtireaesulting segments
is called labeling. Though formally independent from eateowe will never address
pure image segmentation without labeling throughout thesis. So, whenever we talk of
image segmentation we actually mean image segmentatioregimh labeling.

1.4 Knowledge-Based Approaches to Medical Image Seg-
mentation

Throughout this thesis, we focus on the application of kealgk-based approaches to
medical image segmentation integrating domain knowleagesa several layers of geo-
metrical abstraction. In particular, we follow the paradigf database-guided medical im-
age segmentatioh [44] where the vast majority of domain kedge used to guide the seg-
mentation process is initially represented by large cttdes of medical imaging data with
accompanying ground-truth segmentations. Models arergttefrom these databases by
means of machine learning techniques. These models ar@isleeln often in combination
with traditional techniques, for image segmentation.

We explore the capabilities of three newly developed segatien algorithms of that
kind in three distinct scenarios from the broader field of BrBin MR image segmentation:
3-D MRI brain tissue classification and intensity non-umfidy (INU) correction, pedi-
atric brain tumor segmentation in 3-D MRI, and 3-D MRI brairusture segmentation.
We are able to show by experimental validation that our kedgé-based approaches out-
perform most of the current state-of-the-art methods tedlparticular segmentation chal-
lenges with respect to segmentation accuracy (see Chapiyafd also with respect to
computation time (see Chaptéis 3 ahd 4). The results obtaiméthe current state-of-the-
art to be found in the literature (see Chapiéid 2—4) encoursge advance the hypothesis
that database-guided knowledge-based approaches €tatediver both to today’s as well
as to tomorrow’s medical image segmentation challenges.

1.5 EU Research Project Health-e-Child

The research efforts on providing semantic descriptiodi®Rfimages of the human brain
by means of medical image segmentation and the associatdtsréocumented in this the-
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sis are part of the research project Health-e-Child (wwwtheachild.org). The Health-
e-Child Project is embedded in the European Union’s sixtméwaork program (FP6) that
aims to improve integration and coordination of researcthiwithe European Union.
Health-e-Child (project identifier: 1ST-2004-027749) isheduled from 01/01/2006 to
12/31/20009.

The project’s vision is the development of an integratedtheare platform for Eu-
ropean pediatrics that provides seamless integratiomaditional and emerging sources
of biomedical information. In the long run, Health-e-Chilchmis to provide access to
biomedical knowledge repositories for personalized amygntive healthcare, for large-
scale information-based biomedical research and trajming for informed policy making.
For the beginning the project focus will be on individuatiz#isease prevention, screening,
early diagnosis, therapy and follow-up of three repredemtgpediatric diseases selected
from the following three major categories: heart diseaséiammatory diseases, and brain
tumors. By building a European network of leading clinicahtess it will be possible to
share and annotate biomedical data, validate systemsailiniand diffuse clinical excel-
lence across Europe by setting up new technologies, diniogkflows, and standards.
Health-e-Child’s key concept is the vertical and longitadimtegration of information
across all information layers of biomedical abstractitwat tis to say, genetic, cell, tissue,
organ, individual and population layer, to provide a unifisglv of a person’s biomedical
and clinical condition. This will enable sophisticated Wwiedge discovery and decision
support.

It is intended to integrate diagnostically relevant knayge and data from multiple
sources with radiological imaging being one of them. In otdeaddress this particular
part dealing with radiological images of the broader compiethemes within Health-e-
Child our research activities aim for providing explicit smics for medical imaging data
by means of medical image segmentation and labeling as omexatiabove. These seman-
tics can then be used for multiple purposes, for exampletréalitional medical decision
making, such as diagnostics and therapy planning and dpasinput to computer-aided
diagnosis (CAD) systems, for morphological studies, forgmanhancement, and in gen-
eral as input to any system aiming for semantic data intexgrat

1.6 Contributions

Contributions to the scientific progress could be made in alflical image segmentation
scenarios addressed by this thesis. They can be summasieltbavs:

e For the first scenario we introduce a novel fully automatethod for brain tissue
classification, that is, segmentation into cerebral GMelsal WM, and CSF, and
intra-scan INU correction in 3-D MR images.
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e For the second scenario we present a novel fully automatpobapgh to pediatric
brain tumor segmentation in multi-spectral 3-D MR images.

e For the third scenario we introduce a novel method for theraatic detection and
segmentation of (sub-)cortical GM structures in 3-D MR i@sidpased on the re-
cently introduced concept of marginal space learning (MSL)

e As a minor contribution we adapt a dynamic programming agagndor 1-D his-
togram matching to mono-spectral MRI inter-scan intendiandardization in the
second and third scenario. We give a graph theoretic retflation of the algorithm
and extend it to minimize the Kullback-Leibler divergenastead of the histograms’
sum of squared differences. This necessary pre-procestpgallows us to make
use of machine learning methods relying on intensity-bdsatlires in the context
of MRI.

1.7 Outline

In the following chapter, that iChapter[2, we describe our novel fully automated method
for brain tissue classification and intra-scan INU cor@attn 3-D MR images. It combines
supervised MRI modality-specific discriminative modelimglainsupervised statistical ex-
pectation maximization (EM) segmentation into an integglaBayesian framework. The
Markov random field (MRF) regularization involved takes iatocount knowledge about
spatial and appearance related homogeneity of segmentsatiedt-specific knowledge
about the global spatial distribution of brain tissue. Ibesed on a strong discrimina-
tive model provided by a probabilistic boosting-tree (PBai) élassifying image voxels.
It relies on surrounding context and alignment-based featderived from a probabilistic
anatomical atlas. The context considered is encoded by &d-kke features of reduced
INU sensitivity. Detailed quantitative evaluations onrmstard phantom scans and stan-
dard real world data show the accuracy and robustness oftipeged method. They also
demonstrate relative superiority in comparison with otsiate-of-the-art approaches to
this kind of computational task.

Chapter[3 details on our novel fully automated approach to pediatrairbtumor seg-
mentation in multi-spectral 3-D MR images. Itis a top-dowgmentation approach based
on an MRF model that combines PBTs and low-level segmentateograph cuts. The
PBT algorithm provides a strong discriminative prior modwlttclassifies tumor appear-
ance while a spatial prior takes into account pair-wise vbxenogeneities in terms of
classification labels and multi-spectral voxel intensiti@he discriminative model relies
not only on observed local intensities but also on surraugpadiontext for detecting can-
didate regions for pathology. A mathematically sound fdatian for integrating the two
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approaches into a unified statistical framework is givere fidsults obtained in a quantita-
tive evaluation are mostly better than those reported foec state-of-the-art approaches
to 3-D MRI brain tumor segmentation.

Chapterdintroduces a novel method for the automatic detection agcheatation of
(sub-)cortical GM structures in 3-D MR images of the humaairor The method is a top-
down segmentation approach based on the recently intrddworeept of MSL[[130, 131].

It is shown that MSL naturally decomposes the parameterespbanatomy shapes along
decreasing levels of geometrical abstraction into sulespatincreasing dimensionality by
exploiting parameter invariance. This allows us to buildisy discriminative models from
annotated training data on each level of abstraction, andeédhese models to narrow the
range of possible solutions until a final shape can be inderf&ée segmentation accuracy
achieved is mostly better than the one of other state-eathapproaches using standard-
ized distance and overlap accuracy metrics. For benchnggritie method is evaluated on
two publicly available gold standard databases consistirigtal of 42 T1-weighted 3-D
brain MRI scans from different scanners and sites.

Chapter B concludes the thesis and summarizes its main contributivves discuss
technological and methodological aspects of our work amd gn outlook on future re-
search directions with regards to the chosen scenarioallfsiwe name challenges med-
ical image segmentation and understanding faces in ordbee tof continuous value in
today’s increasingly cross-linked medical environmertt exfrastructure.



Chapter 2

3-D MRI Brain Tissue Classification and
INU Correction

In this chapter we describe a fully automated method fomtiasue classification, which
is the segmentation into cerebral GM, cerebral WM, and CSF|Mbdcorrection in brain
MRI volumes. It combines supervised MRI modality-specificdiminative modeling and
unsupervised statistical EM segmentation into an integr&ayesian framework. While
both the parametric observation models as well as the noammrically modeled INUs
are estimated via EM during segmentation itself, an MRF priodel regularizes segmen-
tation and parameter estimation. Firstly, the regulaiopatakes into account knowledge
about spatial and appearance related homogeneity of s¢gmearms of pair-wise clique
potentials of adjacent voxels. Secondly and more impdytgoaitient-specific knowledge
about the global spatial distribution of brain tissue isoiporated into the segmentation
process via unary clique potentials. They are based on agstlscriminative model
provided by a PBT for classifying image voxels. It relies omrgsunding context and
alignment-based features derived from a probabilisti¢aangcal atlas. The context con-
sidered is encoded by 3-D Haar-like features of reduced IRbisivity. Alignment is
carried out fully automatically by means of an affine regigtm algorithm minimizing
cross-correlation. Both types of features do not immedjaisk the observed intensities
provided by the MRI modality but instead rely on specificathrisformed features, which
are less sensitive to MRI artifacts. Detailed quantitatival@ations on standard phan-
tom scans and standard real world data show the accuracyhbustness of the proposed
method. They also demonstrate relative superiority in anmspn to other state-of-the-
art approaches to this kind of computational task: our netehieves average Dice co-
efficients 0f0.94 + 0.02 (WM) and 0.92 + 0.04 (GM) on simulated mono-spectral and
0.93 +0.02 (WM) and0.91 4+ 0.04 (GM) on simulated multi-spectral data from the Brain-
Web repository. The scores @81 + 0.09 (WM) and0.82 4+ 0.06 (GM) and0.87 + 0.05
(WM) and 0.83 4+ 0.12 (GM) for the two real-world data sets—consisting of 20 and 18

13
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patient volumes, respectively—provided by the InternetiiB@egmentation Repository.
Preliminary results have been published in referencel [125]

2.1 Motivation

Several inquiries in medical diagnostics, therapy plagrand monitoring, as well as in
medical research, require highly accurate and reprodeidikdin tissue segmentation in
3-D MRI. For instance, studies of neurodegenerative andnay diseases often rely on
guantitative measures obtained from MRI scans that are sggmhato the three common
tissue types present in the human brain: cerebral GM, car@, and CSF. There is a
need for fully automatic segmentation tools providing ogjucible results in this particular
context as manual interaction for this type of volumetrieing is typically considered un-
acceptable for the following reasons: having 3-D scans @gnannotated by radiologists
may notably delay clinical workflow, and the annotationsagietd may vary significantly
among experts as a result of individual experience andgre&ation. The mentioned au-
tomatic tools face a challenging segmentation task duectcltaracteristic artifacts of the
MRI modality, such as intra-/inter-scan INU [119] 60], paktiolume effects (PVE) [114],
and Rician nois€ [80]. The human brain’s complexity in shape @atural intensity vari-
ations additionally complicate the segmentation task adhaOnce a sufficiently good
segmentation is achieved it can also be used in enhancing#ge quality, as intra-scan
INUs can be easily estimated due to the knowledge of thediggue and the associated
image intensities to be observed at a specific spatial sli€][1As can be seen later there
are several interleaved approaches similar to our conimibéollowing this idea where the
tissue segmentation and the INU are estimated simultaheous

The extended hidden Markov random field expectation mation (HMRF-EM)
approach with simultaneous INU correction presented h&réni contrast to Zhang et
al. [1290, consistently formulated to work on multi-spectral 3-Dibr&IRI data. Further,
we present a mathematically sound integration of prior Kedge encoded by a strong dis-
criminative model into the statistical framework. The l@ag-based component, that is,
a PBT [108], providing the discriminative model exclusivedjies on features of reduced
sensitivity to INUs and therefore makes this approach MRI atibdspecific. Usually,
more discriminative features are used for medical imagensegation by means of dis-
criminative PBT modeling, for instance, in CT ddta [111]. Hoese those features do not
take into account the particularities of the MRI modality,jgthmakes them less suited for
MR image segmentation. Approaching the problem this wayeatgthe fact that relying

IAlthough not detailed in the original publication a multiectral implementation of Zhang et al.’s
method[129] already exists and can be downloaded from wwsibfox.ac.uk/fsl.
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on modality-specific features can significantly increaggrsntation accuracy in certain
cases.[[97, 98]

Exhaustive quantitative evaluations on publicly avagedimulated and real world MRI
scans show the relative superiority with regards to rolasstiof our newly proposed method
in comparison to other state-of-the-art approaches [943693, 2] 1| 5,4, 74, 129, 113].
While other methods may reach particular high values on écpéat database we present
comparable and mostly better results in terms of segmentaitcuracy on a variety of
benchmarking databases from different sources. This dstrates the increased robust-
ness of our approach.

it PBT Probability
BET Skull FLIRT Probabilistic o DMC-EM
Stripping Atlas Alignment Estg:gts)irf}fg%rl;lard Optimization

Figure 2.1: The processing pipeline of the proposed DMC-EM method for multi-spectral
brain tissue segmentation and INU correction.

Our method consists of four steps: first, the whole brain isaeked from its sur-
roundings with the Brain Extraction Tool (BET)_[100] working the T1-weighted pulse
sequence. As BET skull stripping fails on some of the datawsetase for evaluation we
extended the original preprocessing tool BET. We introdubesgsholding for background
exclusion, morphological operations and connected compoanalysis to generate ini-
tializations (center and radius of initial sphere) for theTBfain procedure that are closer
to the intra-cranial surface to be computed. Then, an Irspatially variant prior of the
brain soft tissue on different tissue classes is obtaineahégns of a strong modality spe-
cific discriminative model, that is to say, a PBT probabilistisator. This also gives an
initial segmentation of the brain soft tissue. Subsequetiie final segmentation and the
multi-spectral INU fields are estimated via an extended HMERFapproach that operates
on multi-spectral input data. We will refer to our method hs tiscriminative model-
constrained HMRF-EM approach (DMC-EM). The whole processipgline is depicted
in Fig.[2.1.
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2.2 Related Work

2.2.1 MRI Tissue Classification

Most approaches in the field of MRI brain tissue segmentatienbased on Bayesian
modeling, which typically involves providing a prior modeehd a generative observation
model. With these models the most likely tissue class be#sgansible for the observed
intensity values at a certain voxel can be inferred. Offlieaayated observation mod-
els, that is, models generated from annotated training dataally are very sensitive to
MRI artifacts. [54] For this reason parametric models aréchlty estimated online, that
is, simultaneously with an associated segmentation makighan a posteriori probability
distribution density by means of EM [113,194,/93| 4] 86,37, 1218 ,[62[ 119]. Apart from
EM optimization methods comprise max-flow/min-cut compiota[102,/101], segmen-
tation by weighted aggregationl [2], and finding the maximizethe posterior marginals
(MPM) in a maximum a posteriori (MAP) setting [[74]. Recentlg@non-parametric [2]
approaches for generating observation models within Bagesameworks and entirely
learning-based [1] approaches to brain tissue classtitdtave been proposed. Some of
them [1,[2] do not take into account INUs and scanner-specifitrast characteristics
present in the data sets used for model generation, whichresayjt in model over-fitting
and poor generalization capabilities.

Commonly used prior models comprise, next to the assumpfigpatially uniform
prior probabilities, spatial interdependencies amongmsaring voxels through prior prob-
abilities modeled as hidden Markov random fields (HMRE) [93, 84,129/ 6], hid-
den Markov chains (HMC)[13], or non-parametric adaptive kbarpriors [5]. They
are sometimes combined with prior probabilities deriveatrfrprobabilistic or anatomi-
cal atlases [, 74, 86, 113] or replaced by theim [6, 4] thatatam be integrated into the
overall MRF-based formulation as external field enerdie$ [88}. The same holds for
prior knowledge encoded by fuzzy localization mépg [93} ttem also be integrated into
the overall framework via external fields. Alignment of thtasa can be achieved either
by rigid [6,[113], affine([94, 2,15], or non-rigid [13, 74, 8&gistration algorithms, either
before optimization or simultaneously [6, 4]. Bazin and PH@hadditionally incorporate
prior knowledge obtained from a topological atlas into azfuelassification technique for
topology preservation. Cuadra et al. [30] compare and v&idéferent statistical non-
supervised brain tissue classification techniques in MRim@s.

Conceptually, our approach aligns with the mentioned EMebaspproaches using
Markov random field priors and aligned probabilistic atlasdn contrast, though, our
method makes use of more general prior knowledge in termsstfoag discriminative
model initializing and continually constraining the segrtation process. It is motivated
by recent advances in medical image segmentation that nsskefyprior knowledge in a



2.3. Method 17

similar manner, i.e., in terms of discriminative modelihg,jmprove segmentation accu-
racy and robustness [121,]77, 21] 28,1111]. We have choseRBealgorithm for dis-
criminative modeling as it has been found to perform well iragety of medical imaging
settings[[126, 77, 121, 111,119, 131].

In many cases the related approaches completely lack aitaiaetevaluation[[129]
or are exclusively quantitatively validated on synthetatad[94,[93/ 4]. In other cases
guantitative evaluation is carried out only on a small aidlen of scans from a single
source of data [13, 38, 1) 2, 119]. All this imposes a restnicbn the generalization
capabilities of such methods.

2.2.2 MRI INU Correction

While some of the papers mentioned above address furtheresggtion of cerebral gray
matter into individual structures [94,193,(2, 6], which is/bed the scope of this chapter,
only some of them additionally address INU correctionl [181,1102] 4] 129, 113, 119].
INUs are usually modeled as multiplicative noise corrugptine images in the intensity
domain and as additive noise in the log-domain. They can Iserded either non-
parametrically as bias or gain fields in the literal sens@]HfA9] or parametrically by
polynomial basis functions [18, 112], by means of cubic Bregd [102] 101] or through
the exponential of a linear combination of low frequencyi®#snctions [4]. Other ap-
proaches rely on segmentation methods but focus on INU aosre[112,/53]. Vovk et
al. [116] recently reviewed most of the relevant data-drigpproaches in the field includ-
ing non-segmentation-based approaches like the well-kmoenparametric nonuniform
intensity normalization (N3)[29] and homomorphic unsharasking (HUM) [14]. An-
other detailed review can be found in refereride [7]. As wesim®T INU correction to be
a possible application of our novel segmentation approatimat the main focus of our
contribution we refer the reader to the reviews mentioneduidher information.

2.3 Method

2.3.1 DMC-EM Brain Tissue Segmentation

Image or volume segmentation by means of the DMC-EM approablch extends the
HMRF-EM approach of Zhang et al. [129], is closely relateddarhing finite Gaussian
mixtures (FGM) via the EM algorithm. For both casesSet {1,2,..., N}, N € N, be

a set of indices to image voxels. At each index S there are two random variabl&sand
X, that take discretevalugs € YV = {1,..., K }, K e Nyandz, € X = {1,...,2¢}F,
The former,Y;, denotes the hidden class label, that is, the underlyisgeislass, at voxel
s, whereas the lattertX ;, states the vector of observed intensity values taken fiwen t
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L € N aligned input pulse sequences each having a bit deptheofN. The observable
intensities at every voxelare assumed to be causally linked to the underlying clagtdab
by parameterized Gaussian distribution densities;|ys = k) = N(xy; 0;) with class
specific paramete, = (i, 1), 1, € RE, 3, € REXE and symmetric positive-definite.
Starting from initial values for those parameters and sorive probabilitiesp®) (k) for the
occurrence of each class label a proper statistical modettims of prior probabilitieg(k),

k € Y, and parameter® = (6;),cy can be estimated by means of EM iteratively in an
unsupervised manner.

In contrast to the FGM model that considers every voxel'ssifecation isolated from
its local neighborhood the DMC-EM model assumes externalenites and spatial inter-
dependencies among neighboring voxels. Both can be inaigzbinto the existing model
by describing the familyy” = (Y;);cs of unknown class labels as an MRF. According to
Li [69], within an MRF every voxel at index is associated with a subskt C S\ {s}
of neighboring indices having the propertiesZ N, ands € N, & t € N, for all
s,t € §. The family of random variable¥ is said to form an MRF oi& with respect
to the neighborhood systeX = { N, |s € S} if and only if p(y) > 0 for all possible
configurationsy = (ys)ses,» andp(ys|(y:)ies\is3) = p(yslyy,) forall s € S. They are
called the positivity property and the Markov property of ¥iRF.

The graphG = (V, E) with verticesV = {v,|s € S } and edgedl = { (vs, ;) | s €
S,t € N, } associated with an MRF contains multiple sets of cliguesciviire sets of
complete sub-graphg;,, denoting all the sets of vertices’ indices within cliquessafe
ne{l,...,|V|}

Under these circumstances, according to the Hammerslépi@liheorem, the joint
probability density function (PDF)(y) can equivalently be described by a Gibbs dis-
tribution p(y) =  exp(—U(y)). HereU(y) = >, > .. V..(y) denotes the energy
function, which is a sum of clique potentidls,, andZ = }_  exp(—U(y)) denotes the
partition function, which is a normalization constant.

In contrast to Zhang et al._[129] our model considers bothryita = 1) as well
as pair-wise 4 = 2) clique potentials as we want to introduce an MRF prior that-co
strains segmentation by an external field, provided by aagtdiscriminative model, and
by mutual spatial dependencies among pairs of neighboorgls. In this case the energy
function can be stated as

seS teNs

For the purpose of image segmentation it is common prad8i@el29] to ignore further
dependencies, i.e., higher-ordered clique potentialesé&Ipotentials increase the degrees
of freedom of the MRF and therefore require more training dataeliable parameter
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estimation. Thus, by applying Bayes’ rule and by marginatizover the possible class
labels, we have

p(Wslyn,) = PWsl(We)ees\(sy)
P(Ys, (yt)teS\{s})
Zkey p(ys = k, (yt)tES\{s})
exp(—Vi(ys) — Zte/\/' Ve (ys, 1))
Zkeyexp(_%(ys =k) — Ztg\[ Va(ys =k, ur))

with the labelsy . understood as observable evidence.

(2.2)

Due to the fact that Equatioh (2.2) can be formulated dep#rateunary and pair-wise
cligue potentials it is possible to introduce prior knowgednto the classification process.
In order to make a strong discriminative model constraineetgqtion maximization we
will later define unary clique potentials based on tissuef@obability estimations from
PBT classifiers. With regards to the pair-wise clique po&sitiwhich are defined on fully
labeled data, the best segmentatiog max,, p(y|z; ©~Y) that is needed to properly
evaluatel/, (s, y;) in iterationi is not available during iterative expectation maximizatio
This means, in accordance with Zhang etlal. [129], a cuyrdrgst segmentation using the
MAP

y" = argmax p(ylz; elY) (2.3)

where

z @) — p(w‘%@(i_l))P(y)
p(ylz; ©) IO
1 1T P(]ys; 0°7) - exp(—Vilys) — Y pens, Var (s wr))
Z p(xs)
) —

o [T N(l0"7Y) - exp(=Vilys) = D Varlye, v2))
s teNs

(2.4)

has to be found in every iterationof the overall expectation maximization procedure to
form the complete dataset where we assume the intenaitie® be i.i.d. In our method
forming the complete dataset is done by iterated conditimmales (ICM) as proposed by
Besag[[9] and adapted for brain tissue segmentation by Zhiaalg [£29]. Alternatives
for this processing step include optimization via mulass generalized max-flow/min-cut

algorithms. The two-class base algorithms of this natutebsidiscussed in more detail
in ChaptefB.
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Once a sufficiently good approximation of the currently lsegfmentation is computed
the parameters of the intensity model can be updated by

0 _ SuesPys = Klzs yu: 04 ), (2.5)
L s by = M yai 61
and (t=1) (t) (t)
s _ 2ses PWs = kl@o ynii 0 ) (@s — ) (@ — )" (2.6)
' YeesPys = klzo, yy,:0)7)

It has to be mentioned that this so-called Besag pseuddoHdad approacH [113] that
relies on an approximation of a complete labeling is only oha variety of sometimes
more principled approaches addressing the entire EM paeampdate with a unified op-
timization strategy. Alternative methods allow “fuzzy’ask-memberships and handle the
spatial priors directly by other numerical maximizationsthods such as mean field-like
approximations [128, 62, 112] or non-iterative heurispip@aches [113]. We refer to Mar-
roquin et al.[[74] for a more detailed discussion of the gassilesign choices concerning
this step within the overall procedure.

The complete DMC-EM procedure can be summarized as followasgtirgy from initial
valuesy® and®?, in each iteration the current segmentatiayi”) is approximated and
used to compute the posterior probabilitigg, = k|x,, y - ; 0,(3_1)) for each voxek € S.
Subsequently, the paramet@$’ are updated.

At this current point our method equals the HMRF-EM approd2€]. In the fol-
lowing sections we will derive unary and pair-wise cliquegrdials that take into account
probability estimations from a strong MRI modality-speciiscriminative model, i.e. a
PBT, and spatial coherence in terms of observed intensitiésarrent classification la-
bels, respectively. This combination of discriminativedabing via the PBT algorithm
and MAP tissue classification via the EM algorithm througé tbrmulation of appropri-
ate unary clique potentials is what we consider the majotridmrion of our work. It is
also what makes the difference between our DMC-EM algorithohthe HMRF-EM al-
gorithm [129]. Further we will extend the approach from hedretical point of view in
order to simultaneously estimate multi-spectral INUs Enhy to Zhang et al.[[129] who
presented a mono-spectral extension of their method feipilnipose.

2.3.2 MRI INU Estimation

As shown by Zhang et al. [129] the HMRF-EM as well as our DMC-EMhoe can easily
be extended to simultaneously estimate the INU field acogrth the method of Wells et
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al. [119]. The INUs are modeled by a multiplicative gain figld= (gs)scs that disturbs
the true intensitieg™ = (i¥),cs. Thatis

for one of the MRI channels at voxel € S wherei = (is),cs are the disturbed and
observed intensities. Although less appropriate for mogdNUs caused by induced cur-
rents and inhomogeneous excitation within the acquisdi®rice the multiplicative model
adequately describes the inhomogeneous sensitivity aktteption coil.[[99] After loga-
rithmic transformation of intensities the gain field can kesated as an additive bias field
b = (bs)ses and

s = T + by, (2.8)

wherez, = In(i,), ¥ = In(i*), andbs; = In(gs). In the case of multi-spectral images we
have
xs =x. + b,. (2.9)

For DMC-EM this means that the class-conditional probaédiare no longer only depen-
dent on the parametef® of the Gaussian distributions but also of the bias figldhat
is,

p(@slys, bs) = Nz, — by 0),). (2.10)

Following Wells et al.[[119] the joint probability of inteities and tissue class conditioned
on the bias field can be stated as

p(@s, Ys|bs) = p(xs|ys, bs)p(Ys)- (2.11)

Marginalization ovep) yields

p(zs|bs) = Zp(ws,ys =k, bs)p(ys = k), (2.12)
key

which is a class-independent PDF consisting of a mixtureaafsSian populations. By ap-
plying the MAP principle to the posterior probability of th&s field, which can be derived
from Equation[(2.12), an initial expression for the biasdfiektimate can be formulated.
Then, a zero-gradient condition with respecbti@ads to a non-linear bias field estimator
fulfilling a necessary condition for optimality:

b— [F + 2;1} T (2.13)
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wherer = (7;)__, are the mean residuals

T =Y p(ys = klag, by) (@ — )" (@, — ) (2.14)
key

andx ! = (X71,) _, are the mean inverse covariances with entries

seS

Fs = Zp(ys = k’|335, bs)Elzl (215)
key

written down as a family of. x L matrices. Please refer to Wells et al. [119] for a detailed
description of the mathematical assumptions and derivatieps involved.

Using an approximation instead of the optimal estimatoritias field at every voxel
s € S'is given by X

b, = (FI=7]) - (Fl7]), (2.16)

whereF is a low-pass filter working component-wise on the matrixvector-valued, in
our case, volumes andX ! [118].

The DMC-EM algorithm for simultaneous brain tissue segnt@maand INU correc-
tion of multi-spectral data with a predefined numbéof iterations can be stated as de-
picted in Algorithm[1. In accordance with Zhang et al. [128¢ tparameter update is
consistently based on the original, non-corrected dath that the complete bias field can
be estimated appropriately in each iteration.

As pointed out by Zhang et al._[129] and originally discovket®y Guillemaud and
Brady [53] the method of Wells et al. [1119], which serves adi@ige of our INU correction
system, does not adequately work on image segments whasd aatensity distribution
is not Gaussian. Such a tissue class usually has a largee@yiahich prevents the mean
from being representative. In our system this is the casth®CSF tissue class that does
not only include the ventricular system inside but also adbtine brain. Especially at the
outer bounds of the automatically generated brain masg,dlaiss may include several
other non-brain structures introducing intensity valudgteient from the ones expected
from true CSF, which correspondingly increases intra-clasgnce. Inspired by Wells et
al. [119], where everything but GM and WM is excluded both frira INU estimation
as well as from the segmentation, we therefore estimateigisefield only on the current
GM and WM segments assuming the current CSF segment to be gha background.
However, in contrast to Wells et all. [1119], we do address Cgmeatation, together with
GM and WM segmentation, during iterative tissue classifcati

In the following we will derive appropriate higher dimens# feature vectorg for
PBT training and PBT probability estimation. In order to kel tliscriminative models
MRI modality-specific we have to make sure that the featuresed are not sensitive to
inter- and intra-scan INUs as probability estimation wélfeerformed on the non-corrected
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Algorithm 1: DMC-EM algorithm

Input: (Multi-spectral) MRI volumez, parameter®® = (8" = (u\”, 52y, . initial
segmentationy(©)
Output: Parameter®®), segmentationy®, and bias fieldb*)

begin
t«—0;
ot e®:
repeat
t—t+1,
/ 1. Estimate the class labels by MRF-MAP estimation (segsafign [2.3))
y® — argmax, p(y|z; 0V b);
/I 2. Calculate the posterior distributions for the coreglcind non-corrected intensities
forall voxelss do
forall class labels: do
90— _
= klx, . 0(75—1) b, N(zs—bs;0, " p(y.=klyn,) ’
PY, = loe a3 07 be) = N(e.—b0] )pl.=llu,)
t—1
k. .gt=1) N(zs:0, )p(ys=Flyn,) ’
p(ys |-’B ,y/\/S7 k ) — Zley N(msgggt—l))p(yszlly/\/ﬁ)
end
end
I/ 3. Update the parameters of the observation model (seatiegs [Z.5) and (216))
(t) Zsesp(y5=k|il!5,yNS;9§Ct_l))ws .
Pro Y es Py =klzoyn, 00 )
_ pt—1) (t) (T
E(t) Zses p(’ysfk\ms,yNS,Gk Yxs—p') (s —p'") :
L S s P, =klzeyn, 00 D)
/I 4. Estimate the bias field (see Equatibn (2.16))
forall voxelss do
[
‘ bs = [F(Eil)] ' [FF]S;
end
until t=T ;
end

input data. We will therefore rely on 3-D Haar-like [111] feees of reduced INU sensitiv-
ity and probabilistic atlas-based whole brain anatomyuiest. Both types of features are
the result of specific transformations and do not immedjaisk the observed intensities
provided by the MRI modality.

2.3.3 MRI Modality-Specific Discriminative Model-Based Unary
Cligue Potentials

Probabilistic Boosting-Tree

The discriminative classifier PBT_[108] recursively groupmsted ensembles of weak
classifiers to a tree structure during learning from expanbéated data (see Appendix A).
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For every tissue class we learn a voxel-wise discrimindiB& probability estimator rely-
ing on higher dimensional feature vectars which are derived from the surrounding 3-D
context of a voxel of interest. We use the class-wise probability estimagiéé+1|z,),
ke{l,...,K}, fortheK tissue classes to define the unary clique potentials

Vilye = k) = = InpH(+1]z,) (2.17)

used in our system.

Haar-like Features of Reduced INU Sensitivity

In the case of a 1-D signdl(t), ¢t € R, as well as for any higher dimensional signal Haar-
like filters can be interpreted as non-normalized child Wetse) (=" of the classical Haar

mother wavelet
1 ifo<t<g,

Yt) =49 -1 if $<t<1, (2.18)
0 otherwise.

As normalization does not affect linear independence thelyaof non-normalized child
wavelets spans the same infinite-dimensional vector spactkesr normalized counter-
parts. Feature responses, which are comparable to waweelicents, typically are only
computed for discrete-7,,., < 7 < FTmee @Nd0 < a < a,,q.. This equals project-
ing a transformed signal to a finite-dimensional subspacerevbnly certain position and
frequency characteristics are taken into account. As sbewea MRI inter-scan inten-
sity inhomogeneities can be modeled as gain fields|[119] evhespatially varying factor
multiplicatively disturbs the observed intensitiesat voxels € S. After logarithmic
transformation it can be seen as an additive bias field of leguency and zero mean.
The parametet,,,, can be chosen sufficiently low such that low frequencies aff kind
are attenuated and do not significantly affect the signatgeption onto the subspace.
The obtained coefficients are therefore of reduced bias $ietgitivity when considering
the log-transformed signal and of reduced gain field, thafN® field, sensitivity in the
original domain.

This becomes exemplarily apparent if we consider the Fotraesforms

o ()] - () (33

= % si (f%) exp(—iﬁf%)
—%4 si (f%) exp(—mf%l) (2.19)
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of the 1-D Haar-like filters where = 0 without loss of generality. The filter states a
band-pass filter whose band-width enlarges with increasing his observation can be
generalized to other additive combinations of rectangutpulses and higher-dimensional
signals.

o%F «
- w ®

Figure 2.2: The 3-D Haar-like feature prototypes used in the DMC-EM algorithm’s dis+
criminative model.

This is perfectly accompanied by the intuition that smaigheoring areas should have
an almost identical additive bias in the log-domain, whigkagpears after subtraction
when computing the Haar-like features. Hig.2.2 depicts3tieHaar-like feature proto-
types used in our system. The associated features are cetnautifferent anisotropic
scales of the prototypes with a fixed offset centered at tkelaf interest. For every fea-
ture prototype the average of the log-transformed intexsswithin the white cuboids is
subtracted from the average of the log-transformed intiessvithin the black cuboids.

Probabilistic Atlas-Based Whole Brain Anatomy Features

The second category of features contributing to the feateceorsz, for PBT training and
probability estimation encode the voxel’s probability eodither part of the CSF, the GM,
or the WM. They are taken from a probabilistic anatomicalsaf#l], which is affinely
registered([94,12,15] with the current patient data set bymaeas the publicly available
registration software FLIRT [61]. The objective functiaar the registration step is based
on the correlation ratio metric, which is suited for inteodality registration purposes by
design. It ensures robustness of the registration proeeduhe case of inter- and intra-
scan INUs. The choice in favor for a 12-parameter affine teggisn algorithm is motivated
by the trade-off between maximum flexibility and computatibdemand of the underlying
registration procedure. Non-rigid registration algangimay lead to more discriminative
atlas-based features. [13]4] 74]
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2.3.4 Coherence Preserving Pair-wise Clique Potentials

Inspired by Boykov and Funka-Lea [10] the interaction patdsitused in our system are

Ve (o) o exp | —— EL: (2o = 20)" ) | W, 01) (2.20)
S S X AT - .
! ¢ 2L — (2170&) dist(s, t)
where vectorsz,,, ..., z,, )" and(x,,,. ..,z )" denote the observed intensities at voxels
s andt taken fromL € N aligned input pulse sequences and
Loif ys # oy,
0(Ys, yt) = . 2.21
(4, 3) { 0 otherwise. ( )

The functiondist(s, t) denotes the physical distance between voxelad¢, which varies
when working on image volumes with anisotropic voxel spgciiihe model emphasizes
homogeneous classifications among neighboring voxels bights penalties for hetero-
geneity according to intensity similarities of the voxatsalved. It assumes the noise
among neighboring voxels of an input volume to be distridutea multivariate Gaussian
manner without taking into account dependencies amongpibetrsl channels. Disconti-
nuities between voxels of similar intensities are pendlidghe multi-spectral intensity
differences|z,, — zy,|, I = 1,...,L, are on average smaller than the associated stan-

dard deviations / (2171)&) of the considered tissue clagsin iterationt. However, if the
multi-spectral voxel intensities are very different, tisto say, the differences;, — x;,|,

[ =1,...,L, are on average larger than the associated standard desi@/fi(Eu);? the
penalty is small.

2.3.5 Summary

Reconsidering the processing pipeline of our DMC-EM appradeicted in Fig. 1 we
make use of the results from the PBT probability estimationh @assification step in the
subsequent DMC-EM optimization step in two ways: first, wetheePBT hard classifica-
tion as initial segmentatiop® wherey'” = arg max; *(+1|z,) at the beginning of the
EM iterations. Based on this initial hard classification tleegmeter®©) are initialized
via class-wise maximum likelihood estimation. Second piabability estimates serve as
constraints for the maximization of Equati@n (2.3) via ICMim every iteratiornt as well
as for the parameter updates given by Equation$ (2.5)a@y {this is achieved by defin-
ing the unary clique potentials as functions of the PBT prdlglestimates in Equation
(2.17). We therefore utilize the discriminative model ilwea not only as a preprocessing
step but also throughout the whole optimization procedoirepeatedly regularize model
adaptation.
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| Multi-spectral BrainWeb

\ Mono-spectral BrainWeb

Source

\Volume Size
Voxel Spacing
Spectral Channels
Number of Scans

www.bic.mni.mcgill.ca/brainwe
181x 217 x 181
1.0x 1.0 x 1.0 mn?¥
T1, T2, PD
10

www.bic.mni.mcgill.ca/brainweb
181 x 217 x 181
1.0x 1.0 x 1.0 mn?¥
T1
10

Table 2.1: Summary of the publicly available standard databases from the BrainWeb
repository used for evaluation purposes.

2.4 Validation

2.4.1 Experimental Setup

For quantitative evaluation of the proposed method we @arout experiments both on
mono-spectral as well as on multi-spectral (T1-weightédweighted, PD-weighted) pub-
licly available simulated MRI scans from Cocosco et al.| [28e(Jablg_2]1). All the
simulated MRI volume sequences share resolution and sizeé)of 1.0 x 1.0 mm® and
181 x 217 x 181, respectively. INU and noise levels vary among 20% and 408d, a
1%, 3%, 5%, 7%, and 9%, correspondingly. The noise in the lsit®d images follows
a Rayleigh distribution in the background and a Rician diatidn in the signal regions.
The noise level represents the percent ratio of the stariedtion of the white Gaussian
noise added to the real and imaginary channels during siionleersus a reference tissue
intensity.

Furthermore, our system was quantitatively evaluated @nsets of real T1-weighted
MRI scans provided by the Center of Morphometric Analysis atNMfassachusetts General
Hospital (see Table2.2), which are publicly available om lfiternet Brain Segmentation
Repository (IBSR). One of the data sets consists of 20 coronaldighted MRI volumes
(256 x 65 x 256) of normal subjects with a resolution ) x 3.1 x 1.0 mm? (IBSR 20). The
other one (IBSR 18) consists of 18 sca?si(x 256 x 128) of normal subjects with varying
resolutions (.84 x 0.84 x 1.5 mn?, 0.94 x 0.94 x 1.5 mm?, and1.0 x 1.0 x 1.5 mm®). Both
the sets are accompanied by ground-truth segmentatiohs tiiee tissue types of interest
(CSF, GM, and WM). All the scans had been subject to a specifirpcessing including
spatial normalization before they were released in the IBS®vever, our system does not
make use of the additional spatial information providecehath and the scans are treated
as if they were native scans according to the common quabtydsrds of radiological
image acquisition.

All the images were re-oriented to a uniform orientation (‘IRAight-to-left, anterior-
to-posterior, inferior-to-superior). The discriminatimodel involved was trained on one
volumetric scan of the IBSR 20 data set, which is thereforéuebezl from the quantitative
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H IBSR 18 IBSR 20
Source www.cma.mgh.harvard.edu/ibsrwww.cma.mgh.harvard.edu/ibsr
Volume Size 256 x 256 x 128 256 x 65 x 256
Voxel Spacing 0.84x 0.84x 1.5 mn¥, 1.0x 3.1x 1.0 mn¥
0.94x 0.94x 1.5 mn?,
1.0x 1.0x 1.5 mn?
Spectral Channels T1 T1
Number of Scans 18 20
Table 2.2: Summary of the publicly available standard databases from the IBSR used fo
evaluation purposes.

evaluations. In order to keep our system as general as f@ssib use the same model
for multi-spectral data and carry out PBT probability estiora and hard classification
based on the T1-weighted pulse sequences. We measure $atiomeaiccuracy by means
of the Dice coefficient and the Jaccard coefficient to ensameparability to other work
(see Tables 214=2.7). We refer to Apperidix B for details on hoth the coefficients are
computed. The quality of INU correction is quantified by tHass-wise coefficient of
variation (COV = standard deviation / average) achieved.

Table[Z.B summarizes the methods whose accuracy will be @@dmpne against the
other later. All of them were evaluated on at least one of thidiply available standard
databases mentioned above.

Due to the larger amount of free parameters involved, eafheavith regards to the
PBT model, we did not have the ambition to evaluate every ptesshoice of parameter
settings throughout the processing pipeline. For everggssing step design choices were
based on what can be found in the literature, €.g.,/[111].ekkample, we set the weight
of the pair-wise clique potential8 = 1.2 in accordance with Cuadra et dl. [30] whose
Potts model-based pair-wise clique potentials have apmadely the same range as ours.
The PBT voxel classifiers were built from approximately ondliom samples randomly
selected from one training volume. The samples are voxdtsmihe brain of the patients
and are uniformly distributed over all the input slices o thaining scan. For PBT prob-
ability estimation and classifier training the scans wersampled to a voxel spacing of
2.0x2.0x2.0mn¥. The maximum number of features selected by AdaBoost in eaeh t
node was set to 8. The maximum depth of the trees learned stagted to 10 and a soft
thresholding parameter ef= 0.05 was used. The 3-D voxel context chosen for computing
the 747 Haar-like features used per individual voxel sannae of size 3630x30mmn?
centered at the voxel of interest.

In a standard C++ implementation of our segmentation framewbtakes about 12
minutes to process one mono-spectral MRI voluritd (x 217 x 181) without brain ex-
traction and affine alignment on a Fujitsu Siemens notebgolpged with an Intel Core
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Method Characteristics INU Multi-
correction | spectral
DMC-EM Parametric EM-based approach with MRF prior and jn¥es Yes
tegrated discriminative model relying on MRI-specific
Haar-like features and rigidly aligned probabilistic atlg
based features
Awate et al.[[5] Iterative approach with adaptive, non-parametric MRMo Yes
prior and affinely aligned probabilistic atlas-based aiiti
ization and regularization
van Leemput et al [113] || Parametric EM-based approach with MRF prior, rigidlyYes Yes
aligned probabilistic atlas-based initialization anduleg
Bazin and Pham_[6] IIESS%? classification approach with rigidly aligned prop-Yes Yes
abilistic and topological atlas-based initialization asid
multaneous rigid re-alignment and topology preservation
LOCUS-T Parametric EM-based approach with MRF prior and inteNo No
[93] grated FLM-based regularization, Fuzzy C-Means initial-
ization and regular image volume decomposition
FBM-T Parametric EM-based approach with MRF prior with inteNo No
©4] grated affinely aligned probabilistic atlas-based inite
tion and regularization and integrated parameter regylar-
ization across image sub-volumes
Akselrod-Ballin et al.[[1] Support vector machine-based voxel classification relyintyo No
on intensity, texture, shape, and rigidly aligned probisbi
tic atlas-based features
Akselrod-Ballin et al.[[2] Bayesian multiscale segmentation framework wjttNo No
affinely aligned probabilistic atlas-based initializatiand
regularization and non-parametric tissue class modeling
HMRF-EM Parametric EM-based approach with MRF prior withYes No
[229] thresholding-based initialization
Bricq et al. [13] Parametric EM-based approach with HMC prior and nonYes No
rigidly aligned probabilistic atlas-based initializatiand
regularization
Ashburner and Fristo [4]|| Parametric EM-based approach with simultaneous norves No
rigid alignment of probabilistic atlas priors for regulaiz
Marroquin et al.[74] g%?ametric MPM-MAP-based approach with MRF priprYes No

and non-rigidly aligned probabilistic atlas-based iriitia-
tion and regularization

Table 2.3: Summary of the methods used for benchmarking.
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2 Duo CPU (2.20 GHz) and 3 GB of memory. During all our experitaRemono-spectral
and multi-spectral, we keep a uniform parameter settinglféhe free parameters involved
both for PBT training and probability estimation as well asDd/1C-EM optimization. We
can therefore exclude over-adaptation to one particutasf9dRI scans.

Method | Tissue Clasg Dice Coeff. | Jaccard Coeff.
DMC-EM WM 0.94+0.02| 0.89+0.04

GM 0.92+0.03| 0.85+ 0.06

CSF 0.77+0.03| 0.63+0.03
Marroquin et al. [74] WM 0.95+ 0.02 -

GM 0.94+ 0.02 -

CSF - -
van Leemput et al. [113] WM 0.92+ 0.03 -

GM 0.93+ 0.02 -

CSF - -
Bazin and Pham [6] WM 0.94+ 0.02 -

GM 0.92+ 0.02 -

CSF 0.92+ 0.01 -
Awate et al. [5] WM 0.95+ 0.01 -

GM 0.91+0.01 -

CSF - -

Table 2.4: Average segmentation accuracy for multi-spectral (T1-weighted, Tighive
ed, and PD-weighted) simulated BrainWeb data of noise levels 1%, 3%, 5%,
7%, and 9%, and INUs of 20% and 40%. From left to right the columns
contain the tissue class and the achieved average Dice and Jaccéoietuef

2.4.2 Quantitative Results on Multi-Spectral Simulated BrainWeb
Data

Results on multi-spectral BrainWeb data obtained by DMC-EMcareparable to those of
Bazin and Phani [G]and van Leemput et a s depicted in Table 2.4. They are close
to those of Awate et aIE[E]and worse than those of Marroquin et EBMH-Iowever, the
guantitative results reported in reference [5] might haaerbsubject to a misconception in
the used evaluation software as the images presented shioustsegmentation failures
at the outer bounds of the brain for one of the BrainWeb dats (8% noise and 40%
bias). For details refer to Awate et all [5], p. 735, Figs.)Hibd 1(c). For the sake of a fair
comparison it has to be mentioned though that both Awate [H]als well as van Leemput

24varying levels of noise and inhomogeneity] [6]

3Average over noise levels 1-9% and INU level 40%
4Average over noise level 0-9% and INU level 40%

SAverage over noise levels 1-9% and INU levels 0% and 40%
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Figure 2.3: Axial slices of original images, the segmentation results, the ground-trut
and the estimated INU field for one mono-spectral T1-weighted BrainWep
volume (5% noise, 20% INU) (a—d), one volume of the IBSR 20 Norma
Subjects data set (e—h), and one volume of the IBSR 18 Subjects data set

(i-1) .

>0

et al. [113] report results computed on data collectiongusieely corrupted by an INU
level of 40%.

Fig.[2.4 shows that INU, measured by the average COV, is rediacall the spectral
channels.

2.4.3 Quantitative Results on Mono-Spectral Simulated BrainWeb
Data

As Table[2.b shows, the results achieved for mono-spectahBfeb data are compara-
ble to those of other state-of-the-art approaches to bresue classificatior [5, 93, 94,
0, [74,[4]. The results of Ashburner and Friston [4] are regmbitty Tsang et al [107].
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The results are better than those of van Leemput [1iB}tze original HMRF-EM
approachﬁ} Awate et al.[[5], van Leemput et al. [113], and Bazin and PHéhay-
erage over the same BrainWeb data sets as mentioned abokeifa@xperimental results.
Again, comparability to the methods of Awate et al. [5] and @emput et al[[113] may
be limited due to the fact that both are exclusively evaldiate BrainWeb data sets cor-
rupted by an INU level of 40%. Scherrer et al.[[93] 94] presetrage values in exactly
the same manner as we do for our system. For Ashburner antdriHé4g and Zhang et al.'s
HMRF-EM [129] the values are averaged over noise levels 1%,53% and 7% and INU
level 20%. For Bricq et al[[13] the values are averaged oviserlevels 0%, 1%, 3%, 5%,
7%, and 9% and INU level 20%, for Marroquin et al. [74] overswlevels 0%, 1%, 3%,
5%, 7%, and 9% and INU levels 0% and 20%. In accordance withrddain et al. [74]
and Bricq et al.[[13] we only observe a limited gain in segmioreaccuracy when going
from mono-spectral to multi-spectral data. This effect rhaydue to the fact that all the
channels of the multi-spectral BrainWeb data set are gestefedm the same underlying
phantom in a deterministic manner. Therefore the additioviarmation provided about
the phantom’s true composition with respect to tissue typag be rather redundant than
of any additive value. Fidg. 2.3 gives a visual impressiorhef tesults obtained for mono-
spectral input data. With regards to INU correction, it cersken from Table 2.6(a) that
the average COV is reduced.

2.4.4 Quantitative Results on Normal Subjects Mono-Spectral Scans

With regards to experimental comparison our method showsrresults in terms of seg-
mentation accuracy (Jaccard coefficient) than the methioélkselrod-Ballin et al.[[1] and
Marroquin et al.[[74] (see Table 2.7) for the IBSR 20 data settetms of the Dice co-
efficient DMC-EM reaches a higher accuracy for GM segmeniaii@an the method of
Ashburner and Fristoidand the original HMRF-EMTI28] TableZ®(b) shows that all
the data sets were, on average, successfully correcteNbr |

As depicted in Figd_2l5 arid 2.6 DMC-EM constantly gives betsults than pure
HMRF-EM with zero-valued unary clique potentials and pralistic atlas-based initial-
ization. Except for a few cases it also gives better resbls the HMRF-EM approach
with probabilistic atlas-based unary clique potentiald probabilistic atlas-based initial-
ization.

On the IBSR 18 data set our method performs comparably to ctiaée-of-the-art
approaches with regards to segmentation accuracy (see[Za)jl However, one has to
note here that the method of Akselrod-Ballin et al. [2] relis stationary observation

5Reported by Tsang et al. [107]
"Reported by Tsang et al. [107]
8Reported by Tsang et al. [107]
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(d) (f)

Label | COV | Org. COV  Label | COV | Org. COV  Label | COV | Org. COV

WM | 0.07| 0.09 WM | 0.17| 0.8 WM | 0.07| 0.08
GM | 0.12| 0.13 GM | 021| 023 GM | 0.07| 0.09
(9) (h) ()

Figure 2.4: Coronary slices of original multi-spectral (T1-weighted, T2-weighted] a
PD-weighted) BrainWeb images of 5% noise and 20% INU (a—c) and est
mated INU fields (d—f). Average INU correction accuracy on multi-sgéctr
BrainWeb data in terms of the COV before and after INU correction (g—i).

models that have been derived in a cross-validation sdtimg separate training volumes,
which all origin from the same source of data. Their methodhnhtherefore be highly
biased to uniform contrast characteristics present inBl&RIl 18 data set and the results do
not necessarily adequately reflect the performance of thbadevhen applied to a larger
variety of data sets in clinical practice. Even though tharditative results of Awate et
al. [5] are very impressive the visual impression of the seggiation results presented does
not match with this observation as the coronal slices degittiere (p. 737, Figs. 5(b) and
5(c)) show obvious misclassifications especially at theoobunds of the brain.

Figs.[2.T and 218 show that the introduction of discrimvatnodel dependent unary
clique potentials and PBT initialization improves segmgataaccuracy for the IBSR 18
data set. In comparison to the HMRF-EM approach with zeraadlunary clique po-
tentials and probabilistic atlas-based initializatiord a0 the HMRF-EM approach with
probabilistic atlas-based unary clique potentials andabdistic atlas-based initialization
DMC-EM usually reaches a higher segmentation accuracy ngef the Dice coefficient
for GM and WM.
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Figure 2.5: Achieved accuracy for GM segmentation in terms of the Dice coefficient for
the IBSR 20 data set by the DMC-EM algorithm, the HMRF-EM algorithm
with probabilistic atlas-based unary clique potentials and probabilistic atlas
based initialization, and the HMRF-EM algorithm with zero-valued unary
clique potentials and probabilistic atlas-based initialization.

2.5 Discussion

Our newly proposed DMC-EM approach to fully automated 3-D BRI tissue classi-
fication and INU correction makes use of two different typespatial priors: the first one,
which contributes the unary clique potentials of the hidt#arkov random field’s Gibbs
distribution, is derived from a strong discriminative mfde our case a PBT classifier,
that has been built from annotated training data. It only @sakse of features of reduced
INU sensitivity and therefore prevents the model from ditéiing to scanner specific tissue
contrast characteristics, which is experimentally vaédeby detailed evaluations on pub-
licly available patient data sets from different sourced scanners. Usually, if the set of
features is not carefully chosen, using supervised legri@nMRI brain tissue classifica-
tion ties a method to the exact acquisition protocol thestiis is trained for: for instance,
Han et al.[[54] introduced an intensity renormalizationgadure into the method of Fischl
et al. [37/38]. As seen in our experiments an appropriatecehaf features can help to cir-
cumvent this dependency without the need for additionajpoeessing. Our experimental
setup did not allow specially adapted parameter settingarfy of the data sets. All free
parameters were kept fixed during experimentation. By not ordluding prior knowl-
edge from an affinely preregistered probabilistic atlasdscriminative model is capable
of producing more patient specific external fields. The sdqoior used, constituting the
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Figure 2.6: Achieved accuracy for WM segmentation in terms of the Dice coefficient for
the IBSR 20 data set by the DMC-EM algorithm, the HMRF-EM algorithm
with probabilistic atlas-based unary clique potentials and probabilistic atlas
based initialization, and the HMRF-EM algorithm with zero-valued unary|
cligue potentials and probabilistic atlas-based initialization.

pair-wise clique potentials, is a smoothing prior that pieea certain configurations in
local neighborhoods depending on similarity of observeensities, physical distance be-
tween image voxels, and estimated image noise. This makespibroach robust against
different levels of noise, which is also shown by quanti&gxperimental evaluation.

From the theoretical point of view, in contrast to Zhang efE9], a consistent multi-
spectral formulation of our DMC-EM framework both for braissue segmentation as
well as for INU correction is presented. Accordingly, ewlan is carried out on mono-
and multi-spectral patient data. On all the data sets ouhodefchieves a segmentation
accuracy that is either higher or comparable to the statbesfirt even though progress in
this highly investigated branch of research is difficult dou¢éhe well-established competi-
tiveness of the methods available.

From visually inspecting our segmentation results we olestrat our method seems
to reveal weaknesses when it comes to deep GM structure ségfina. Even though
the caudate nuclei and the putamen could be successfullyesggd in all the images de-
picted in Fig[2.B the globus pallidus and the thalamus weeelassified in all the three
image volumes. As both structures appear brighter than ofdke other GM structures
our observation model that models tissue classes as simgissiain distributions seems to
restrictive in this case. The problem may be solved by trymgiodel individual tissue
classes, and not only the whole brain, by mixtures of Ganssia addition, more complex



36 Chapter 2. Brain Tissue Classification and Intensity Non-Umnifty Correction

‘—n— DMC-EM o - HMRF-EM/Atlas/unary — - — HMRF-EM/Atlas ‘

1
0.9 = AT —
B = N PN R N 1 AT N TS -
0g o1 i e A gt
. K \A:' BT A- i Zf‘\h‘
€ 0.7
g
£ 0.6
[
3 o5
204 4
203
0.2
0.1
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Image Number

Figure 2.7: Achieved accuracy for GM segmentation in terms of the Dice coefficient for
the IBSR 18 data set by the DMC-EM algorithm, the HMRF-EM algorithm
with probabilistic atlas-based unary clique potentials and probabilistic atlas
based initialization, and the HMRF-EM algorithm with zero-valued unary
clique potentials and probabilistic atlas-based initialization.

discriminative models could be considered that furtheoodgmose cervical GM into indi-
vidual structures [126]. By doing so the dominance of therpriodel over the observation
model could be steered separately for individual anatdmeiatties.

It has to be mentioned also that particular high values fgmstation accuracy on the
BrainWeb data sets (see Tadles 2.4[and 2.5) do not necessaaly a particular method is
giving anatomically correct segmentation results. As clepl in Fig[2.B(c) the associated
ground-truth annotation suffers from obvious weakness# area of the globus pallidus
and the thalamus.

Concerning PVEs our method is conceptually predisposedglicéky handle the ef-
fect that individual voxels may be composed of differensuis types due to the limited
resolution of the acquisition devices. The inherent mixtomodel estimation of our algo-
rithm provides an insight on how or to which degree differesdgue types contribute to a
certain voxel. However, we decided not to focus on handliwg$and rather transform
our results into hard classifications for evaluation puesaafter algorithmic processing.

Similarly to, for instance, the method of Marroquin et alJéur method seems not to
be of high accuracy with respect to CSF estimation. This magdosed by the fact that
we consider the complete fluid filled space outside and inkidérain to be the CSF seg-
ment. It includes both the ventricular system as well as tifvasachnoid space. Especially
the segmentation of the latter may be subject to errorsraimig from imperfections of



2.5. Discussion 37

—— DMC-EM - --< - - HMRF-EM/Atlas/unary — = — HMRF-EM/Atlas ‘

1
0.9 Ao R o AT IN o
TR R e
0.8 A ? /.1 e O
07 Y+
2 A
£ 06 \&
[} N.G
<]
o 05 3
2 $
5 04
g 03
0.2
0.1
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Image Number

Figure 2.8: Achieved accuracy for WM segmentation in terms of the Dice coefficient for
the IBSR 18 data set by the DMC-EM algorithm, the HMRF-EM algorithm
with probabilistic atlas-based unary clique potentials and probabilistic atlas
based initialization, and the HMRF-EM algorithm with zero-valued unary|
cligue potentials and probabilistic atlas-based initialization.

the initial skull stripping procedure. However, our methedarried out completely auto-
matically without any user interaction. Results for CSF sagatéon might be better if a
“perfect” initial skull stripping was assumed.

With regards to INU correction our method suffers from thensdimitations as the
method of Wells et al! [119] does due to the fact that it forhesthiase of our approach. In
a broader context, focusing on the method of Wells et al.[[t4® be seen as an exem-
plary choice. Other more robust techniques that paranadifriconstrain estimated INU
fields might in fact benefit in an equal manner if they were esdlee in our modality-
specific discriminative model-constrained HMRF-EM approde@MC-EM is comparable
fast when compared to other state-of-the-art approachies takes only a few minutes to
process a data volume. The system presented in this chaygemdt address sub-cortical
segmentation but we will come back to this issue in Chdgter #.th@ other hand, any
generic state-of-the-art approach to organ segmentaiibprafit significantly from class-
wise intensity standardized and INU corrected MRI input vods.
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2.6 Conclusions

We have presented an MRI modality-specific discriminativedetaonstrained HMRF-
EM (DMC-EM) approach to brain tissue segmentation and INUremiron in multi-
spectral 3-D MRI. The major contribution of our work is a sigodiscriminative model
obtained by a PBT classifier that is integrated into the fraotkwhy means of unary
cligue potentials in a mathematically sound manner. Theridmsnative model used is
MRI modality specific as it only relies on features of reducltl Isensitivity taking into
account the particularities of the MRI modality. As expenmtadly validated the choice
of features prevents our method from being tied to a padicatquisition protocol at a
specific site or scanner. Detailed quantitative evaluat@mpublicly available benchmark-
ing databases demonstrate this increased robustnessapnaach. At the same time the
segmentation accuracy achieved is comparable to thosberf state-of-the-art approaches
to brain tissue classification in MRI data.

In the following chapter we will see how discriminative médenstrained MRF mod-
eling and appropriate optimization techniques can be usatsb address the problem of
segmenting pathologic tissue types in multi-spectral 34®iMages of the human brain—a
common problem in neuroradiology that has not been corsidier this chapter. Patho-
logic tissue is typically characterized by a high varidpiboth in appearance as well as in
shape and only occurs in patients suffering from a specifieatie.
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Method | Tissue Class Dice Coeff. | Jaccard Coeff.
DMC-EM WM 0.93+0.03| 0.87+0.05

GM 0.91+0.05| 0.83+0.07

CSF 0.76+£0.04| 0.61+ 0.05
Bricq et al. [13] WM 0.95+4+ 0.02 -

GM 0.95+ 0.03 -

CSF - -
LOCUS-T [93] WM 0.94 -

GM 0.92 -

CSF 0.80 -
FBM-T [94] WM 0.94 -

GM 0.92 -

CSF 0.80 -
Bazin and Pham [6] WM 0.94+ 0.01 -

GM 0.92+ 0.02 -

CSF 0.92+ 0.01 -
Ashburner and Friston [4] WM - -

GM 0.92 -

CSF - -
Marroquin et al. [74] WM 0.93+0.03 -

GM 0.92+4+ 0.03 -

CSF - -
Awate et al. [5] WM 0.95+ 0.01 -

GM 0.91+0.01 -

CSF - -
van Leemput et al. [113] WM 0.90+ 0.03 -

GM 0.90+ 0.02 -

CSF - -
HMRF-EM [129] WM - -

GM 0.89 -

CSF - -

Table 2.5: Average segmentation accuracy for mono-spectral (T1-weighted) dedula
BrainWeb data of noise levels 1%, 3%, 5%, 7%, and 9%, and INUs of 2o a
40%. From left to right the columns contain the tissue class and the achiev
average Dice and Jaccard coefficients.

9%
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Label | COV | Org. COV ~ Label| COV | Org. COV  Label | COV | Org. COV

WM | 0.06 | 0.08 WM | 0.08 | 0.09 WM | 0.08 | 0.10
GM | 012 | 0.3 GM | 016 | 0.7 GM | 0.16 | 0.18
(@) (b) (€)

Table 2.6: Average INU correction accuracy in terms of the COV before and after |
correction for the mono-spectral BrainWeb data set (a), the IBSR bg&s
data set (b), and the IBSR 20 Normal Subjects Data set (c).

Method | Tissue Class Dice Coeff. | Jaccard Coeff.
DMC-EM WM 0.81+0.09| 0.69+0.12
GM 0.82+ 0.06| 0.71+ 0.08
CSF 0.83+0.05| 0.71+ 0.07
Akselrod-Ballin et al. [1] WM - 0.67
GM - 0.68
CSF - -
Marroquin et al. [74] WM - 0.68
GM - 0.66
CSF - 0.23
Ashburner and Friston [4] WM - -
GM 0.79 -
CSF - -
HMRF-EM [129] WM - -
GM 0.76 -
CSF - -
Table 2.7: Average segmentation accuracy for IBSR 20 with exclusion of data set No
1 that has been used for training. From left to right the columns contain the
tissue class and the achieved average Dice and Jaccard coefficients.
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Method || Label | Dice Coeff. | Jaccard Coeff.
DMC-EM WM 0.87+ 0.05 (0.884+ 0.01) | 0.774 0.06 (0.79+ 0.02)
GM 0.83+ 0.12 (0.864+ 0.04) | 0.73+ 0.13 (0.764 0.06)
CSF | 0.76+ 0.09 (0.77+ 0.08) | 0.62-+ 0.11 (0.63+ 0.10)
Bazin and Pham [6] WM 0.82+ 0.04 -
GM 0.88+ 0.01 -
CSF - -
Akselrod-Ballin et al. [2] WM 0.87 -
GM 0.86 -
CSF 0.83 -
Awate et al. [5] WM 0.89+ 0.02 -
GM 0.81+ 0.04 -
CSF - -
Bricq et al. WM 0.87+ 0.02 -
GM 0.80+ 0.06 -
CSF - -

Table 2.8: Average segmentation accuracy for IBSR 18. From left to right the cadumn
contain the tissue label and the achieved average Dice and Jaccditlemutsf

for all the data sets and for data sets 1-9 and 11-18 with outlier data set [LO

removed in brackets.
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Chapter 3

Fully Automated Pediatric Brain Tumor
Segmentation in 3-D MRI

In this chapter we present a fully automated approach to ¢gensentation of pediatric
brain tumors in multi-spectral 3-D MRI images. It is a top-adosegmentation approach
based on an MRF model that combines PBTs and lower-level segtisenvia graph cuts.
The PBT algorithm provides a strong discriminative prior midthat classifies tumor ap-
pearance while a spatial prior takes into account pair-wsel homogeneities in terms
of classification labels and multi-spectral voxel intelesit The discriminative model re-
lies not only on observed local intensities but also on surding context for detecting
candidate regions for pathology. A mathematically sounchfdation for integrating the
two approaches into a unified statistical framework is givEime method is applied to the
challenging task of detection and delineation of pedidirain tumors. This segmentation
task is characterized by a high non-uniformity of both phaigg as well as surrounding
non-pathologic brain tissue. Despite dealing with more placated cases ogpediatric
brain tumorsthe results obtained in a quantitative evaluation are mdstter than those
reported for current state-of-the-art approaches to 3-D bH&in tumor segmentation in
adult patients. The entire processing of one multi-spedaita set does not require any
user interaction, and our method is about 20% faster thafaitest previously proposed
method. It takes only 5 minutes to process one volume seguealuding preprocessing.
The main contributions of this chapter have been publishedferenced [121] and [120].
Parts of the presented system have also been used in refed@@] and([124].

3.1 Motivation

Detection and delineation of pathology, such as canceliegse, within multi-spectral
brain MR images is an important problem in medical image\ams For example, a pre-
cise and reliable segmentation of brain tumors presentarcthldlike brain is regarded

43
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Figure 3.1: Two different cases of pediatric brain tumors exhibiting heterogendwases
and appearance. Columns (a) and (b) show axial slices of the typically
acquired pulse sequences (row-wise from left to right: T2-weightdd, T
weighted, and T1-weighted after contrast enhancement) and the expert
notated ground-truth overlaid to the T2-weighted pulse sequence.

critical when aiming for the automatic extraction of diagtically relevant quantitative
or more abstract findings. This may include the volume of timedr or its relative loca-
tion. Once these findings are obtained they can be used boglifting CAD and therapy
planning as well as for traditional decision making. Howetlee manual labeling of volu-
metric data is usually time consuming, which has the paétdidelay clinical workflow,
such that there is a need for fully automatic segmentatiots tim this particular context.
Furthermore, manual annotations may vary significantly ragrexperts as a result of indi-
vidual experience and interpretation.

As multi-spectral 3-D MRI is the method of choice for the exaation of neurolog-
ical pathology such as brain cancer in pediatric patientsyraatic approaches first have
to be capable of dealing with the characteristic artifaétthis imaging modality: Rician
noise [80], PVEsI[114], and intra-/inter-scan INUs [119].68econd and more impor-
tantly, they have to be robust enough to handle the heteemgmsnshape and appearance
of pediatric brain tumors in different patients (see Eid)3In the case of pediatric brain
tumors not only pathology underlies significant variatiorshape and appearance but also
the non-pathological “background”, which is caused by anganyelination of WM dur-
ing maturation[[78]. This may cause WM to appear darker ingeidi T1-weighted MRI
scans than in adult patient data sets.
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Discriminative Model-Constrained Graph Cuts

Pre-Processing:

1. BET Skull Stripping _| PBT Probability Graph Cuts _
2. Anisotropic Diffusion Filtering i Estimation | Optimization g
3. DHW Intensity Standardization T 7y
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Figure 3.2: The processing pipeline of the proposed segmentation method. Each set of
images schematically represents the input and/or output of individual pro

cessing steps.

In this chapter, we describe a fully automatic solution das® a novel top-down seg-
mentation scheme that uses a statistical model of pathadpggarance as a constraint
for a subsequent optimization problem. The statistical @hdgl provided by a machine
learning technique that is able to work with high-dimensidieature vectors allowing to
encode characteristic voxel contexts. The optimizatiarbjam itself is stated as a search
for an MAP estimate of the most likely binary image segmeomatvhich permits efficient
computation of a solution by means of a discrete max-flow/ouinhoptimization proce-
dure and is optimal in terms of Bayesian classification thedtye overall system block
diagram, including preprocessing (brain extraction [1@®hoothing, and MRI intensity
standardizatiori [29]) is depicted in Fig. B.2.
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3.2 Related Work

3.2.1 Preprocessing: MRI Inter-Scan Intensity Standardization

In general, MR images exhibit varying contrast charadiegsven though they were ac-
quired with an identical acquisition protocol but with afdient scanner at a different site.
With regards to the distribution of intensities within inesgdepicting the interior of the
human skull the associated histograms appear non-linéaftymed. These inter-scan
variations make image interpretation difficult as indiatlintensities lack a uniqgue mean-
ing regarding the underlying tissue type. This is espectalle with regards to automatic
Image post-processing like image segmentation that oftéawily relies on observed in-
tensity values when deciding on which tissue class a speafel of an image belongs
to. For this purpose several authors suggested approach®4Ril inter-scan intensity
standardization or normalization.

Nyudl et al. [81,[82] and Ge et al._[43] propose a two-step 1-Btdgram matching
approach. In the first step, parameters (percentiles, mette} of the reference histogram
are derived from a set of reference images. In the secondtbiege parameters are used
to map the histogram of a newly acquired MR image onto thereafe histogram by
matching specific landmark locations and linear interpohat

Jager and Hornegger [60] use a variational approach toteegiaultivariate PDFs in
the form of multi-dimensional joint histograms for estahiing intensity mappings for MRI
intensity standardization to multi-spectral templateges

In a similar manner, we try to find an intensity mapping betwaeeference image and
a newly acquired image by bringing the associated histogiato line with each other
during preprocessing. The method we use for histogramtragan is based on dynamic
histogram warping (DHW)_[29] from a technical perspectivéheTechnique is strongly
related to dynamic time warping (DTW)_[66], which is used feDlsequence compari-
son. However, we apply DHW to MRI volumes of the human brainrgteo to standardize
intensities and not for the purpose of achieving constaagerbrightness in 2-D images.
Later we will present a graph theoretic re-formulation af tiriginal dynamic program-
ming approach proposed by Cox and Hingorani [29]. For meagsimilarity between
histograms we adapted it such that the Kullback-Leibleedjence[[6]7] is minimized,
which is appropriate to measure PDF similarity.

3.2.2 MRI Brain Tumor Segmentation

Approaches in the field of MRI brain tumor segmentation rarely on pure data-driven
approaches, with Gibbs et al.'s method|[47] being an eartgption, due to the complex-
ity in terms of tumor shape and appearance of the segmemtatsi. The vast majority
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of methods make use of domain knowledge using differentstygferepresentation and
combine it with low-level imaging techniques. Fletcherdtteet al.[[39] use unsupervised
fuzzy clustering followed by 3-D connected components \aithintermediate step incor-
porating knowledge about the usual distribution of CSF amation of the ventricular
system. Ho et al[ [57] have the evolution of a level set fuorctjuided by a tumor proba-
bility map that is generated by exploiting higher-level domknowledge on how contrast
enhancement in T1-weighted images affects tumor appeardbarso et al[[26, 25] use
the multi-level segmentation by weighted aggregationrtigm with tissue class-specific
Gaussian mixture models for brain, tumor, and edema. Getiag [46] use trained para-
metric statistical models for intensity distributions aimpathologic brain tissue to detect
model outliers on the voxel level that are considered tunoxels in a multi-layer MRF
framework. In a similar manner Moon et dl. [76, 75] and lateasPawa et al. [87, 88]
detect outliers based on refined intensity distributiomhalthy brain tissue initially de-
rived from a registered probabilistic atlas, which introds structural domain knowledge.
Registration is also used in combination with voxel intaasiin the adaptive template-
moderated classification algorithm by Kaus et [all [64, 63Jor&lrecent approaches try
to enrich low-level segmentation techniques, like levéles@lution [21] or hierarchical
clustering [28], by using supervised machine learning @héi dimensional feature sets
associated with each image voxel. These feature sets aableapf representing a more
general variety of domain knowledge on different levelsludteaction. For instance, Zook
and Iftekharuddin[132] analyze the fractal dimension ofitw area versus non-tumor area
and show that this is a statistically significant indicator fumor appearance. Based on
this idea, Iftekharuddin et al. [58] use multi-resolutienture features generated by a com-
bination of fractal Brownian motion and wavelet multi-ragadn analysis together with
self-organizing maps. In a similar manner we make use ofdbently proposed technique
of PBTs [108] in combination with 2-D [83, 115] and 3-D Haatdifeatures [111] for su-
pervised learning, which has proven its robustness andjalility for efficient training
and classification in numerous applications 110, 18]. Bgfies of features are closely
related to 3-D Haar-like features of reduced INU sensitjwithich are explained in Chap-
ter[2 in more detail. The probability estimates provided BffRire then used to constrain
the highly efficient computation of minimum cufs [11] for ig@segmentation based on
an MRF prior model. It takes into account both coherence afsifigation labels as well
as multi-spectral intensity similarities within voxel gaborhoods.

3.2.3 Image Segmentation Using Max-Flow/Min-Cut Computation

In this chapter, we give an integrated formulation for camig PBT classification and
computation of minimum cuts. Opposed to other methods [[26.28,21] there is no
involvement of a time consuming bias field correction steplata preprocessing in our
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approach. In the case of Corso et al.l[26, (28, 25] this seems tibbe by FASTI[129],
which relies on an HMRF-EM segmentation approach. In thegoras of abnormal tissue
types this requires the determination of the number of iffeintensity regions expected
within each scan. Furthermore, this inherent low-levehsegtation might bias the final
segmentation result. In contrast we build discriminativedels, that is, PBTs, whose gen-
eralization capabilities are strong enough to implicithndle those intra-patient intensity
non-uniformities. Moreover, we apply our method to the mooenplicated task of seg-
menting pediatric brain tumors.

3.3 Preprocessing: DHW for Non-Parametric MRI Inter-
Scan Intensity Standardization

The problem of body region-specific mono-spectral MRI irgean intensity standardiza-
tion can be stated as follows: L&t = {1,...,V}, V € NyandW = {1,..., W},
W € N, bet sets of indices to image voxels, ahe- {0, ...,2° -1} be a set of gray scale
intensities with a given bit-depth € N. For two 1-D discrete PDFs; : Z — (0, 1] and
pg : Z — (0, 1], which are two histograms of equidistant bin size, of two MRlwnes
f = (f)iev, i € Z, (acquired image) ang = (g;)iew, 9; € Z, (reference image) of the
same body region acquired with an identical pulse sequendafmapping

u:Z—171 (3.1)

that make.s), u(f) = (u(f;))iev, “most” similar to the reference histograpy. For
simplicity letp = py andq = p,, andp, = p¢(v) andg, = p,(v) the corresponding values
foranyr € 7 in the following. Accordingly, letP, and@, be the values of the associated
(cumulative) probability distribution® and(@.

LetG = (V, E, a, 5) be a directed graph with vertices

V=A{(pwlv,pel} (3.2)

and edges

(v—rp—1),(,u)) [ 1<k<Mr<v<2—11<pu<2-1}U

E = {(v-1,p-1),(mp)|1<v<2"—1,1<p<2—1}U
{
{((v=10=N),(p)|[1<v<2P—1L1<ASNA<p<2"—1}.(3.3)

Herea(e) andj(e) denote the vertices where edgstarts and ends, respectively. The
weight of an edge, that is, the distance or dissimilaritydeetn two adjacent graph vertices,
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Figure 3.3: Partial schematic representation of the graph consideved= 2, N = 2)
and its relation to the initial discrete PDps= py andq = pg. The ver-
tices(v, ) € V of G are depicted as dots aligned in a quadratic scheme qof
maximum size? — 1 x 2° — 1. The edge¥ are depicted as arrows.

can then be defined as a mappihg £ — R representing the non-negative summands of
any with respect the number of bins monotonic additive yirbim histogram dissimilarity
measure. The dissimilarity measure is implicitly applieddeformed versions gf and

q where for an edge = ((v — x,u — 1), (v, u)) an amount ofx successive bins gf

are contracted. In an equal manner an eelge ((v — 1, — ), (v, ) represents the
contraction of\ successive bins af, which corresponds to the uniform expansion of one
bin of p. This vice-versa relation is of particular interest as wentnta deformp non-
linearly to matchy, which can be achieved as follows: due to the specific stracti; a
shortest patiw = (ey, ..., e;) along verticegv,, . .., v.1) from (0,0) to (2> — 1,20 — 1)

can be computed efficiently via dynamic programming. Thiggj on the one hand, the
minimum distance)(p', ¢') = Zle d(e;) of deformed histogramg andq’ achievable at
the given constraintd/ and N, and, on the other hand, the associated mapping that makes

p most similar tog. The corresponding assignment fois then
u(v) = Wéz)(vi+1) for 7r§2) (v;)) <v< 7T§2)(Ui+1),z' e{l,...,t}. (3.4)
Herer!” : T x T — T with 7{” (v, ) = p for all v, u € T denotes the projection on

the second component of a two-dimensional vertex. Analslgomf) Is the projection on
the first component of a two-dimensional vertex.
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Note that the parameters and N serve as smoothness constraints as they steer al-
lowed deformation relative to the major diagonal of the utyleg graph scheme (see
Fig.[33).

Possible dissimilarity measures (see Rubner et al. [92]dtail$) involve the simplest
Minkowski-form distanceDy, (p,¢) = >, |[p» — ¢.| where the edge weight would be

dp, (v = r,p = A), (v, 1) = [(Py = By) = (Qu = Qu-n). (3.5)

It is also possible to use the discrete Kullback-Leibleedjence in its symmetrical form
Dgr(p,q) =>,(p» — qv) - log(p./q,) with according edge weight

(v = 0= 20, 0400) = (8= Pars) = (Qu = Que) o ( 2= ) (39)
Qu — Qu-»

Both distances are additive, i.e., separable, and monotatficrespect to the number of
bins of the two input histograms considered. Monotonigtgmnsured due to the fact that
the summands involved are strictly non-negative. Seplgsabind simultaneous mono-
tonicity state the precondition for making distance measw@pplicable in the context of
dynamic programming. Other dissimilarity measures like,ifistance, the earth mover’s
distance (EMD)[[92], may better match the intuition of dissarity between different
PDFs. However, their computation is usually more complaktaerir separable and mono-
tonic reformulation may be non-trivial or even impossible.

Fig.[3.4 shows exemplary results for several volumetrigrbkéR images. For all the
experiments we restricted intensity standardization &nbsoft tissue only in order to pre-
vent background voxels from dominating the standardingtrocess and therefore achiev-
ing sub-optimal results. Skull stripping was achieved bgppocessing the data sets with
FSL BET [100]. Likewise, the background can also be excludediimple thresholding
methods.

3.4 Segmentation Method

Our segmentation method relies on the integrated fornmraif an objective function that
is subject to optimization via the efficient graph cuts aitpon [11]. In the following we
derive this objective function from the general MAP framekvfor image segmentation.

3.4.1 Posterior Mode Image Segmentation

In general, the problem of segmenting an image can be statdteasearch for an MAP
estimate of the most likely class labels given appropriai@ @nd observation models in
terms of PDFs. LeS = {1,2,..., N}, N € N, be a set of indices to image voxels. At
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(b) and associated histograms with 256 bins (c). All images displayed
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each indexs € S there are two random variableg;, € Y = {+1,—1} andxz, € X =
RM, M € N. The formery,, denotes the unobservable binary segmentation of voxéd
fore- and background, whereas the lattey, states the observable vector of multi-spectral
intensities that are assumed to be causally linked to thenlyidg class labelg € ) by

a unified observation model defined by a Pp&|y) for z € X. The emergence of the
class labels themselves is described by a prior mpdgl The segmentation task at hand
can now be stated as the search for an MAP estimate

YY" =arg max p(Y|X) (3.7)

wherep(Y'| X)) is the joint posterior probability over the image domd@nwith Y =
(ys)ses and X = (x4)ses. Using Bayes’ rule and the independencep@X) from Y,
we have:

YY" = arg mlz}xlnp(X|Y) +Inp(Y). (3.8)

To concretize this optimization problem a region-specifichability term and an appro-
priate prior need to be identified.

3.4.2 Histogram-Based Observation Model

We assume the multi-spectral observations to be indepd#gderd identically distributed
(ii.d.), thatis,p(X|Y) = [[,cs p(xs|ys). The PDFs for that are estimated during segmen-
tation via histograms by understanding an initial PBT voxassification as intermediate
segmentation that is close to the final result.

3.4.3 Discriminative Model-Constrained MRF Prior Model

For the prior distribution we assume an MRF prior model
1
p(Y) ocexp(=U(Y; 7)) (3.9)

formulated, according to the Hammersley-Clifford Theorasia Gibbs distribution with
energy function

sES teNs

where with \ € (0, +00) controls the relative influence of the spatial prior, i.bg pair-
wise clique potentials, over the external influences,the.unary clique potentials. The set
N, describes the neighborhood of voxelAs done in Chapter 2 we ignore higher-ordered
clique potentials.
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The unary clique potentialg;(y,) are provided by a PBT classifier. As described in
Appendix(A the PBT provides an approximatipfy,|z;) of the true posterior probability
p(ys|zs) at its root node for feature vectots associated with individual voxels Here
ys € {—1,4+1} denotes the classification outcome, that is, backgrounaregfound.
Thus, we have

Vi(ys) = Inp(ys|zs). (3.11)

For our first experiment, the feature vectersused for PBT classification consist of
individual multi-spectral intensities, inter-channetansity gradients, and 2-D Haar-like
features([88, 115] computed on an intra-axial 2-D contexioaunding the voxel of interest.
The Haar-like features are derived from a subset of the detiset of Haar-like feature
prototypesl[[70] and are represented only implicitly in meyray (rotated) integral images.
This allows fast re-computation of the features with respe@ given voxel when they
are actually assessed. As we intend to capture a discrivenapresentation of the full
2-D context, and not only of local edge characteristics atcdntral voxel, 2-D Haar-like
feature values are computed according to the given proéstgnm every valid origin and
scale within the chosen voxel context.

For our second experiment, the feature vectarsised for PBT probability estima-
tion consist of individual multi-spectral intensities amullti-spectral 3-D Haar-like fea-
tures [108] computed on a 3-D context surrounding the vokéhterest. The Haar-like
features are derived from a set of 3-D Haar-like featuregtypes centered at the voxel of
interest and are held implicitly in memory by means of insggolumes. Equally to the
2-D case, the features are re-computed on-the-fly when tieegcaually assessed.

Similar to what is done in Chapter 2 the pair-wise interacpotentials are

L
1 (275 — Ty )2 5(ys yt)
Vi (s, i) = - IL/VAR ’ 3.12
t(Ys, yi) = exp ( 2 lz:; o? dist(s, t) ( )
where vectorse, = (v, ..., 7, )" andz; = (z4,,...,;, ) denote the observed intensi-

ties at voxelss andt taken fromL € N aligned input pulse sequences.

3.4.4 Discriminative Model-Constrained Graph Cuts Segmentation

With the equality

Y = argm&lenp(iBJ?Js) ‘l’ZVs(ys - %Z
€St

seS seS

st ysa yt

MM ZM

= argm}in (Z =X (Inp(xslys) + Vi(ys) > ZN st (Ys, ye) (3.13)

seS
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the initial maximization problem can be transformed intoiaimization problem that is in
a suitable form for optimization by the graph cuts algoriffii]. Note that the reciprocal
of the regularization parameter in (3110) can equivalebdyused to weight the influence
of the external influences in combination with the obseorathodel over the prior model.

To

\
C

Figure 3.8: Example of a max-flow/min-cut problem instance with its associated ex
tended graph. Vertex denotes the source node and vertdke sink node.
The flow value on edgey = (¢,s) is about to be optimized. The edges
of a possible cut separating the green from the red vertices are did@aye
dashed arrows.

The graph cuts algorithm [11] originates from the family ofxrflow/min-cut algo-
rithms within combinatorial optimization theory. They che used[[1/, 52] to minimize
energies of the form

E(Y) = Z Ds(ys) + Z Z Vtst(y&yt)' (314)

seS s€S teNs

In our case the data penalty function is given by
Ds(ys) =—A- (lnp(:l:5|ys) + ‘/s(ys)) (315)

whereas the interaction potentidlg remain unchanged.
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[¢)

Figure 3.9: The rendered result for patient No. 1 overlaid on the T2-weighted puls
sequence. Due to the coarse axial resolution the extracted surfabedras
smoothed [106] before rendering.

Let the graphM = (V,E) with verticesV = {vs]s € S} and edgest =
{(vs,v)|s € S,t € N} represent the associated MRF described before. The objec-
tive of any max-flow/min-cut computation is to find a maximurowflin the extended
directed weighted grapty = (V’, E’, ¢) where the set of verticeg’ = V U {s,t} is
extended by two terminal nodes—the source neded the sink node. The edges of
the graph ard?’ = E U { (s,v)|lv € V} U{(v,t)lv € V} U{(t,s)}, and the function
c: E'— RU{+o0} denotes the edge capacities. A flow is a functibnE’ — R with
S onyeviny s B0 1) = 3 ey Blvivy) for all v € V. Itis admissible with
respect ta: if and only if 0 < 3(r) < ¢(r) for all » € E’. The maximum flows* searched
for reaches the highest possible flow value on edge) among all admissible flows, that
is, 0* = argmaxg ((t, s). In accordance with Equation (3]13) the capacities are

V;](yz,yj) if (5 7£ s and % 7£ t,
c(vi,v;) = Djly; =—1) if v; =s, (3.16)

According to the theorem of Ford and Fulkerson the problerfinoing a maximum flow
Is equivalent to the problem of finding a minimum cut, whickigartitionC* = S* U T*,
S*NT* = Qwith s € S* andt € T, whose cosb . .,.cs.,er c(vi, v;) is minimal
among all possible cuts. Note that a minimum cost cut egentdl defines a globally
optimal binary labeling, that is to say, a segmentationhefdraph nodes. Fif. 3.8 shows
an exemplary max-flow/min-cut problem with its associateapg.

Boykov and Kolmogorovi [11] identified two categories of comdibrial optimization
algorithms for this kind of problem: 1) Goldberg-Tarjanlstypush-relabel” algorithms
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and 2) Ford-Fulkerson style “augmenting paths” algorithifagher type has polynomial
time complexity.

In “push-relabel” algorithms [48] there are active nodeg g excess flow, i.e., inflow
that has not yet been explained by an appropriate outflow teighhoring node and its
connections to the sink node. During optimization for eveogle a heuristic is kept that
gives a low bound estimate on the cost to reach the sinkrggaitom that point along
non-saturated edges. In the course of computing the maxiffttunthe excess flows are
stepwise propagated to nodes being closer to the sink natler@gards to the estimated
distance. This so-called push operation is typically aggpto active nodes with the highest
estimated distance to the sink node or based on a FIFO selesttategy. Alternatively,
the heuristic value of a node can be updated in a relabel bperaBoth operations are
applied as long as the accompanying preconditions are met.

In “augmenting paths” algorithms [40, 136,132] the overallwfln the graph is suc-
cessively increased along augmenting paths in the sodcad@dual graph, which stores
information about the remaining available capacities m letwork. This is repeated as
long as there are such augmenting paths. In the beginniredide capacities in the resid-
ual graph are equal to those in the original graph and theretiany flow from the source
to the sink. In each iteration it is searched for a path [4Q§twrtest path [36, 32], in the
sense of the amount of edges involved, from source to sirtk@mesidual graph. If such a
path is found the algorithm augments the overall flow in thgvoek by increasing it along
the involved edges such that at least one of the edges in thaspeompletely saturated.
Accordingly, the remaining capacities along the augmerpiaith are decreased by exactly
the same amount in the residual graph. Saturated edgestarensidered any further.

Formally, the residual graph associated with G and an advtesBow [ is defined
asGg = (V,Ej) whereEj, = {e'le € E'\ {(t,s)},0(e) < cle)}U{e e € £\
{(t,s)},8(e) > 0}andri?(e!) = 7% (e) andri? (e!) = 7 (e), andn'® (e1) = 7 (¢)
andr{? (1) = 71?(e) for all e € E'. An augmenting path is a path= (¢!, ..., e),

k € N, in G with the following properties: (1x\* (¢l!) = s, e1 # (t, 5), andr{? (%) =
tyer # (t,5), (2) Vis,=18(ei) < c(e;), and (3)Vi5,=—18(e;) > 0.

While the Edmonds-Karp_[36] or Dinid_[82] algorithm use brdafirst search to
completely rebuild the tree of shortest pathsGp from time to time, Boykov and Kol-
mogorov [11] integrated strategies to decrease computétiee used for this expensive
operation to a minimum (see Algorithih 2). In step 1 of thegaaithm two search trees
are used, one from the source and the other one from the sy dre reused to find an
augmenting path in every iteration, and never completdduyite In step 2 the current flow
is increased along the found augmenting path. Accordirsgifyrated edges are removed
from the residual graph. Thus, the search trees may be siforests and some of their
nodes may become orphans, that is, the connections to thEnfpnodes are no longer
part of G5. In the adoption stage (step 3) the forests are tried to benrescted to form
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two search trees again. We refer to the original work of Boy&ost Kolmogorov[[11] for
details on the three steps involved.

Algorithm 2: Graph cuts algorithm
Input: extended directed weighted gragh an admissible flows
Output: minimum cutC* = S* U T* and a maximum flows*
begin

/I Initialize search trees

S—={shT—{th

/l Enter main loop
while true do
1. GrowsS or T to find an augmenting pafhfrom s to ¢;
if p emptythen
| break;
end
2. Augments onp;
3. Adopt orphans;
end

/I Return minimum cut and maximum flow
S*=8,T*=T,3*=f3
returnS*, T*, 5%,

end

The augmenting paths found in step 1 of Algorithim 2 are noessarily shortest aug-
menting paths. Therefore, the worst case time complexitighe Edmonds-Karp algo-
rithm (O(|V||E’]?)) and Dinic algorithm ©(|V'|?|E’|)) relying on this fact are no longer
valid. However, the cost of the maximum flowi(t, s) after rescaling capacities to integer
values is an upper bound on the number of augmentations aéadihe algorithm. Thus,
the worst case complexity ©(|V'|?|E’| - 3*(t,s)). Though no longer guaranteeing opti-
mal worst case runtime complexity the approach of Boykov aabi§gorov has proven
to significantly outperform other standard algorithms inaas experiments. [11]

3.4.5 Summary

In total, our approach to pediatric brain tumor segmentaten be summarized as shown
in Algorithm [3. We will refer to our algorithm as the discrinative model-constrained
graph cuts algorithm (DMC-GC).

3.5 Validation

3.5.1 Experimental Setup

For quantitative evaluation of the proposed method thene wex multi-spectral expert
annotated data sets of pediatric patients aged from 1 yehb anonths to 15 years and
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Figure 3.10: Segmentation results obtained by leave-one-patient-out cross validation for
a system using 2-D Haar-like features. The odd rows show selectesialice
the T2-weighted pulse sequences of the six available patient data sets. The
even rows show the associated segmentation results (red) and the-ground
truth segmentation (green) overlaid on the T2-weighted pulse sequence.
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Figure 3.11: Segmentation results obtained by leave-one-patient-out cross validation fo
a system using 3-D Haar-like features. The odd rows show selectesialice
the T2-weighted pulse sequences of the six available patient data sets. The
even rows show the associated segmentation results (red) and the-ground
truth segmentation (green) overlaid on the T2-weighted pulse sequence.
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Algorithm 3: DMC-GC algorithm

Input: (multi-spectral) MRI volumeX

Output: binary segmentatioly”

begin
PBT probability estimation for unary clique potentialsg$gquation[(3.711));
Fore-/background observation model generation basedresttbldp(+1|zs) > 0.5;
Computation of binary segmentatidf through optimizing Equatiori (3.13) via graph cuts
algorithm (see Algorithril2);

end

10 months available—among them four pilocytic astrocytenmame pilomyxoid astrocy-
toma, and one anaplastic astroblastoma. Each scan carfststse 3-D images acquired at
different pulse sequences (T2-weighted, T1-weighted, Tdrd/eighted after contrast en-
hancement). The resolutiond$2 x 512 x 20 with a voxel spacing of 0.460.45x 6.0 mn?.
Where necessary due to patient movement during image atgpithe pulse sequences
were co-aligned by means of the MedINRIA affine registratms {www-sop.inria.fr/ as-
clepios/software/MedINRIA). As mentioned above, all thgussnces were preprocessed
by the following pipeline: skull stripping by the BET [100]raglient anisotropic diffu-
sion filtering (www.itk.org), and MRI inter-scan intensittaadardization by DHW[29].
Note that all of the preprocessing steps involved, inclgdio-alignment, can be performed
fully automatically without any user interaction. We referAppendiXB for details on the
mask-based segmentation accuracy measures used in[Tdbsesl3B.P.

The PBT voxel classifiers built were restricted to a maximugptidef 10 with 10 weak
classifiers per tree node. The graph cuts optimizationgugladimir Kolmogorov's pub-
licly available implementatiori [11], is carried out on thiginal image resolution with
defined to be a standard 6-neighborhood on the 3-D imagedaifihe standard deviation
(01,...,01) for the interaction potentials if.(3.112) was estimatedmdfias “camera noise”
within manually delineated homogeneous regions througth@upatient volumes.

It takes about 1-2 minutes to process one of the multi-splddiR| volumes in a non-
optimized C++ implementation of our segmentation method Bujiésu Siemens Comput-
ers notebook equipped with an Intel Pentium M 2.0 GHz pramessd 2 GB of memory.
With the same hardware as above training one classifier tdda# 4 hours. Preprocessing
the images takes about 3 minutes so a total amount of 5 mirsuteeded for processing
one patient data set. In terms of total processing time othaoaeis therefore faster than
the method of Corso et al. [28], which is claimed to be fastestray current approaches
to fully automatic MRI brain tumor segmentation.

3.5.2 Quantitative Results Using 2-D Haar-Like Features

For our first experiment with 2-D Haar-like features we cdesed a voxel context of size
11 x 11 on volumes down-sampled to a voxel spacing ofx2Mx 6.0 mn¥. A leave-one-
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Data set| Dice | Jaccard Pearson

0.93| 0.87 0.93
0.93| 0.87 0.93
0.90| 0.81 0.90
0.96| 0.92 0.96
0.63| 0.46 0.67
0.85| 0.73 0.85
Average| 0.86| 0.78 0.87

U, WN PR

Table 3.1: Performance indices obtained by leave-one-patient-out cross validatian
system using 2-D Haar-like features for all of the examined data sets: |[Efo
to right the columns contain the achieved Dice coefficient, Jaccard deaffic
and Pearson correlation coefficient.

out cross validation on the patient data sets and their agaoying PBT models yielded
best average segmentation scores in terms of the Jaccdfidieaefor A € [0.1,0.5] such
that finally A\ = 0.2 was chosen for computing the results depicted in [Fig.]3.h0ord
der to remove small regions of false positive voxels onlyléingest connected component
of the graph cuts result is considered to be the final segrii@mtaWith Jaccard coeffi-
cients of0.78 + 0.17 the segmentation results are better than those publish€&bbyas
et al. (0.60)[[21] and, except for one case, in a similar raag¢hose of Corso et al.,
(0.85) [26] and (0.86).[28], who all work with adult patierdtd sets and partly on four
pulse sequences [28]. However, comparability of resultgriged because of different
characteristics between the data sets used by the mensoresdists, for example, pedi-
atric patients versus adult patients, additional usage@trexpressive pulse sequences,
presence of necrotic tissue within the tumors, restrictima certain histological type of
tumor, etc.

3.5.3 Quantitative Results Using 3-D Haar-Like Features

In our second experiment with 3-D Haar-like features we mared a voxel context of
size25 x 25 x 8 likewise on volumes down-sampled to a voxel spacing 0k2.0x6.0
mm?. A leave-one-patient-out cross validation on the data aetstheir accompanying
PBT models yielded best average segmentation scores in tértihhe Jaccard coefficient
for A € [0.03,0.06] such that finallyA = 0.05 was chosen for computing the results
depicted in Figd. 319 and 3111. With an average Jaccard cieeffiof0.81 & 0.05 (see Ta-
ble[3.2) the segmentation results are better than thosespallby Cobzas et al. (0.60)[21]
and Wels et al. (0.78) [121] and in a similar range as those ascet al., (0.85)[26] and
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Data set|| Dice | Jaccard Pearson

1 0.93| 0.87 0.93
2 0.92| 0.85 0.92
3 0.87| 0.78 0.88
4 0.89| 0.81 0.90
5 0.89| 0.80 0.89

6 0.85| 0.73 0.85
Average| 0.89| 0.81 0.90

Table 3.2: Performance indices obtained by leave-one-patient-out cross validatian
system using 3-D Haar-like features for all of the examined data sets: [Efb
to right the columns contain the achieved Dice coefficient, Jaccard dgeeffic
and Pearson correlation coefficient.

(0.86) [28], where some methods [21) 26] work with adalignt data sets and partly
on four pulse sequences [28].

3.6 Discussion

The most limiting aspect for the method presented arises ftee variety in tumor ap-
pearance. Whereas non-pathologic tissue types usuallg shather regular appearance
pathologic tissue types such as pediatric brain tumors dopaihologic vascularization
may or may not be involved. There can be multiple cysts with@pathologic complex,
which are typically filled with CSF complicating dissociatiof the ventricular system.
The presence of the tumor may have led to the formation of amadsurrounding pathol-
ogy. Finally, parts of the tumor may already have becomeatieccontributing another
possible manifestation of tumor tissue. An appropriateeapgnce model would have to be
capable of anticipating any of these possible tissue typkgh was only possible for our
system through building more general models based on arlargeunt of training data
better capturing variation of tumor appearance. In cotittae standard composition of
the healthy brain follows certain regularities, which isaatfour system, as presented in
this chapter, does not take into consideration more exigli¢iowever, we could show by
experimentation that our discriminative model is able fotaee the heterogeneous appear-
ance of pediatric brain tumors and non-pathologic backgiouhen appropriate training
data is given.

Similarly as with tumor appearance, expert users may uaelift annotation protocols
depending on the purpose of their computer-aided radicébgiecision making. These dif-
ferences in protocols may cause difficulties for fully auédim brain tumor segmentation.
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For an initial characterization of the disease at hand thelevpathologic complex is of
interest and tumor surrounding edema can give a clue in iexpdpcertain neuropatholog-
ical symptoms. For image-guided surgery or radiotheragyredand the cystic portion of
the tumor are merely of secondary interest. Further deiimeaf the pathologic complex
into different parts, for example, cystic portion, neccgtiortion, and solid tumor tissue,
may be of additional value.

With regards to preprocessing, while inter-scan intensiy-uniformities are ad-
dressed by means of DHW, our approach lacks an appropriatéon®al with intra-scan
intensity non-uniformities. As seen in the previous chaptany of the methods, includ-
ing the one presented there, assume the brain not to be thbgdeew tissue types, which
will necessarily be the case if it comes to a brain tumor. Tres@nce of non-foreseen
tissue types may also affect the distribution of intensjtend the assumption that the his-
togram of the acquired image is a deformed version of thediam of the standardization
template may no longer hold. In such cases DHW, or any othéodresm registration
technique, is likely to give suboptimal results.

In the approach presented in this chapter, the discrirv@atiobability estimates are
generated for every voxel regardless whether its classdits critical, that is, it is close
to the tumor boundary, or not. Typically, one is more intezdsn an accurate delineation
along the boundaries of the pathologic tissue rather théreipure classification into fore-
and background voxels. Evaluating every voxel can beconustiycoperation as soon as
the data considered has a higher axial resolution. In thée,daowever, the 3-D context
will be much more distinct, which may allow to build strongkscriminative models based
on 3-D Haar-like features.

Even though solutions to those limiting factors could notaloelressed in the scope
of this chapter and for the introduced system, the used rdetbgy of discriminative
model-constrained graph cuts optimization for pediatrairbtumor segmentation in 3-D
MRI shows how discriminative and generative modeling candrelined. The improved
mathematical representation given clearly identifies treyiclique potentials of the MRF
prior model as the key concept for imposing external comggdrom a strong discrimi-
native model on the segmentation process. The segmentatdem itself is modeled
as a Bayesian classification problem, which by its nature sttifivolves generative mod-
eling. Previously, we intended to use the discriminativedeldirectly as observation
model. [121]

Furthermore, the application of a proven optimal algoriflemoptimizing the derived
objective function representing the segmentation proljjeevents the method from be-
ing attracted by local minima—a problem generally faced gdgnt descend methods
whose derivation rely only on a necessary but not sufficientltion for optimality of the
solution. However, any method, optimal or approximative,dptimizing MRF posterior
probabilities in the form of Equatiof (3.113), for exampleM [9] as used in Chaptél 2, can
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replace the chosen optimization strategy from a practicaitf view. The generic nature
of the discriminative model-constrained graph cuts apgrgaesented in this chapter may
also allow the approach to be applied in domains other thdrape brain tumor detec-
tion and segmentation. As shown by our experiments muécspl input data can easily
be brought in the process of discriminative model genemabip pulse sequence specific
(Haar-like) features. In fact, it can be taken advantagengf‘alues” for classification at
the level of individual voxels.

We did not try and use any shape model like it will be done in @dd for deep
gray matter structure detection and segmentation, whictlidvadeed be inappropriate for
brain tumor segmentation due to the high irregularity of oty tumor appearance but
also tumor shape.

3.7 Conclusions

The contribution of this chapter is threefold: we presermtegaph theoretic reformulation
of DHW and applied it to the preprocessing problem at hanat, i) MRI inter-scan in-
tensity standardization. Then, starting from the wellakndVIAP framework for image
segmentation we derived a constrained minimization proldaitable for max-flow/min-
cut optimization via the graph cuts algorithm that incogies an observation model pro-
vided by a discriminative PBT classifier into the process gihsentation. Furthermore,
we successfully applied the method to the difficult problenfuly automatic pediatric
brain tumor segmentation in multi-spectral 3-D MRI. The expental results obtained
are mostly better than those recently published for fullpeatic brain tumor segmenta-
tion in adult patients.

In the following chapter we will come back to the problem ofjisenting the usual,
non-pathologic brain anatomy in 3-D MR images of the humaainbrWe will focus in
particular on the segmentation of (sub-)cortical GM sues. Chaptdrl4 naturally extends
ChaptelP from a conceptual point of view as we are now inteddsta finer decomposition
of the brain’s anatomy while we only addressed the commandisypes, which are GM,
WM, and CSF, beforehand.
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Chapter 4

3-D MRI Brain Structure Segmentation

In this chapter, we present a novel method for the automatiection and segmentation
of (sub-)cortical gray matter structures in 3-D MR imagedh® human brain. Essen-
tially, the method is a top-down segmentation approachdasehe recently introduced
concept of marginal space learning (MSL). We show that MSiuradly decomposes the
parameter space of anatomy shapes along decreasing legelsmetrical abstraction into
subspaces of increasing dimensionality by exploiting ipetar invariance. At each level
of abstraction, that is, in each subspace, we build strosgyidiinative models from anno-
tated training data, and use these models to narrow the @frgessible solutions until a
final shape can be inferred. Contextual information is intice! into the system by repre-
senting candidate shape parameters with high-dimenstec#drs of 3-D generalized Haar
features and steerable features derived from the obseoledhe intensities. Unlike most
approaches in the literature, we allow for inter-patiemémsity non-uniformities, typical
in MRI examinations, and handle them with a fast intensitpdtaidization strategy based
on DHW as itis also done in Chaptdr 3. Likewise, for the sakenahareased generaliza-
tion capability of the final system, we do not assume the stmbs spatially normalized
or skull stripped. Our system allows us to detect and seg@é¢sb-)cortical gray mat-
ter structures in T1l-weighted 3-D MRI brain scans from a vgrad different scanners
in 13.9 seconds, on average. In order to ensure compayatiilihe achieved results and
to validate robustness, we evaluate our method on two pyldiailable gold standard
databases consisting of several T1-weighted 3-D brain M&isérom different scanners
and sites. The proposed method achieves an accuracy bettemist state-of-the-art ap-
proaches using standardized distance and overlap meftiiiesmain contributions of this
chapter have been published in referencel[126]. A predecegstem has been described
in referencel[123].

69
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MSL 3-D Shape Detection and Inference
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Warping Detection Detection

Figure 4.1: The processing pipeline of the proposed 3-D shape detection andnicéere
method. Each image (detection and delineation of the left caudate) schemat-
ically represents the input and/or output of individual processing steps

4.1 Motivation

Currently, many scientific questions in neurology, like teealation of mechanisms affect-
ing generative or degenerative processes in brain deveopmequire quantitative volu-
metric analysis of (sub-)cortical gray matter structurekrge populations of patients and
healthy controls. For instance, atrophy in the presenceldfiiédmer’s disease consider-
ably affects morphology of the hippocampus. In additior) 3egmentation of various
deep gray matter structures facilitates image-basedcalngianning, therapy monitoring,
and the generation of patient-specific geometrical models imaging data for further
processing. As a result of unclear boundaries, shape caitypland different anatomi-
cal definitions, precise manual delineation is usually taoesuming and user dependent.
Moreover, typical artifacts present in MRI (Rician noise|[8YVEs [114], and intra-/inter-
scan INUs[[119] 60]) challenge the consistency of manuaheafions. Therefore, a sys-
tem for the automatic detection and segmentation of (satliyal gray matter structures
not only has the potential to increase segmentation cemsigt but also has the capability
of facilitating large-scale neuromorphological studies.

We propose a fully automatic method for the detection aneheation of the following
eight (sub-)cortical gray matter structures: the left aghtrcaudate nucleus, hippocampus,
globus pallidus, and putamen. Our method consists of twomnségps: 1) following an idea
of Jager and Hornegger [60], we standardize the observed M&isities by non-rigidly
aligning their histogram to a template histogram by meari3tdifV [29] (see Chaptéd 3 for
details); and 2) for each (sub-)cortical structure of ieg¢mwe detect and infer its position,
orientation, scale, and shape in an extended MSL frameW@®&,[131], which explicitly
integrates shape inference into the overall MSL formutatleig.[4.] depicts the complete
processing pipeline of the proposed method.
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4.2 Related Work

Recent method$§ 717, 109,/27] for (sub-)cortical gray matteccture segementation in 3-D
MRI make use of machine learning in a similar manner as we dadfolow a bottom up
approach ascending from the lowest level of abstractiat,ishthe level of individual vox-
els, to the level of complete anatomical entities. Note thatmethods mentioned above
require the input volumes to be spatially normalized befbessegmentation workflow can
take place, which is a step that is not present in our apprdaateferences [417, 109, 27]
a partly manually initialized nine parameter (translationentation, and anisotropic scal-
ing) registration is part of the systems presented. Alsaféature pools for discriminative
model generation are usually enriched by features explieitcoding normalized loca-
tion. [774,[109] In accordance with this observation, Tu efEDS] and Corso et al [27]
only evaluate on spatially normalized data sets from one tfgMRI scanner that are not
publicly available. Nevertheless, Morra et al.[[77] repstdte-of-the-art results on data
sets that were not subject to spatial normalization.

Alignment of a probabilistic atlas by means of an twelve psater affine registration
also plays an important role in other approaches[[94, 2]. ®Mhilreference [94] quanti-
tative evaluation is only carried out on simulated data,ntteghod of Akselrod-Ballin et
al. [2] is trained and evaluated on only one publicly avddatataset that has been subject
to a specific preprocessing including intensity standattn. By generating observation
or discriminative models based on intensity values witheylicitly allowing for inter-
scan intensity variations [7[7, 109,127, 2], the models atbatisk of being over-adapted
to specific contrast-characteristics of the data at handravit al. [77] repudiate this con-
ceptual objection by achieving a high segmentation acguwadata sets whose intensities
were not standardized. In turn, Pohl et @l.|[85] take intamaot intensity inhomogeneities
in their statistical framework for combined atlas registna and segmentation but do not
provide details on whether the data sets used for evaluatintain varying intensity char-
acteristics, that is to say, come from different scannetssdres. Bazin and Pham![6],
presenting an atlas-based segmentation that combine®gigal and statistical atlases,
evaluate their method on a larger variety of publicly aV@d#adata sets, amongst them the
ones we use for validation of our system.

From a technological point of view our approach is relatethfollowing methods:
Zheng et al.[[130, 131] were the first to introduce MSL and wjitb automatic segmen-
tation and geometrical modeling of the four heart chambers f3-D cardiac CT volumes.
Further developments and derivations of the methodologysed for polyp detection and
segmentation in 3-D CT colongraphy [73], liver segmentatio8-D abdominal CTI[71],
and semantic indexing of fetal anatomies from 3-D ultraso[d?,[19]. It is also applied
for tracking the left heart ventricle in 4-D ultrasound sences([12]7] and the aortic valve
in 4-D CT sequences [59].
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4.3 Method

4.3.1 Combined 3-D Shape Detection and Shape Inference

For combined 3-D rigid anatomy detection and shape infereme use a method based
on the concept of MSLL[130, 131]. We estimate the structurentafrest’s centee =
(c1,co,c3) € R3, orientationR € SO(3), scales = (sy, s9,53)7 € {s e R¥|s; > 0,i =
1,2,3}, and shape: = (z1,y1,21, -, Tn, Yn; 20)’ € R3™. The shape consists of canoni-
cally sampled 3-D points; = (x;,v;, z;)%,i € {1,...,n}, on the surface of an object to
be segmented. Note thRtis relative toc, s is relative toc and R, andx is relative toc, R,
ands. LetV ={1,2,..., N}, N € N, be a set of indices to image voxel,= (y,).cv,

v, € {—1,1}, a binary segmentation of the image voxels into object andaligect vox-
els, andf be a function withY” = f(I, ®) that provides a binary segmentation of volume
I using segmentation paramet&®s= (c, R, s, x). Let Z = (zg) be a family of high-
dimensional feature vectors extracted from a given inplume I = (i, ),c, and associ-
ated with different discretized configurations®f In our contextZ includes voxel-wise
context encoding 3-D generalized Haar-like features|[144¢ Chaptdr 2) to characterize
possible object centers and steerable featlires [130, h@ihte capable of representing
hypothetical orientations and optionally scaling relatie a given object center or shape
surface point. These features were chosen for our meth@ibeof their fast computation
and effective representation as demonstrated in refesd@®dé, 131].

We search for the optimal parameter vector
0" = argmgxp(y =10,1, M®) = argmgxp(y =12, M®) (4.2)

maximizing the posterior probability of the presence, thay = 1, of a sought anatomy
given the discriminative modé¥Z(® and the feature& extracted from the input volume
I using a certain set of values for the paramers

Letr(9(Z), nleR)(Z), nleBs)(Z), nleRs2)( Z) denote the vectors of components of
Z associated with individual groups of elemefs, (¢, R), (¢, R, s), and(c, R, s, x)
of the parameter vectd®. The MSL method avoids exhaustively searching the high-
dimensional parameter space spanned by all the posSitig exploiting the fact that
ideally for any discriminative model for center detectioithaparametersVf(® working
on a restricted amount of possible features

¢ = argmaxp(y = 1|79(Z), M) (4.2)
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Figure 4.2: Invariance ofc € R? under relative reorientation, relative anisotropic rescal-
ing and relative shape positioning.

holds, as the object center is invariant under relativeieaetation, relative rescaling, and
relative shape positioning. Similarly, we have

R* — argm}%xp(y — 1’7T(C*7R)(Z),M(C’R)) (43)

for combined position-orientation detection with modetgraetersM (™ where only
featurest(¢(Z) with ¢ = c* are considered. This is due to the fact that position and
orientation are invariant under relative rescaling andtiet shape positioning. Equations
(4.2) and[(4.B) are illustrated for the 2-D case where R? and R € SO(2) in Figs.[4.2
and4.B. Analogous considerations yield

s* = argmax p(y = 1|7(¢"F9(Z), M) (4.4)
for the object’s scaling, and

x" = argmax p(y = 1|7T(C*’R*’s*’w)(Z), M (eRszy.2) M(C’R’S’m)) (4.5)

for the object’s shape wher®f (%% gre the parameters of a local shape model with
respect to individual surface points, y, 2)” and parameterd/ (e.R.s2) represent a global
shape model.

Equations [(4]2)£{415) naturally set up a chain of discratie models exploiting
search space parameter invariance for combined 3-D shapetida and shape inference.
It allows us to apply different discriminative models destieg along geometrical abstrac-
tion as, in our framework, the object centealone is the most abstract and the complete
set of parameter® is the least abstract shape representation. Therefore,ddtablishes
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Figure 4.3: Invariance ofc € R? and R € SO(2) under relative anisotropic rescaling
and relative shape positioning.

a hierarchical decomposition of the search space alongdsiog levels of geometrical
abstraction with increasing dimensionality of the consedegparameter subspace.

4.3.2 3-D Shape Detection: Similarity Transformation Estimation

Let Z be the set of annotated image volumes in their transformedife representation as
mentioned above. We will refer t8 as the training data. In order to find the first parts of
the optimal parameter vect®™ describing a nine parameter similarity transformatioat th
is,c* € R*, R € SO(3),ands* € {s € R¥|s; > 0,7 = 1,2,3}, we have to learn dis-
criminative modelg(y = 1|7¢(2Z)), p(y = 1|x<"B)(Z)), andp(y = 1|z(¢F9)(Z)).
Following the concept of MSLL[130, 131] we generate a set aitp@ and negative train-
ing example = {(7(®(Z),y)| Z € Z} to train a PBT model [108] for position de-
tection. The feature vectors®(Z) consist of 3-D generalized Haar-like features [111]
encoding the voxel context of candidate object centersdbaseobserved intensity val-
ues. Decreasing the level of geometric abstraction we goakly train a PBT model
for combined position-orientation detection based on dereled set of training examples
G = {(re®(Z),y)| Z € Z} wherer(=®(Z), associated witlic, R) and an image
volume, is made of 3-D steerable featufes [130] 131]. ThHewalarying 3-D orientations
and 3-D scalings to be encoded in terms of aligned and saatlexsity sampling patterns.
Various 2-D steerable features encoding different 2-Drbattons and 2-D scalings with
respect to a 2-D point of interest are depicted in Eig. 4.4adcordance with this scheme,
steerable features are also used to finally train a PBT fomiunk parameter similarity
transformation detection based 6n= { (7(¢®%)(Z),y)| Z € Z} wherer(=R2)(Z) is
derived from(c, R, s) and the associated image volume.
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Figure 4.4: 2-D steerable features encoding different orientations and scalingsewith
spect to a 2-D point of interestc R? (a—c).

4.3.3 3-D Shape Inference under Global Shape Constraints

For the final object shape we further decompose
7_{_(c,R,s,:c)<Z) _ (W(C,R,S,Ii,yi,zi)(z)) A

wherer(eRszivi2)( Z) are the features associated with an image volume and individ
ual relatively aligned candidate points, R, s, x;, y;, z;) for the surface of the object of
interest. In order to apply discriminative modeling we assuthe(z;, v;, 2;)7 and corre-
spondinglyr(ef-seivi:2) ( Z) to be i.i.d. and approximate

rF = arg maxp(y _ 1|W(C*’R*’s*’m)(Z), M(c,R7s,x,y,z)’ M(c,R,s,oc))
x

~ argmax | [ p(ys = 1[rle 7= z), plefan)
=1

‘p<$’C*, R*v 8*7 M(C7R787m)) (46)

in an iterative manner. The terp(y; = 1|r(©Bs2ivi2)(Z)) describes the probability
that the relatively aligned poirie, R, s, x;, y;, ;) is part of the shape to be inferred, that
is, lies on its surface, ang(z|c*, R*, s*, M(©®*®)) is a global shape model [24]. We
estimatep(y = 1|r(eRs2v:2)( Z)) with a PBT model[[108] using steerable features [130,
[131] trained ont’ = { (r(eBs29:2)(Z) y)|Z € Z}. An iterative approach to minimize
Equation [45) is suitable as, in practice,= (z1,y1, 21, -, Tn, Yn, 2n). € R3™ only
varies around the mean shape positioned relatively tq¢heR*, s*) detected before at
timet = 0 and the previous most likely anatomy shape in each iteratien, ..., T.
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4.3.4 Global Shape Model
Active Shape Models

The concept of active shape models (ASM) allows for priopghaformation during seg-
mentation. They have been proposed by Cootes et al. [23,r2#jelfollowing we explain
them in accordance with the presentation in reference [10B¢ shapes are represented
by clouds of points, which are either manually or automéigalaced at certain charac-
teristic locations within the class of images to be procgssence these sets of labeled
point features, or landmarks, are established for eachentagy are linearly aligned to
each other in order to remove translation, rotation, antirgcas far as possible. This is
done using generalized Procrustes analysis (GPA) [51kwisidescribed in detail in Ap-
pendixC. After GPA all the shapes are transformed to a commordmnate system—the
model space of the ASM. The remaining variability can be dbed as a prior model by
means of a point distribution model (PDM).

Point Distribution Models

Lety,,y,,...,yy, N € NT, be aligned shapes in the model space with sequences of
n € NT pointsy; = (2, Yiy, 2iyy - - Tiy s Yin» 20, ). € R¥ fori e {1,..., N }. The mean
shapey is given by

1 N
g=— . 4.7
U=~ 223 v, (4.7)
The associated covariance matrix can be computed by
S=_— Z(yz — )y —9)" (4.8)

Let

= (Y1 —9,..., Yy —9) € R¥N (4.9)

be the whitened design matrix of the shape population. Tkiar@nce matrix can now be
rewritten to
S=DD". (4.10)

Principal component analysis (PCA) by means of singularevdkcomposition (SVD)
of D = USVT with U = (u;j)iz1,. 3nj1,. .30 € R 8 = (04;)i=1, _anj=1..N €
RN and V' = (vij)ie1..nj-1,.8 € R yields the3n eigenvectorsu; =
(Ui, - usni) 'y i € {1,...,3n}, associated with eigenvalue$, > ... > o2 . of S
on the main diagonal aEX”. Using onlym € {1,...,3n} eigenvectors any shapgin

the training set can be approximated in shape space by
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y~ g+ Pb (4.11)

where P = (u4,...,u,,) is the matrix of them selected eigenvectors, artd =
(by,...,b,)T are the shape parameters. The value:ds chosen such that a sufficently
large portion of the total variance

N
=) 7 (4.12)
k=1

7« = o4, in the training data can be explained by the model. For m&taZheng et

al. [131] choosen such that- < 0.98. By varying the values ob different shapes can be
generated. Assuming a multivariate Gaussian distributierprobability for one particular
shapey is given by

p(y) = (W) : exp (—% Em; (:—)2> . (4.13)

So, restricting the shape parameters/big equal to setting the contribution of eigenvectors
uni1,--.,wy iN the shape space representation of the current shapeao Eeerefore,
for any given shape in shape space representation the lostegipe probability is increased
by this projection onto am-dimensional subspace of the shape space.

During model fitting a current shape in real space is deformed by a displacement
vectorAx = (Axy, Ay, Az, ..., Ax,, Ay,, Az,)T. In our case the displacement is gen-
erated by sampling candidate surface points along the naiesach shape point af in
a certain range. In order to apply shape constraints on theshaper + Az it has to be
transformed to the model space of the ASM such that it can jpesented via the mean
shape and a linear combination of eigenvectors similar teakgn [4.11). By means of
full ordinary Procrustes analysis (OPA) [34] (see Appeli@)xve obtain

(3, R,t) = arg min |§ — M(s, R, t)[x + Ax]|? (4.14)

where|ly|| = O 27 +y? + 22)z is the Euclidean norm. The operatbf(s, R, t)[z]
applies the similarity transformation associated withliagafactor s, orientationR, and
translationt to all points ofz. We are now able to transform the deformed shape into
the model space of the ASM yielding (3, R, #)[x]. Thus, the variation of the shape that
cannot be explained by the mean shape but, instead, needseixplained by the shape
parameters is

Pb= M3 R, t)x] -7 (4.15)
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as we wanij + Pb ~ M (3, R, t)[z]. The update of the shape parameters is then given by
b=PT(M(s, R, {)[x] — 7) (4.16)

sinceP” = P~'. By transforming back to real space we get the new shape testan

x' = M~Y(3, R, )]+ Pb]. (4.17)

Model Generation

Even though our approach relies on triangular meshes apgre@iate representation of
ground-truth annotations all the annotations we used fatehgeneration are only avail-
able as mask annotations. That is, they are representedwasesdata sets of exactly
the same size as the original volumes with all the voxelsléabeith respect to the (sub-
)cortical structure they belong to. In order to transformasth to mesh representations we
first use the marching cubes algoritim|[72] to construct digreampled triangular meshes.
Then, for establishing topologically meaningful pointr@spondences between individual
surface pointz;,, yi,, 2,)" and(x;,, yj,.2;,.)", k € {1,...,n}, of different shapes;
andx; by construction we canonically resample the resulting ekapthe following man-
ner: 1) For more spherical structures like the putamen omgtbbus pallidus we use a
spherical coordinate system to parameterize the orgaacgusimilarly to what is done by
Ling et al. [71] and Seifert et all [95]. Specifically, we defia functionS(v, ¢) € R3,

~v € 10,7, ¢ € [0,27) that canonically maps spherical coordinatesnd¢ to the surface
of a given shape with respect to its centesnd local coordinate systef®. The parame-
tersc and R are chosen to be the input mesh’s center of gravity and treneggtors of a
PCA applied to the mesh’s surface points, respectively. defre, the ranges of the zenith
angley and the azimuth angle are sampled uniformly and for any discrete configuration
the function values (v, ¢) is chosen to be the point where the ray

cOS ¢ sin 7y
g=c+ | singsiny |,A>0, (4.18)

cos 7y

intersects with the surface of the input shape; 2) for mdoalar structures like the caudate
nucleus or the hippocampus we also make use of the marchioeg @igorithm to generate
initial meshes from mask annotations. We defifg, ¢) € R?, ¢t € [0,1], ¢ € [0,27)

to parametrical resample mesh surface points with respeah tapproximated compact
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Figure 4.5: Spherical coordinate system with zenith anglend azimuth angle.

centerlinec(t) € R3, ¢ € [0, 1], and the local coordinate systefh For any discreté and
discretep the function valud'(¢, ¢) is set to be the point where the ray

cos ¢
g=c(t)+A[ sing |,A>0, (4.19)
0

perpendicular td/c(t) intersects with the surface of the input shape.

After shape generation all the shapes that are about to ddarsmodel generation are
registered to each other and transformed into a common it@dedsystem by means of
GPA as mentioned above.

For each structure the parametessR, t) for rigid shape detection are estimated based
on the resampled ground-truth shape annotatioslocal orthonormal coordinate system
is computed with orientatio#® and origint, which is the center of gravity, via PCA. The
anisotropic scaling factors are determined according to the maximum extensions of the
shape in predefined directions along the local coordinags.ax

4.3.5 Meta-Structure Detection

As pointed out by Zheng et al. [130] using MSL for rigid detentof each anatomy inde-
pendently is not by any means optimal. Intuitively, the poss of (sub-)cortical structure
relative to each other seem to follow a regular pattern. Titisition can be exploited
to speed up detection and delineation of multiple anatanesN < N* be the num-
ber of structures that are about to be detected. Their leigicad shape representation is
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-,

Figure 4.6: Composition of meta-structure for decreasing detection time.

shapgs;, R;, t;, X;)fori € {1,..., N } asintroduced above. We define a meta-structure
(3, R,1,X) with

X = (t1, by trgs -ty tvg, t) T (4.20)
and3, R, and{ estimated based o via PCA as before. The process of meta-structure
composition is exemplarily depicted in Fig. 4.6. The deiamtenables us to train a chain
of discriminative models for rigid meta-structure detentin exactly the same way as it is
done for rigid detection of any other (sub-)cortical graytteiastructure. Again using GPA
a population meta-structure mean shape can be computed daslee annotated training
data at hand.

Instead of iteratively adapting an initial shape, that l&e thean shape, after it has
been rigidly positioned according to the rigid detectior@sult (5", R f*), as done for
shape inference, the very initial estimate X is used to constrain subsequent position
detection steps for individual anatomies. Position d&iads then carried out exclusively
on candidate voxels that fall within a certain radius abbetmeta-structure mean shape
points&;,i € {1,...,N }.

The concept of meta-structure detection can be seen as #@maadidevel of geomet-
rical abstraction above the level of individual structuréghe formal introduction of a
recursive and therefore hierarchical MSL framework for tidelel rigid shape detection
Is beyond the scope of this chapter.
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4.4 Validation

4.4.1 Material and Experimental Setup

For training and quantitative evaluation of our systemeheere four sets of T1-weighted
MRI scans available (see Taljle4.1). The first one is a subgbedDesigned Database
of MR Brain Images of Healthy Voluntee&[@] (DDHV) containing 20 scans. The as-
sociated ground-truth annotations were manually recovigoen automatically generated
segmentations$ [50] of the structures of interest. The sttcoltection of 18 MRI scans was
provided by the Center of Morphometric Analysis at the Maksaetts General Hospital
and is publicly available on the Internet Brain Segmentalﬁepositorg (IBSR 18). The
scans are accompanied by detailed ground-truth annagaithaiuding the (sub-)cortical
structures that are of interest hrAsubSGH of the data provided by the “NIH MRI Study
of Normal Brain Developmerﬁ”consisiting of 10 pediatric data sets states another collec
tion (NIH) of annotated MRI scans used for model generatidmeyThave been manually
annotated by the authors for training purposes. Additignale use data provided by
the ongoing “3-D Segmentation in the Clinic: A Grand Challé’rgempetitior@ [56] for
training and evaluation of the proposed method. The catleatonsists of several volu-
metric T1-weighted MRI brain scans of varying spatial resoluand size from multiple
sources. The vast majority of data (29 scans) has been pabtwg the Psychiatry Neu-
roimaging Laboratory (PNL) at the Brigham and Women’s HagiBWH), Boston. The
other 20 data sets arose from a pediatric study, a Park&nséase study, and a test/re-
test study carried out at the University of North CarolindXNC) Neuro Image Analysis
Laboratory (NIAL), Chapel Hill. Only scans BWH PNL 1-15 (MICCAFQrraining) are
accompanied by expert annotations for the left and rightlasunucleus, whereas for all
the other data sets (MICCAI'07 testing) the ground-truth @ations of those two struc-
tures are held back by the providers. A predefined evaluatiotocol is carried out fully

The database was collected and made available by the CASitdhe University of North Car-
olina, Chapel Hill. The images were distributed by the MIDB&ta Server at Kitware, Inc. (insight-
journal.org/midas)

2www.cma.mgh.harvard.edu/ibsr

3We corrected the ground-truth annotations for the left dnedright caudate in the IBSR 18 data set to
better meet the protocol applied by the “3-D SegmentatiathénClinic: A Grand Challenge” competition
where the caudate is grouped with the nucleus accumbens detmeations [56.6].

4The following 10 data sets were used: defaced native 18P V{1,2} tlw r2, defaced na-
tive_100{1,4,8} V2 tlw r2, and defaced native 1005 Wi r2.

5The “NIH MRI Study of Normal Brain Development” is a multitsj longitudinal study of typi-
cally developing children, from ages newborn through yoadglthood, conducted by the Brain Devel-
opment Cooperative Group and supported by the NICHD, theA\itbe NIMH, and the NINDS (Con-
tract #s NO1-HD02-3343, NO1-MH9-0002, and NO1-NS-9-23P815, -2316, -2317, -2319 and -2320).
A listing of the participating sites and a complete listinfjtbe study investigators can be found at
www.bic.mni.mcgill.ca/nihpd/info/participating_cems.html. This manuscript reflects the view of the au-
thor and may not reflect the opinions or views of the NIH.

Swww.cause07.org
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automatically after uploading the testing fraction of tleadto the Cause’07 file server.
Evaluation is supposed to happen independently of any sagtien system developers in
order to prevent over-adaptation to the testing data setaded. First of all, the results
are quantitatively evaluated on the BWH PNL scans 16-29, wdnielall considered to be
routine scans, on 5 of the pediatric scans, and on 5 scansi@f{solder than 55 years (see
Tabled 4.8 and 414). Additionally, a system’s accuracysteon 10 datasets of the same
young healthy person acquired within 60 days on 5 differeahsers (see Talle #.6). The
COQV of the volumetric measurements is an indicator on howlethle method operates in
a test/re-test situation including scanner variabilitye Wfer to [45] 56] and Appendix B
for details on the used evaluation measures and to refefB6¢téor details on the used
scoring system.

0.94x0.94x 1.5,

1.5x0.94x0.94,

DDHV IBSR 18 NIH MICCAI'07
training | testing
Volume Size 176x256x 160 256x 256x 128 124x 256x 256, 256x124x 156 256x 256x 198,
176x 256x 256, 256x 124x 256,
160x 256x 256 176x256x 160,
256x192x 256
Voxel Spacing(mm3) 1.0x1.0x1.0 0.84x0.84x 1.5, | 1.3x0.94x0.94, | 0.94x1.5x0.94 | 0.94x0.94x0.94.0,

0.94x1.5x0.94,

1.0x1.0x1.5 1.5x0.98%x0.98, 1.0x1.0x1.0,
1.4x1.02x1.02 1.02x1.02x1.02
Sequence T1 T1 T1 T1 T1
Number of Scans 20 18 10 15 24
Gound-truth Yes Yes Yes Yes No

Table 4.1: Summary of the publicly available standard data used for model generation
and evaluation purposes.

All the images were re-oriented to a uniform orientation (‘IRAight-to-left, anterior-
to-posterior, inferior-to-superior) and resampled tdrigpic voxel spacing (1.91.0x1.0
mm?) for processing. For increasing the amount of training data@xploited natural brain
symmetry and therefore doubled the size of any training sieitased for model generation
by mirroring all the data sets with respect to the mid-sagjtane. Throughout all our
experiments we ensured that training and testing data ateathuexclusive: we trained
models on all the available annotated data but left out IBSR-A8and IBSR 18 10-18
in turn for testing. As a result of not having any accompagygnound-truth annotations
MICCAI'07 testing was never part of the training data.

As stated in referencé [66] there are differences in the t@tion protocols used for
annotating the caudate nuclei in data sets originating tfteBWH and the UNC. In the
former the “tail” of the caudate is continued much furthersddy. We therefore decided to
detect it as a separate structure that can be attached taubate nucleus if required. We
did not try to automatically determine the annotation pcotaused from the imaging data
itself as this may lead to over-fitted systems. Moreoveronti@ast to Tu et al! [109], we
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Structure Overlap Err. | Dice Coeff. | Volume Diff. | Abs. Dist. | RMS Dist. | Max. Dist.

‘ ‘ [%0] (%] [%] [mm] [mm] [mm]
Left/right caudate nucleu 32.42 80.49 9.57 0.67 1.10 7.76
Left/right hippocampus 41.96 73.34 21.14 0.91 1.33 6.34
Left/right globus pallidus 39.72 74.97 20.97 0.79 1.24 5.53
Left/right putamen 29.82 82.37 13.76 0.72 1.15 6.60

Table 4.2: Average segmentation accuracy for IBSR 18 of models trained from mutually
exclusive training and test data.

did not build models based on disjoint training data setsclwmay be another cause for
over-fitting.

As our real discriminative models are not ideal as assumethéoretical considera-
tions we keep the top 100 candidates after position deteatid the top 25 candidates after
position-orientation detection for further processirgpstin order to make the full similar-
ity transformation detection more robust. For our shapeetsode sampled the shapes of
the 8 (sub-)cortical structures of interest with= 402 surface points for the caudate and
the hippocampus and with = 322 surface points for the remaining structures. Subspace
projection of the ASMs is constrained by = 46 eigenvectors for all structures accord-
ing to Zheng et al.'s[[131] aforementioned heuristic. Faashinference we usg = 3
iterations.

In an optimized and parallelized C++ implementation of ognsentation method it
takes about 5-10 seconds to detect and segment each (stiba)csiructure in an MRI
volume on a Fujitsu Siemens notebook equipped with an Inteé QoDuo CPU (2.20
GHz) and 3 GB of memory. Intensity standardization takes deéonds. The overall
timing, without meta-structure detection, is comparabléhe graph shifts algorithm [27]
(50 seconds for 8 structures) and better than the auto dantkel (ACM) approach [77]
(60 seconds for 1 structure), the hybrid discriminativeggative approach [109] (8 min.
for 8 structures), and the method of Chupin etlall [20].

4.4.2 Quantitative Results

As can be seen from Talle 4.2 in terms of the Dice coefficientroethod achieves better
results (80%,73%,75%,82%) for the segmentation of theatgutliclei, hippocampi, globi
pallidi, and putamina on the same IBSR 18 data set than theouhetif Akselrod-Ballin et
al. [2] (80%, 69%, 74%, 79%) and Gouttard et al./[50] (76%,672%0,78%) except for the
caudate nuclei in reference [2], where we reach a compaeaioigracy. It also reaches a
higher score for the caudate nuclei and putamina on IBSR I8ttieamethod of Bazin and
Pham [[6] (78%,81%), which does not address segmentatidmediippocampi and globi
pallidi. Fig.[4.7 gives a visual impression of the resulttaiied on IBSR 18.
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Cases Overlap Err.| Volume Diff. | Abs. Dist. |RMS Dist. |Max. Dist. | Total

[%] Score [%] Score [mm] ScorJ [mm] ScorJ [mm] ScoreJ Score
UNC Ped 10 25.86 83.74 4.88 91.43 0.60 77.84 1.18 78.8510.36 69.5480.28
UNC Ped 14 23.73 85.08 -0.56 99.02 0.47 82.68 0.83 85.11 5.80 82.9386.96
UNC Ped 15 25.76 83.80 9.80 82.81 0.59 78.14 1.02 81.81 7.00 79.4181.20
UNC Ped 19 30.30 80.94 -8.78 84.60 0.65 76.08 1.00 82.09 4.69 86.2081.98
UNC Ped 30 28.77 81.91 4.66 91.83 0.63 76.65 1.03 81.58 6.81 79.9882.39
UNC EId 01 58.98 62.90 18.25 67.98 1.44 46.66 1.85 67.01 6.38 81.2465.16
UNC EId 12 35.79 77.49 43.78 23.19 0.79 70.56 1.14 79.68 5.05 85.1467.21
UNC EId 13 33.30 79.06 17.86 68.66 0.70 73.99 1.03 81.58 5.15 84.8577.63
UNC EId 20 28.48 82.09 17.75 68.87 0.63 76.64 1.09 80.53 9.35 72.5176.13
UNC EId 26 43.14 72.87 40.87 28.30 0.95 64.94 1.37 75.55 6.16 81.9064.71

BWH PNL 16 39.27 75.30-24.62 56.80 1.60 40.61 4.60 17.9034.02 0.6238.26
BWH PNL 17 33.14 79.15-22.83 59.94 1.36 49.75 4.34 22.5734.75 2.5142.78
BWH PNL 18 34.44 78.34-20.96 63.22 1.17 56.68 2.70 51.8319.04 44.0158.82
BWH PNL 19 34.47 78.32 -7.38 87.06 1.27 52.87 3.52 37.1329.85 12.2053.52
BWH PNL 20 33.60 78.87 0.79 98.61 1.07 60.3§ 3.38 39.6533.35 2.0355.91
BWH PNL 21 41.34 74.00-27.02 52.60 1.80 33.47 4.55 18.6934.73 0.0035.75
BWH PNL 22 39.85 74.94-26.38 53.72 1.35 50.1§ 3.56 36.3729.24 13.9945.84
BWH PNL 23 28.98 81.77-10.88 80.91 0.81 70.18 2.15 61.5918.77 44.8067.85
BWH PNL 24 28.86 81.8% -9.44 83.44 0.74 72.52 1.74 68.9114.18 58.2973.00
BWH PNL 25 32.91 79.30 7.43 86.97 1.33 50.80 3.83 31.6130.85 9.2751.59
BWH PNL 26 43.12 72.88-15.38 73.01 1.06 60.62 2.05 63.3313.61 59.9665.96
BWH PNL 27 28.25 82.23 -8.48 85.12 1.48 45.24 4.74 15.2932.80 3.5346.28
BWH PNL 28 34.30 78.43-23.58 58.63 1.43 46.97 4.36 22.0730.99 8.8642.99
BWH PNL 29 33.83 78.72 -1.74 92.92 0.88 67.40 1.87 66.5416.19 52.3971.59

Average UNC Ped|26.88 83.09 2.00 89.94 0.59 78.28 1.01 81.89 6.93 79.6182.56
Average UNC Eld [39.94 74.88 27.70 51.40 0.90 66.57 1.30 76.87 6.42 81.1370.17
Average BWH PNL 34.74 78.1%-13.61 73.78 1.24 54.12 3.39 39.5326.60 22.3253.58

Average All \34.19 78.5Q -1.75 72.49 1.03 61.73 2.46 56.1418.30 46.5163.08

Table 4.3: Average left/right caudate segmentation accuracy for the MICCAI'Offniges
data set without optional caudate tail detection. As of 02/25/2009 this method
ranks number 11 in the overall ranking list on www.cause07.org (“LME Er
langen”).

The overall average score (75.19) in Tdbld 4.4 shows thatdgmenting the caudate
nuclei our method performs better than the methods of Mdra §/7] (73.38), Bazin and
Pham [6] (64.73) and Tu et al. [109] (59.71). All the mentidraithors report on results
computed on the same MICCAI'07 testing data set. In fact, ouhotewith integrated
caudate tail tip detection ranks number 2 in the overall ramkst on www.causeQ7.org
(“Segmentation Team”) as of 03/10/2009.

4.5 Discussion

One of the limiting aspects of our extended MSL method is #loethat all the patient data
sets we used for model generation origin from patients nmigbaffected by pathologies
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Cases Overlap Err.| Volume Diff. | Abs. Dist. |RMS Dist. |Max. Dist. | Total

[%] Score| [%] Score/[mm] Score [mm] Score [mm] ScorJ Score
UNC Ped 10 29.87 81.22 17.06 70.08 0.64 76.38 1.05 81.22 7.18 78.8877.55
UNC Ped 14 31.55 80.16 7.48 86.87 0.85 68.53 1.89 66.1815.82 53.4871.05
UNC Ped 15 25.66 83.86 5.55 90.26 0.58 78.36 1.10 80.2810.30 69.7280.50
UNC Ped 19 24.66 84.49 4.22 92,59 0.65 75.80 1.51 73.0313.33 60.8077.34
UNC Ped 30 24.83 84.39 1.90 93.72 0.50 81.31 0.88 84.23 7.02 79.3484.60
UNC Eld 01 40.31 74.65% 14.92 73.83 0.93 65.39 1.62 71.0513.18 61.2469.23
UNC Eld 12 33.13 79.16 12.60 77.89 0.72 73.23 1.37 75.4612.38 63.5773.86
UNC Eld 13 29.09 81.71 5.83 89.77 0.57 78.92 0.97 82.71 9.46 72.1881.06
UNC EId 20 32.23 79.73 12.25 78.51 0.65 75.83 1.01 81.92 6.90 79.7279.14
UNC EId 26 37.64 76.33 8.05 85.88 0.79 70.72 1.58 71.8015.95 53.0971.56

BWH PNL 16 37.12 76.65-26.96 52.71 0.65 75.79 1.08 80.73 8.51 74.9672.17
BWH PNL 17 27.83 82.50-12.83 77.50 0.49 82.01 0.91 83.73 6.24 81.6681.48
BWH PNL 18 30.31 80.94-23.71 58.41 0.60 77.8§ 1.06 81.0010.60 68.8273.41
BWH PNL 19 33.96 78.64-11.82 79.26 0.70 74.11 1.20 78.66 8.07 76.2877.39
BWH PNL 20 29.52 81.43 -8.94 84.31 0.51 81.2¢ 0.91 83.81 6.61 80.5682.28
BWH PNL 21 40.36 74.61-34.83 38.89 0.89 66.92 1.46 73.8910.30 69.7264.81
BWH PNL 22 38.96 75.50-30.52 46.46 0.79 70.62 1.20 78.63 8.48 75.0769.25
BWH PNL 23 29.45 81.48 -8.69 84.75 0.78 70.94 2.25 59.8321.33 37.2666.85
BWH PNL 24 24.30 84.72 -6.49 88.62 0.45 83.32 0.91 83.7113.70 59.6980.01
BWH PNL 25 29.33 81.55 -6.12 89.27 0.81 69.86 2.18 61.0321.43 36.9767.73
BWH PNL 26 34.45 78.34-24.77 56.54 0.65 75.84 1.30 76.7014.69 56.8168.84
BWH PNL 27 25.99 83.65-13.91 75.59 0.53 80.30 1.01 81.93 6.48 80.9480.48
BWH PNL 28 34.00 78.62-22.87 59.87 0.64 76.20 1.13 79.81 6.85 79.8674.87
BWH PNL 29 28.47 82.09 0.87 90.60 0.54 80.14 0.99 82.2913.39 60.6279.15

Average UNC Ped|27.31 82.82 7.24 86.70 0.65 76.08 1.29 76.9910.73 68.4478.21
Average UNC Eld |34.48 78.31 10.73 81.18 0.73 72.82 1.31 76.5911.57 65.9674.97
Average BWH PNL 31.72 80.05-16.54 70.20 0.65 76.08 1.26 77.5611.19 67.0974.20

Average All \31.38 80.2'{ -5.01 75.92 0.66 75.4Q 1.27 77.2411.17 67.1475.19

Table 4.4: Average left/right caudate segmentation accuracy for the MICCAI'Oinigs
data set with optional caudate tail detection. As of 03/10/2009 this methqd
ranks number 2 in the overall ranking list on www.cause07.org (“Segtiemta
Team”).

disturbing the usual composition and appearance of the hdoraan’s anatomy in a, from
a medical imaging perspective, serious manner. For instdhere are not any intracranial
mass lesions such as tumors, abscesses, or hemorrhagesidgfine surrounding tissue.
This may lead to a decreased robustness of the system atamkind of pathological
changes in the human brain and may yield sub-optimal reBulisich cases. From our
point of view there are two ways to overcome this issue: fosg could try to increase
the amount of training data and therefore allowing the wmedimodels to also capture
pathological abnormalities. Second, one could try to iiTq@et recovering strategies in
case deforming pathologies prevent proper detection dbamas.

Aiming for comparable validation results we evaluated qupraach on two publicly
available databases (IBSR 18 and MICCAI'07 testing) for thedeseinucleus and on one
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Correlation|| UNC Ped| UNC Eld | BWH PNL | Total
Left 0.53 0.94 0.65| 0.71
Right 0.63 0.95 0.50|| 0.69
Average 0.58 0.79 0.58| 0.70

Table 4.5: Pearson correlation for the volume measurements in the three testing groups
as well as in total. This coefficient captures how well the volumetric measure
ments correlate with those of the reference segmentations.

Test/Re-Test | Left | Right | Total

UNC 03 [mnv] | 3745| 3714 | 7459
UNC 04 [mn¥] | 3950 3781 | 7731
UNC 09 [mn?] | 3906 4011 | 7918
UNC 11 [mn?] | 3871 3822 7693
UNC 17 [mn¥] | 3751 3735 | 7486
UNC 18 [mn¥] | 3935 3988 | 7923
UNC 21 [mn¥] | 3765 3714 | 7479
UNC 22 [mni] | 4047 | 3782 | 7829
UNC 24 [mn¥] | 4142| 3770 | 7912
UNC 25 [mn¥] | 2783 | 3119 | 5902

Mean [mn?] | 3790| 3744 | 7533
Stdev  [mmi] | 357 | 231 | 572

COV  [%] | 90 60 | 80

Table 4.6: The volumetric measurements of the 10 data sets of the same young adult ac-
quired on 5 different scanners within 60 days. The COV indicates thdistab
of the algorithm in a test/re-test situation including scanner variability.

publicly available databases (IBSR 18) for all the other {gdstical gray matter struc-
tures. Both IBSR 18 and MICCAI'07 testing have been establisbeallow objective
comparison of segmentation methods. Especially the webebavaluation of results on
MICCAI'07 testing is designed to validate accuracy and robess of segmentation ap-
proaches.

Though better than recently reported results, or at leaspasable, a Dice coefficient
of, for instance, 73% for the hippocampus might be consdiése low for reliable vol-
umetric studies from a clinical perspective. Some meth@ds 20,55 85] reach higher
scores for certain structures when evaluated on non-pylai@ilable data sets. However,
comparability to scores computed on different databad@sited due to different charac-
teristics of the data with respect to MRI artifacts and paibpl The typical MRI artifacts,
such as Rician noise [80], PVEs[114], and intra-/inter-dd#ss [119,60], might be there
in a more or less distinctive manner. Also, as mentioned @bitne presence of pathology
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may significantly affect the achievable segmentation amuion a particular database.
From our point of view, objective comparison of segmentatieethods is only possible by
using publicly available benchmark databases.

With respect to the achieved overall score on MICCAI'07 tegtinr method (~75), as
well as all the others presented in the overall ranking at veause07.org as of 05/20/2009,
still fails to keep up with the score (~90) presumed typicald human expert when man-
ually delineating the left and right caudate nucleus [56]e Tecision to assign an overall
score of approximately 90 to the segmentation accuracyaahlie by an independent hu-
man observer was based on preliminary tests [56].

In comparison to registration-based approaches workitiyaviatomical atlases [94, 6,
2,185] exhaustive labeling of all the anatomical structimebe human brain independently
from each other with our extended MSL framework may beconamgthy undertaking on
today’s hardware—even though processing is comparabtyfdags manageable amount
of anatomies. Exploiting geometrical knowledge about thet@mies and their relation to
each other, like already done by introducing meta-stracti@tection, even on the level of
common boundaries may help to overcome this drawback ofuhemt system. While
currently only the translation search ranges for individu@atomies are constrained by
meta-structure detection this may be extended by also reanisig search ranges for ori-
entation and scaling. However, this may be at the risk of agaging detection errors from
one level of geometrical abstraction to the one beneath.

Another critical point is the considerable amount of anteztdraining data necessary
to generate robust models for the presented approach. gtahd131] 130] evaluate their
MSL approach on more than 300 CT volume data sets in a croskatial setup. Ling et
al. [71] work with alImost 200 CT scans. Yet, the amount of aldé training data can be
easily augmented by suitable annotation tools allowingtoect automatically generated
annotations generated by systems trained on less data.

In the current system all the parameters for training rigetedtion are estimated based
on the shape information itself. There are not any chanastteanatomical landmarks of a
high recognition factor, both facilitating manual labglias well as fully automatic detec-
tion, used for deriving the associated local coordinat¢éesys. Only for the detection and
segmentation of the caudate nuclei the approximated dimeteised for mesh re-sampling
is unilaterally bounded by the manually annotated tail #aying respect to anatomical
characteristics in defining such landmarks may improve teeadl accuracy of the system
in certain cases [130, 181]. The ease of defining appropaatmarks depends on the
addressed segmentation scenario.

The system presented is comparably fast: without metaisiel detection it takes
only 1-2 minutes to segment 8 (sub-)cortical gray matterctires. Processing time can
be decreased to on average 13.9 seconds by means of metarstdetection. This makes
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our approach even preferable to the method of Corso et al. {@8th is found to be the
fastest in our literature research.

In comparison to Zheng et al. [130, 131] we give a slighthyfedié#nt, though sound,
mathematical formulation of an extended MSL approach tlsat imtegrates shape infer-
ence. We show that MSL naturally decomposes the search spiaug levels of geomet-
rical abstraction successively refining anatomy repregem. This allows the use of a
chain of discriminative models. As machine learning-, drete¢fore knowledge-based, ap-
proaches are used on every level of abstraction, the meshedirely top-down—not only
from a geometrical but also from a methodological point @wi Knowledge is incorpo-
rated into the system by exploiting a large database of &gmerotated training data for
model generation, which aligns the method with the paradigdatabase-guided medical
image segmentation [44].

4.6 Conclusions

The contributions of this chapter are as follows: we integglashape inference into the
overall MSL methodology from the theoretical point of vieWte showed that MSL de-
composes the parameter space of anatomy shapes alongsilegiesels of geometrical
abstraction into subspaces of increasing dimensionatityagplied MSL to the difficult
problem of (sub-)cortical gray matter structure detect@on shape inference. Experi-
ments on publicly available gold standard databases shawotir method works equally
fast, robust, and accurate at a state-of-the-art level.

In the following chapter we will summarize the core conttibns of this thesis. We
will also discuss general technological and methodoldgicasiderations, give a brief
outlook on future work, and draw conclusions.
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Figure 4.7: Segmentation results obtained on the IBSR 18 data set No. 10 in an axial (
coronal (b), and right (c) and left (d) sagittal view. The segmentedsires
are the left and right caudate (dark-blue/yellow), the left and rightmpeia
(orange/blue), the left and right globus pallidus (green/red), and tharld
right hippocampus (turquoise/violet).
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Chapter 5

Summary and Outlook

5.1 Summary and Contributions

This thesis dealt with probabilistic modeling for segmépta of the human brain and
related structures from MRI data. The human brain plays aroitapt role in centrally

controlling a vast majority of functions of the human bodyofdover, it hosts all aspects
of human consciousness. This makes every disease infabiniguman brain a critical
issue that requires the newest and most accurate means whirgiegnostics and therapy
available. Many diseases affect morphology and usual apgpea of the human brain in
radiological examinations. For its excellent soft tissoatcast MRI is the radiological

modality of choice for imaging the human’s central nervogstem.

When it comes to the analysis of radiological images one lysuants to bridge the
gap between sequences of sighal measurements, which isadialogical 2-D images
or 3-D images actually are, and a semantic description oft wghdepicted—one wants
to “understand” the medical images at hand. Providing thdeustanding, that is to say,
these semantics, can serve several purposes when dealmgdiological pictorial mate-
rial: on the one hand they can be used for improved traditioveaical decision making,
i.e., medical diagnostics and therapy planning and mangoiOn the other hand, explicit
semantics stored in a machine-readable format allow ushfeeadata and the patient-
specific knowledge supplied herewith for higher level pusteessing: computer-aided di-
agnostics and treatment planning and also retrospectideestof certain diseases and their
progress may all be based on the automatic extraction ohdggally relevant quantita-
tive or more abstract findings. The research project Heal@thild, wherein this work of
research is embedded, is dedicated to this emerging fieldnwitedical informatics and
covers pooling and intelligently post-processing sencatifi enriched medical data and
storing general medical knowledge in the context of pedstiFinally, explicit semantics
can even be used for knowledge-based image enhancemernaglified in Chapter]2.
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Throughout this thesis we examined ways to provide expdieihantics for medical
imaging data by means of medical image segmentation antingbwhich is a standard
methodology for the problem of partly understanding mdditeges. We exemplified
this general approach to the problem by developing and safidey applying three new
methods from the field of database-guided knowledge-bgsaaaches for three distinct
medical image segmentation scenarios: 3-D MRI brain tisfassitication and INU cor-
rection, pediatric brain tumor segmentation in multi-gpeES-D MRI, and 3-D MRI brain
structure segmentation. Together, all the three chosemados cover a broader range
of how the human brain’s morphology and usual condition camffected by pathology.
With regards to the results our methods achieve we can cdechat database-guided
knowledge-based approaches, exemplified by the threeapmaetimethods of this thesis,
are well-suited for the purpose of fully automatically gexteng semantic descriptions for
medical imaging data.

For the first scenario we presented a fully automated methatlis, the DMC-EM al-
gorithm, for brain tissue classification into GM, , and CSHaeag and intra-scan INU cor-
rection in 3-D MR images. In its integrated multi-spectralyBsian formulation based on
the MRF methodology we could combine supervised MRI modaiigeific discriminative
modeling and unsupervised EM segmentation. The MRF regalawn involved took into
account knowledge about spatial and appearance relateddemaity of segments using
pair-wise clique potentials and patient-specific knowkedgout the global spatial distri-
bution of brain tissue using PBT-based unary clique potkntiche PBT features used rely
on surrounding context and alignment-based featuresatefrom a pre-registered proba-
bilistic anatomical atlas. The context considered is erddaly 3-D Haar-like features of
reduced INU sensitivity. Our detailed quantitative evéituas on standard phantom scans
and standard real world data showed the accuracy and rassstf the proposed method.
By comparison with other state-of-the-art approaches weevabie to demonstrate our
method'’s relative superiority with regards to the chosedina imaging scenario.

In the second scenario, we addressed fully automatic pedtin tumor segmenta-
tion in multi-spectral 3-D MRI. The developed method, thatthe DMC-GC algorithm,
Is based on an MRF model that combines PBT discriminative nmggleind lower-level
segmentation via graph cuts. The PBT algorithm providesa prodel in terms of an ex-
ternal field classifying tumor appearance while a spatiarpgakes into account pair-wise
voxel homogeneities both in terms of classification labslsvall as in terms of multi-
spectral voxel intensities. As above the discriminativedelaelies not only on observed
local intensities but also on surrounding context for ditgacandidate regions for pathol-
ogy. We were able to provide a mathematically sound formaridor integrating the two
approaches into a unified statistical framework. In a qtainte evaluation we obtained
results that were mostly better than those reported foreatistate-of-the-art approaches
to 3-D MRI brain tumor segmentation.
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The third and final scenario comprised 3-D MRI brain structagmentation where we
developed a novel method for the automatic detection anchaetation of (sub-)cortical
GM structures in 3-D MR images of the human brain. The metkdshsed on the MSL
concept. We showed that MSL naturally decomposes the p@earspace of anatomy
shapes along decreasing levels of geometrical abstraatioisubspaces of increasing di-
mensionality. This is done by exploiting parameter invac& This insight allows us to
build strong discriminative PBT models from annotated iregrdata on each level of ab-
straction. During shape detection and inference the rahgessible solutions is narrowed
using these models until a final shape is found. We could extemoriginal MSL formal-
ism to also cover shape inference and not only rigid shapectien. The segmentation
accuracy achieved is mostly better than the one of othee-sfathe-art approaches for
(sub-)cortical GM structure segmentation. For benchmnmgriurposes, our method was
evaluated on publicly available gold standard databasesisting of several T1-weighted
3-D brain MRI scans from different scanners and sites. Th&ehaf images within these
databases is guided by the intention to reflect the chalgngmvironment a segmentation
algorithm has to face when applied in clinical practice.

Next to these major contributions the following minor cdmition was made: in the
second and third scenario we adapted the DHW approach foistdgram matching
whose original purpose is ensuring constant image brigstiretraditional gray scale im-
ages to mono-spectral MRI inter-scan intensity standatidizaWe gave a graph theoretic
re-formulation of the algorithm and extended it to minimthe Kullback-Leibler diver-
gence between 1-D histograms of equal bin size. Inter-su@msity standardization is
one of the prerequisites to the application of machine legrbased segmentation tech-
niques relying directly or indirectly on observed imagesimgities.

5.2 Discussion and Technological Considerations

Although we discussed issues related to the particulaesysand scenarios we presented
at the end of each chapter there are some more general tegltabland methodological
considerations and aspects that need to be mentioned.

With regards to the broader subject of semantic imaging wldgdeestrict our discourse
on this matter to three well-defined MRI segmentation scesaA more general and more
theoretical dealing with the fully automatic semantic gase of medical pictorial material
would have gone far beyond the scope of this work.

Due to the characteristics of the chosen scenarios we weredi to the analysis of
static morphological points of view. The study of other noadlimaging modalities for
the purpose of semantic analysis, such as{3-Dr functional imaging, is necessary to
also address physiological and pathophysiological asp#dhe human body. Also, we
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concentrated on the important first steps towards expksitantics for medical imaging
data—medical image segmentation and labeling. From ount pdiview, narrowing the
topic that way appears reasonable in order to deal with itgnfciently concise manner
that is in accordance with the ambition of this kind of sdignpiece of writing.

From a technological point of view, focusing on databasielegiknowledge-based ap-
proaches involving machine learning might also appear @& itinnecessarily imposed a
restriction on the scope of this work. However, we found oatrf the literature that this
methodology represents a current trend in today’s medmabe segmentation and that
this kind of approaches is well-suited for semantic imagingposes. An important ques-
tion arises nevertheless: are the databases used for meadeiation large enough to cover
the large variety of possible deformations the human b&srin our case, can be subject
to? This is certainly questionable due to the almost unptablie impact of possible mal-
functions and diseases on morphology. On the other handhtestigation of pathology
by radiological imaging is fundamental for medical inqegi Encouraged by what is to be
found in the literature and by the evaluation results of oethads we believe that suffi-
ciently large databases can be chosen covering at leasbtheen spectrum of possible
deformations and changes in anatomical appearance alse aase of pathology.

Throughout this thesis we made extensively use of the PBTithigo(see AppendikA)
for machine learning. The technique is closely related eodhscade approach of Viola
and Jones [115]. Though generic in formulation the PBT algoriis usually used in
combination with AdaBoost [41] as strong classifier withicle&ree node. As a matter of
fact, PBT is still lacking a detailed analysis from a thea&tipoint of view revealing its
robustness against over-fitting and effects of certainmpatar settings. A comparison with
other boosting strategies, such as random forests [12]rer AddaBoost, would definitely
be worth investigation. As we approached involved techgiek from the entire medical
image segmentation scenario’s point of view we did not hlaeeaimbition to evaluate all
imaginable design choices concerning our methods. Howewast of the design choices
are well founded in the literature.

Where possible we decided to evaluate our approaches orclyublailable gold stan-
dard data sets. Even though this ensures comparabilityffefeint methods, researchers
relying on these data sets are at the risk of another subtleosh@logical error: “training
on the test data’l[35, 56] . It is the case when a classifier dhateundergoes a longer
series of refinements, which are guided by repeated expetsnoa the same test data. As
some of the used benchmarking databases have been pgrsistite public domain for
guite some time the best-performing methods may be ovegtaddo specific character-
istics of these data collections. These characteristios marepresent the general case
of a particular medical image segmentation scenario. Tiseddantage was addressed by
Heimann et al.[[56] with their onsite segmentation contedfll&CCAI 2007 in Brisbane,
Australia, and their ongoing online caudate segmentati@llenge (www.cause07.0rg).
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In the contest, the final evaluation was carried out on a etdbf previously unseen data
sets that were not distributed to the participants with thming and testing data. From the
opposite point of view, due to the limited number of data sgtslable, the question arises
whether these collections reflect the possible spectrurhalfenges that can be associated
with a certain segmentation scenario. Another aspect iIfg@on” meaning that new
methods are likely to only achieve marginal improvementb@mchmarking data sets that
have already been used for evaluation purposes by manycbses In this case signifi-
cant improvements are almost impossible. However, we areimced that evaluation on
publicly available gold standard or benchmarking data iset®e of the best ways to ob-
jectively compare methods as, despite the aforementiobgdtions, every method faces
the same replicable prerequisites.

Most often we carried out benchmarking by comparing cone@dgstems. This means
we assessed methods on the highest level of abstractiorregect to their processing
pipeline and compared their final segmentation resultss @ahgns with our ambition to
approach medical imaging scenarios from an integral petserather than from a pure
technological perspective with focus restricted in terrteohnological categories. Usu-
ally, we did not evaluate individual processing steps sspér.

Typically there was only one ground-truth annotation pemaset available both for
training as well as for evaluation of all the three scenasgstems. Therefore, we could
not study any intra- and inter-observer variability thisngea limitation of the data sets at
hand.

Even though addressed to some extend computational penfiaerof our systems was
not one of the major aspects of this work. Improvements mapdssible due to new
hardware developments and more elaborated implemergatiaperly exploiting present
and future hard- and software capabilities.

5.3 Future Work

As mentioned above enriching medical imaging content watinantic annotations of any
kind is an emerging field in today’s medical informatics @s@. Future work on this topic
will have to address, but is not limited to, the followingesiific questions:

e Which kind of features should semantics be generated fromép-\Bise along a
chain of explicit semantic descriptors, which are also ustd@dable to humans, or
immediately from the signal measurements by means of cldsw-level feature
extraction and pattern recognition-style classification?

e How can semantics be intelligently integrated into appidces of added value? How
would these applications look like? How can they make usestfiduted sources of
semantic content over the internet?
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e How can these applications be kept scalable despite thedragant medical imag-
ing data generated every day all over the world? Both withrasyto the processing
as wells as to the generation of semantic content.

e How can the clinical workflow benefit from semantic annotasion medical imaging
data?

e Are there ways to flexibly combine semantics generated frdfardnt sources of
data within a field of knowledge? Which formal representatishould be chosen
for this purpose?

Next to these more general inquiries there are also posgbilor future research deal-
ing directly with the three medical imaging scenarios wecamtrated on and the associated
methods we proposed. They include, but are not restrictatiedollowing questions:

e Can the methods be applied to other body regions and othemmagpdalities?
e How can robustness against disease-related changes ihohaygyg be increased?

e How do different design choices in terms of low-level imagattires or techniques,
for instance, other machine learning techniques, affecatituracy and performance
of the methods?

e Can more complicated shapes like, for example, the entirgbcalr cortex be ad-
dressed by similar methods?

e Can the methods be made more MRI-specific by feeding knowlelbget dhe MR
Image acquisition back into the segmentation process?

5.4 Conclusions

In this work, we addressed probabilistic modeling for segtagon in MR images of the
human brain in three distinct scenarios. In all scenarigs,cancentrated on database-
guided knowledge-based approaches that make use of maeainag in order to provide
probabilistic models. We could show that our newly devethelly automatic approaches
are well-suited for the problem of providing explicit sertias for medical imaging data
in terms of labeled image regions. Regarding the methodesagpplied, major and minor
advances in research could be made as summarized above. r@otlodr work as well
as from what can be found in the literature we conclude thigtdese-guided knowledge-
based approaches are at the point of becoming the stabte-@lrt in medical image seg-
mentation. They successfully combine traditional medimaging with machine learning
and pattern recognition techniques.



Appendix A

Discriminative Modeling

A.1 Probabilistic Boosting-Trees

Training a probabilistic boosting-tree (PBT) (see Hig.]Aré$embles inducing a mul-
tivariate binary decision tree from a set of weighted labeti@ining examples/ =
{(Zn, Yn,wn) |In=1,...,N} €T, N €N, with feature vectors,, € Z = RM, M € N,
labelsy, € { 1,41}, and weightsu, € [0,1] with 3> w,, = 1. Within each node
of the tree a strong discriminative modél,(z) € (—1,+1) for feature vectorg € R,
M € N, is generated. By construction, all those modé|x) asymptotically approach an
additive logistic regression model[42]

ply=+1/2)

1 y
H ~ —1
(=)~ =—17)

(A1)
wherey € {—1,+1} denotes the outcome of the associated binary classifictagin
Accordingly, at each node of the resulting PBT there are current approximations of
the posterior probabilitieg,(+1|z) = ¢,(z) = exp(2H(z))/(1 + exp(2H(z))) and
pw(—1]z) = 1 — g,(2). During classification those values are used to guide teaeising
and combined propagation of posteriors in order to get a ippfoximatiorp(y|z) of the
true posterior probability(y|z) at the tree’s root node.

While training the classifier, those probabilities are useduccessively split the set
of training data relative to the prior probabilify,(y = +1) associated with the current
training (sub-)set in node into two new subsets. We writg, instead ofp,(y = +1)
in the following for simplicity. The soft thresholding pangtere > (0 sees to pass on
training sample% that are close to the current node’s decision boundaryjshatsay, if
¢,(2) € [(1 — €)py; (1 + €)p,], to both of the resulting subsets and associated subtrees. S
Algorithm[4 for details on how a PBT is built.

During classification the values fgy(z) are used to guide tree traversing and combined
propagation of posteriors in order to get final approxinmagia, (y|z) of the true posterior

97



98 Appendix A. Discriminative Modeling

Figure A.1: A PBT with a strong discriminative probabilistic model in each tree node.

probabilitiesp,(y|z) at each tree node: for outgoing edges, ' andr! associated with
the possible classifications the approximatjoly|z) can be computed via the recursive
formula
Doy lz) 1f gu(2) < (1 —€)py,
Bu(ylz) = By (Wlz) i au(z) > (1+op,, (A.2)
S Baes) (W12) - au(ilz) - otherwise,

wheref(r) denotes the vertex where edgends and;,(+1|z) = ¢,(2) andg,(—1|z) =
1= qu(2).

A.2 AdaBoost

Probabibilistic boosting-trees can be built in combinatiath several strong learning al-
gorithms providing the strong classifier within each treeeoln the following we give
a concise description of the most commonly used one, whiohdmBoost [41]. It is
called Discrete AdaBoost by Friedman et al.l[42]. In the twass classification setting
we have asel = { (z,,yn,w,) |n =1,..., N} € T of weighted labeled training data,
N € N, with feature vectors,, € Z = RM, M € N, labelsy,, € { —1,+1}, and weights
w, = 1/N. The purpose of Discrete AdaBoost is to find a strong classifier

H(z) =Y oh(z), (A.3)
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that is, a linear combination df € N weak classifiers:;(z) giving hard classification
outcomes with weights, € R; the corresponding prediction of this strong classifier is
sgn(H(z)). The procedure builds weak classifiers on weighted traisangples in turn
giving higher weight to those that are currently misclasdiffsee Fig_Al2). A detailed
description of Discrete AdaBoost is given in Algoritiiin 5.
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Figure A.2: Schematic representation’df= 4 iterations of the Discrete AdaBoost algo-
rithm. The strong classifier available at the end of each iteratioen, ..., T
is denoted by ().

For the purpose of discriminative brain tissue modelinguse a generalized version
of AdaBoost, which is called Real AdaBoo5t [42] (see Algorithjn ®&ne of the major
differences to Discrete AdaBoost is the fact that the wealnkza return class probability
estimatesf(z) = p(y = +1|z) instead of hard classifications. We generate class proba-
bility estimates by means of decision stumps, which arectidely learned decision trees
of depth 1, returning the probability distributionspt { —1,+1 } after only one split of
a training data sef . A split is found by choosing a feature vector compongntnd an
accompanying thresholg,, that “best” separates the positive from the negative sasnple
We refer to Quinlan[90] for details on this.
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Algorithm 4. PBT

Input: set of weighted labeled training exampEs= { (z, Yn,wn) | n=1,..., N} € T, N € N,
with feature vectorg,, € Z = RM, M € N, labelsy,, € { —1,+1}, and weights
wy, € [0,1], Zf:le wy, = 1, a strong discriminative probability estimator
L:TxN—{f:2Z—(0,1)with f(2) = p(y = +1|z) }, the number of weak classifiers
S € N per tree node, the current tree degtl N (initially d = 0), and the maximum tree
depthD € N

Output: Probabilistic Boosting-Tree node

begin

Let v be the current tree node;

1 Comptjj\;[e the empirical distribution
Pov Zn:1 W0 (41, Yn);

/[ Train a strong discriminative model
qv — L[T,S];

[/ Initialize subsets

if d=D then
| returnv
else
Add new tree node§(r,; ') and3(r1);
T-1=10
TH =
forn=1,...,Ndo
if gu(zn) < (1 —€)p, then
‘ T'—T7'U { (Zns Yns Wn) };
else
if ¢v(zn) > (14 €)p, then
| T =T U { (20, Y0y wa) 1
else
T_l — T_l U { (zna ynvwn) },
T — TP U{(zn, Yn,wn) }
end
end

end

/I Increase tree depth and normalize
d—d-+1;
forn=1,...,|7 1 do
| wa /(I T wn);
end
forn=1,...,|7 "' do

+1
| wn = wa (S w);
end

/I Repeat procedure recursively
B(r;') < PBT[T~',L,S,d,DJ;

v

B(ri') < PBT[T*!,L,S.d,DJ;

returnv;
end

end
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Algorithm 5: Discrete AdaBoost

Input: set of weighted labeled training examplEs= { (z,,, yn,wy) |[n=1,...,N} € T, N € N,
with feature vectorg,, € Z = RM, M € N, labelsy,, € { —1,+1 }, and weights
w, = 1/N, aweak learning algorithh : 7 — {h: Z — { —1,+1} }, and the number of
weak classifier§” € N

Output: strong classifiefl : Z — Rwith H(z) = 31, aihy(z)

begin

fort=1,...,Tdo

/ Build weak classifier

hy < L[T];

/I Compute error rate
e+ 0;
forn=1,...,Ndo

if he(x,) # y, then

| €« €+ wp;
end

end

/I Adapt sample weights
forn=1,...,Ndo
if he(x,,) = yn then

| w, — wy, -€/(1—¢);
end

end
forn=1,...,Ndo

\ W — wn /(N wn);
end

/l Compute weights of weak classifiers

Qp, — log 126;

end

retumnH (z) = 37, arhy(2);
end
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Algorithm 6 : Real AdaBoost

Input: set of weighted labeled training exampEs= { (z, Yn,wn) | n=1,..., N} € T, N €N,
with feature vectorg,, € Z = RM, M € N, labelsy,, € { —1,+1}, and weights
wy, = 1/N, a discriminative probability distribution estimator
L:T—-{f:2—(0,1)with f(z) = p(y = +1|2) }, and the number of weak classifiers
TeN

Output: strong classifief : Z — R with H(z) = Y1, hi(z)

begin

fort=1,...,7Tdo

/I Build probability estimator

fe < L[T];

V2hi(Z) — 0.5 - log {120

/I Adapt sample weights
forn=1,...,Ndo

‘ Wy, < Wy, - €XP (7ynht(z));
end
forn=1,...,Ndo

‘ W wn/(ZfLV:l wn);
end

end

returnH(z) = 1, hy(2);
end




Appendix B

Segmentation Accuracy Assessment

In this appendix, we formally introduce the measures useaksess the quality of auto-
matically generated segmentation results. They can bggtbunto two classes: First, the
ones considering individual voxels and the labels assigod¢idem. We will refer to them
as mask-based segmentation accuracy measures. Secoodeshaking into account the
shape of structures that were about to be detected. Theyifyuawatch or mismatch be-
tween automatically segmented shapes and their counteigesfined in the ground-truth
annotations. Accordingly, they are referred to as shapedtaegmentation accuracy mea-
sures. Gerig et all [45] and Niessen et @l.l[79] give a moreiléet overview of various
accuracy measures and their characteristics.

B.1 Mask-Based Segmentation Accuracy Measures

LetS={1,...,N}, N € N, be a set of indices to image voxles andaet (z;)scs and

y = (ys)ses be labelings of a given image in terms &f € N possible voxel labels where
ro,ys € X = {1,..., K} forall s € S—in shortz,y € X~. The former,z, can be
thought of as a labeling, i.e., segmentation in our nomémaaproduced by a automatic
or semi-automatic system, and the latigras a ground-truth labeling of a medical image
at hand.

The number of true positives with respect to a certain labdefined as
TP(x,y,k) =|{s € Slzs =k,ys = k }| (B.1)
Analoguously, we have
FP(x,y, k) = [{s € Sles =k, ys # k }| (B.2)
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for the number of false positives,

FN(z,y, k) = {s €Slzs # k,ys = k }| (B.3)
for the number of false negatives, and

TN(z,y, k) = {'s € Sles # k,ys # k (B.4)

for the number of true negatives.
The Dice coefficient (Dice coeff.) [31], measuring simitafbetween the ground-truth
and a segmentation result with respect to a certain labe&fised as

D k) = . B.5
@9 = PPy k) + 2 TP(@,y.k) + PN (@.y.) (©5)
Similarily, the Jaccard coefficient (Jaccard coeff.) |185]efined as
TP k
I,y (.3, k) ©6)

" FP(w,y,k) + TP(w,y,k) + FN(z,y, k)’

It gives raise to the volumetric overlap error (overlap)d&g], which is defined as
VOE(xz,y,k)=1— J(x,y, k). (B.7)

The relative absolute volume difference (volume diff.) édided by

P RPRLELE CEL S TE ELL T 9

For the Pearson correlation coefficient/[35] the two setsamiponents ofc andy are
interpreted as random samples of two discrete random VasiabandY . The correlation
coefficient is then defined as

p= (B.9)

Ox0y
whereo xy IS the covariance ok andY’, andoxy andoy are the standard deviations &f
andY’, respectively.

B.2 Shape-Based Segmentation Accuracy Measures

The calculation of shape based accuracy measures is typicalistraightforward when no
point to point correspondences of the shape representtavailable.[[45] In the “3-D
Segmentation in the Clinic: A Grand Challenge” competi the base representa-

www.cause07.org
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tion of segmentation results and ground-truth annotatisrthosen to be mask images.
Accordingly, informal descriptions on how to compute theasires are provided [66]:

For the average symmetric absolute surface distance (19, the border voxels of
the segmentation result and the ground-truth annotatemletermined. They are defined
as those voxels of the structure having at least one neiglibdheir 18 nearest neigh-
bors, that does not belong to the structure. For each bommexl wf the segmentation
result the closest voxel on the border of the ground-trutiogation is found out. This is
done using Euclidean distance in physical space, thatisptaopic voxel spacing is taken
into account. The average of all these distances both frenségmentation result to the
ground-truth annotation as well as vice versa gives theageesymmetric absolute surface
distance. The root mean square symmetric absolute surifstemce (RMS dist.) is similar
to the previous one. It stores the squared distances betivedwo sets of border vox-
els instead of the plain Euclidean distances. Afterwardselvalues are averaged and the
square root is extracted. The maximum symmetric absolutacidistance (max. dist.)
differs from both the previous measures in that the maximtiall @oxel distances is taken
instead of the average.
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Appendix C

Procrustes Analysis

C.1 Ordinary Procrustes Analysis

The purpose of ordinary Procrustes analysis (OPA) is themrag of two shapes,y €
R™ of n € NT control points of dimensiom» € N* with similarity transformations
using least square techniques. As we deal with 3-D objealsshapes we restrict our
considerations tan = 3. References [103] and [B4] give a more detailed representafi
the results we are going to present here. They also considenore general case.

By carrying out a full OPA we want to solve for

(5, R,t) = argg{g{;@(w,y)

= argmin |y — M(s, R, t)[z]|’ (C.1)
where ||z|| = 1 27 + of, + :1;?3)% is the Euclidean norm ifR™®. The operator

M(s,R,t) : R — R" applies the affine transformation associated with scaliug f
tor s € R, orientationR € SO(3) (3-D rotation group), and translatiadne R3 to alll
points (x;,, xs,, ;)% i € {1,...,n}, of shaper. The functionO : R™ x R™ — R is
called ordinary (Procrustes) sum of squares.

Lete, = 2370 (2, @4y, 24,)" @andey = 23770 (yiy, vis, yi,)” the centers of grav-
ity of shapex and shapey, respectively. Let furthee = M(1,1,—¢;)[xz] andy =
M(1,1,—c2)[y] be the zero mean versions #fandy wherel € SO(3) is the neutral
element of the 3-D rotation groupO(3). Following the representation in reference [103]
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a solution to Equatiori (C.1) is given ljy, R, t) with translationt = ¢, — ¢, orientation
R =UV" [65] where

Y, Yo ot Umg T
T xr xr
A= glz ﬂ22 U gnz ’ .21 .22 _23 = VZUT (C2)
g13 g23 e ?jn:), ~. ~. ~.
t,'Unl xnz "'U'rL3
with
A 000
= 0 X 0 |eR™, (C.3)
0 0 A3
and scaling
DY i, + i, + T ca
5= Z" 72 472 4 52 (C.4)
i=1Ti, T Tip T Tgy

wherez” = M(1,R,0)[&]. Equation [CR) involves a singular value decomposition
(SVD) of both the shapes’ covariance matrix, which can beexbfor through fast nu-

merical algorithms[[89].

C.2 Generalized Procrustes Anaylsis

While full OPA serves to match one shape to another, the pmobldinding a population
mean shap& of two and more shapes is addressed by full generalized i&tesranalysis
(GPA) [51], which is a direct generalization of OPA. We dése!GPA in accordance with
Dryden and Mardia [34] in the following. The approach is mated by the perturbation
model

x; = M(s;, R;, t;) [T + €], (C.5)

ie{l,...,N},N € N"\{1}, for a population of shapes; € R", n € NT, where
e; € R™ are zero mean independent random error vectors. In cases tigeshapes are
commensurate in scale the perturbation model is
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Methodically, GPA is an ordinary least squares approachthirfg an estimate of. For
that, the objective function

(3i, Rit)i=1,..n = arg(Sirn&irii)iG(ml,mg,...,:I:N)

= e W LS S o R )] — Moy Byt
=1 j=i+1

(C.7)

is minimized subject to a constraint on the centroid sizdefaverage, that is to say,

2

n 3
(Z > (@ - Cj)2> =1 (C.8)
i=1 j=1
wheree = (¢, ¢, ¢3)" is the centroid ofe. The average configuration is
z = Z M (34, Ry ;) 4], (C.9)

The functionG : (R™)Y — R is called generalized (Procrustes) sum of squares.

Algorithm [7 serves to estimate the “nuisance parameted;[#3] (s, R;,1;), i €
{1,...,N}. Once they are found the full Procrustes coordinates of eathe x;, i €
{1,..., N}, are given by

xl’ = M (5, Ry, £)[x). (C.10)
In accordance with Equation (C.6), the removement of scalingt is, step 3 in Algo-
rithm[Z, can be omitted. [51]

In general, it may be possible to find more realistic estismater by a total least
squares approach where the perturbation model additjotedés into account variations
of the shapes’ surface sampling points. A detailed anabyfsikis is out of scope of this
appendix.
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Algorithm 7 : GPA algorithm[34]
Input: population of shapes; € R™3,n e N*,ie {1,...,N}, N e NF\{1}
Output: population ofsflapesfD e R™,ie{1,..., N}, aligned in model space, nuisance
parameterss;, R;,t;),i € {1,...,N}

begin
/' 1. Remove translations
forall i € {1,...,N } do
/I Compute centroi@; of shaper;
fi = —C;,
zf = M(1,1,;)[x];
end
AG = 400 ;
repeat
/I 2. Remove rotations
repeat

forall i € {1 ,N}do
=y 1Zj;éiwj '

},Ri,tl) =argming g+ O(z!, Z;) ;
& =M1, R;,0)[z];
end
AG = |Gzl xf .. xb) - Gl &), .. &N)];
forall i € {1,...,N } do
A
end

until AG < e for somee > 0 ;
/I 3. Remove scaling
/I @) Compute correlation matrix

C = (Corr(:%fj,a%f)) ;
i=1,..,N,j=1,...,N

/I b) Compute eigenvector corresponding to largest eigaewvaf correlation matrix
)T .

v=(v1,...,0n)" ;
/I ¢) Update scaling parameters
forall i e {1,...,N } do
1
8 = (Zkuéiz‘slﬁzfl‘z) ’ v; [8];

&F = M(5;,1,0)[&]];

end
= |G(zf ac2,...,ocﬁ)—G(:&f,o@f,...,:ﬁﬁﬂ;
forallze{ ,...,N}do
| 2l =7 ;
end

until AG < e for somee > 0 ;
end




Appendix D

Acronyms and Abbreviations

1-D one-dimensional

2-D two-dimensional

3-D three-dimensional

abs. dist. (average symmetric) absolute (surface) distanc
ASM active shape model

BET Brain Extraction Tool

CAD computer-aided diagnosis
CNS central nervous system
Ccov coefficient of variation

CSF cerebral spinal fluid

CT computed tomography
DHW dynamic histogram warping

Dice coeff. Dice coefficient
DMC-EM discriminative model-constrained HMRF-EM
DMC-GC discriminative model-constrained graph cuts

DTW dynamic time warping

EM expectation maximization

EMD earth mover’s distance

FAST FMRIB’s Automated Segmentation Tool
FGM finite Gaussian mixture

FLIRT FMRIB’s Linear Registration Tool
FN false negatives

FP false positives

GM (cerebral) gray matter

GPA generalized Procrustes analysis
HMC hidden Markov chains

HMRF hidden Markov random field
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HMRF-EM hidden Markov random field expectation maximization
HUM homomorphic unsharp masking

li.d. independently and identically distributed

IBSR Internet Brain Segmentation Repository

ICM iterated conditional modes

INU intensity non-uniformity

Jaccard coeff.

MAP maximum a posteriori

max. dist. maximum (symmetric absolute surface) distance
MICCAI medical image computing and computer-assisted ietion
MPM maximizer of the posterior marginals

MR magnetic resonance

MRF Markov random field

MRI magnetic resonance imaging

MRT magnetic resonance tomography

MSL marginal space learning

N3 nonparametric nonuniform intensity normalization
NMR nuclear magnetic resonance

OPA ordinary Procrustes analysis

overlap err. (volumetric) overlap error

PBT probabilistic boosting-tree

PCA principal component analysis

PD proton density

PDF probability density function

PDM point distribution model

PVE partial volume effect

RAI right-to-left, anterior-to-posterior, inferior-taiperior
RF radio frequency

RMS dist. root mean square (symmetric absolute surfacejraist
SVD singular value decomposition

TN true negatives

TP true positives

us ultrasound

volume diff.  (relative absolute) volume difference

WM (cerebral) white matter

Jaccard coefficient
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