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ABSTRACT

Reverberation effects as observed by room microphones severely de-
grade the performance of automatic speech recognition systems. We
investigate the use of dereverberation by spectral subtraction as pro-
posed by Lebart and Boucher and introduce a simple approach to
estimate the required decay parameter by clapping hands. Experi-
ments on small vocabulary continuous speech recognition task on
read speech show that using the calibrated dereverberation impro-
ves WER from 73.2 to 54.7 for the best microphone. In combination
with system adaptation, the WER could be reduced to 28.2, which
is only a 16% relative loss of performance comparison to using a
headset instead of a room microphone.

Index Terms— speech recognition, robustness

1. INTRODUCTION

Current automatic speech recognition (ASR) systems work with im-
pressive speed and accuracy when a close talking microphone, usual-
ly a headset, is used. However, this performance drops severely if the
data is acquired using a far-field microphone, usually mounted on a
table, wall or ceiling. Beside the so-called direct sound which should
be about the same as received by a close talking microphone, the far-
field microphone also captures ambient noise and, indoors, effects of
reverberation, i.e., reflections of the acoustic signal from walls and
objects mixed with the direct sound.

Although often not even perceived by humans, already little re-
verberation causes severe trouble for ASR systems as the observed
signal is completely altered, as illustrated on the top and middle of
Figure 1. In the transition from voiced to unvoiced, the energy ob-
served in the lower spectrum is smeared into the following unvoiced
segment. Vice versa, the energy observed in the upper spectrum is
smeared into the voiced segment. As most ASR systems use some
sort of spectral analysis, the problem is imminent: The features ex-
tracted from close talking microphones show strongly different fre-
quency components than features extracted from far-field micropho-
nes.

To ease the effects of reverberation, the recognition process can
be modified at three stages. Beginning top-down, reverberation can
be integrated into the actual decoding of the feature sequence. In [1],
the authors use spectral features in combination with hidden Mar-
kov models (HMM) for continuous digit recognition. By modeling
the reverberation as an additive component to the mean values of the
output distributions, the authors could show a significant improve-
ment in terms of recognition performance.

Instead of changing the acoustic model, one can take reverbe-
ration into account when extracting the features. In [2], the authors

Fig. 1. Example spectrum of /aInst/ /StrI|t@n/ /zIC/
acquired by headset (top), room microphone (middle) showing the
smear effect in the voiced/unvoiced transition; the bottom spectrum
shows the segment after dereverberation, reducing that effect.

use a voiced/unvoiced detector to modify the observed spectrum ac-
cording to its decision: For voiced segments, the upper part of the
spectrum is cleared and vice versa. By integrating this into their fea-
ture extraction, the authors could show a significant improvement for
isolated (command) word recognition in an embedded setup.

Finally, one can try to remove reverberation effects before fea-
ture extraction by preprocessing the audio data thus leaving the re-
cognition system as such untouched. Spectral subtraction has been
around for quite some time, however mainly used to remove noise
from the signal. In [3], the authors propose a simplified reverberati-
on model that can be integrated with spectral subtraction. The core
idea is to split the process in two parts, early and late reverberation.
Assuming the early part of reverberation as non-critical to intelligi-
bility, the late part is estimated and subtracted from the spectrum.

Most work based on [3] deals with subjective or objective acou-
stic quality assessment (e.g. [4]). We investigate the use of the model
for automatic continuous speech recognition in contrast to connected
digits or command word recognition.
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Although the methods mentioned above help reducing the ef-
fects of reverberation, they not only require extensive modifications
of the speech recognition system or time-consuming (re-)training
using modified training data but also knowledge about the target
room and conditions where the system is employed. Thus, there is
a lot of overhead work to do for each installation. Thinking of an
off-the-shelf application to work with room microphones like an am-
bient living assistant system or meeting assistant, the adaptation to
the previously unknown acoustic characteristics needs to be easy,
fast and robust, similar as is speaker adaptation for commercially
available dictation systems – it must be reliable and doable in a few
minutes.

This article is structured as follows. After a short description
of the data in Section 2, the dereverberation model of Lebart and
Boucher [3] and its required parameters are introduced in Section 3.
In Section 4, an easy, fast and robust approach to estimate the cri-
tical dereverberation parameter is described. In Section 5, the used
recognition system and adaptation techniques are briefly described.
Section 6 provides setup and analysis of a series of experiments sho-
wing the use of the proposed algorithms on genuine reverberated
data. Section 7 summarizes the work and concludes with an outlook.

2. DATA

For the training of the ASR system, a subset of the German VER-
BMOBIL [5] corpus (11,714 utterances, 257,810 words, about 25
hours) was used; the speakers were aged around 27 ± 8 years.

For the evaluation of the dereverberation algorithm, 34 speakers
(22 male, 12 female; age 65± 5) read the text “The North Wind and
the Sun”, a phonetically rich text from Aesop, resulting in about 25
minutes of speech. The acquisition was done using 4 high quality
SHURE microphones in a demo room of an ambient living assistant
system installed at our lab: a headset (ct) and 3 room microphones
(R1, R2, R3) mounted on different positions in the room as depicted
in Figure 2. This data set will be referenced as TEST.

Large age differences among the speakers in training and test
will strongly affect the recognition performance [6]. In order to eva-
luate the system performance on a data set by speakers of similar
age to the the training set, we use close talk recordings of that sa-
me text (see above) read by 38 speakers (31 male, 7 female; aged
30 ± 9) resulting in about 30 minutes of speech to get an idea of the
expected performance loss due to elderly speech. This data set will
be referenced as CONTROL.

All speech data was acquired at a sampling rate of 16 kHz and
quantized using 16 bit.

3. DEREVERBERATION BY SPECTRAL SUBTRACTION

In the following, dereverberation by spectral subtraction is briefly
introduced; for a more detailed explanation, we refer to [3].

What actually reaches the ear is the produced acoustic signal
convolved with an acoustic impulse response (of the room), modeled
as

f(t) = (h � s)(t) (1)

where f(t) is the observed signal, s(t) the original clean signal and
h(t) is the acoustic transfer function, for closed rooms usually ass-
umed to be room impulse response (RIR). If the RIR were known,
the dereverberation could be done by de-convolution with the signal.
However, the RIR is dependent on the position in the room and re-
quires very sophisticated measurements, usually done by a sound
engineer.

Fig. 2. Sketch of the room microphones mounted on the walls in
approx. 1.5m height; the speaker (SPK) is seated on the sofa (either
the long or short part) and equipped with a headset (approx. room
dimensions: 3.5m × 6.5m).

A closer look at squared power value of the RIRs measured at
different positions in the room suggests that, in logarithmic scale, the
decay of the RIR can be modeled by the decay line t �→ 2ρt + 2b
which can be determined by a least square fit. ρ is then considered to
be the decay parameter. For example, the decay parameter estimati-
on of the Aachen Lecture Room using six measured RIR [7] yields
ρ = 7.8 ± 0.09. Similar results on other recorded RIRs suggest ρ
as an invariant for the room acoustics, which will be exploited in the
following.

In [3], the reverberation process is split into an early (t =
[0, Tmix[) and late (t = [Tmix,∞[) part, each modeled by expo-
nentially decaying Gaussian white noise B(t) utilizing the decay
parameter ρ:

hLB(t) = σe−ρtB(t)1[0,Tmix[(t) + σe−ρtB(t)1[Tmix,∞[(t) (2)

The early part is considered to carry most (undistorted) information,
thus only the late part is removed.

Recalling the original idea of additive noise n in the frequency
domain, the spectral subtraction is given (without derivation) as

FT[s](t, ξ) =
p

|FT[f ](t, ξ)|2 − E(|FT[n](t, ξ)|2) · eiφ(·)
(3)

with FT denoting the (short time) Fourier transform and φ(·) the
angle of the polar representation of FT[f ](t, ξ). In words, the clean
and observed signal share the phase but the amplitude is changed
according to the expectation of the noise. For the dereverberation,
the noise is considered to be the late part of the reverberation and
can be estimated as

E(|FT[n](t, ξ)|2) = e−2ρTmix · E(|FT[f ](t − Tmix, ξ)|2)
= e−2ρTmixγ(t − Tmix, ξ) (4)

where γ(t, ξ) is approximated in a discrete manner as

γ(t, ξ) ≈ r ·
l−1X

j=0

βj |FT[f ][l − j, k]|2 (5)

for a suitable normalization parameter r and 0 < β < 1, with a
recommended β = 0.9. Thus for the actual dereverberation, only
the parameters Tmix and ρ are required. While [3] suggests to set
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Tmix = 50 (ms), the decay parameter ρ was not part of their rese-
arch and remains to be estimated. Figure 1 shows a segment of clean
headset speech, corresponding room microphone signal and the de-
reverberated signal using the decay parameter estimated as described
in the following section.

4. ESTIMATING THE DECAY PARAMETER

As mentioned above, the exponential decay parameter ρ can be esti-
mated from the squared power value of the RIR. Instead of properly
measuring the RIR, we propose a rather simple calibration method:
In a short training phase, the user moves around the target room and
generates impulses. In our case these were generated by clapping
hands and rapidly closing a large book. The recorded impulses can
be automatically segmented and result in multiple estimations of ρ.
To account for possibly bad estimates, the mean value is chosen.

Experiments show pretty stable values; for our ambient assistant
living room, we estimated ρ ≈ 11.9 ± 0.3 using 10 instances, a
rather robust estimate given the presence of slight background noise
like a nearby larger street and some construction work in front of the
window. As extensive experiments on different data and RIRs [8]
indicate that choosing a slightly larger ρ than the actually measured
one leads to better results, we chose to add a constant and set ρ =
12.5.

5. SYSTEM DESCRIPTION

5.1. Baseline System

The ASR system used for this work is based on semi-continuous
Hidden Markov Models sharing 500 Gaussian densities with full
covariances. The acoustic models are on polyphones, i.e., phones
with variable sized context. The computed features are the short time
energy anlongside 12 mel-frequency cepstral coefficients, and their
first order derivatives. After training the system on the VERBMOBIL

data, the vocabulary was replaced by the words of the read text “The
North Wind and the Sun” (108 words, 71 disjoint). For the latter de-
coding, only a uni-gram language model was used in order to put
more emphasis on the acoustic properties of the data. For details of
the training refer to [9].

5.2. Adaptation

To recover from the performance loss due to the age difference of
the speakers in training and test, the ASR system is adapted. First
to match the age and in a second step, to the (de)reverberated data.
This is done to account for (remaining) reverberation effects and de-
reverberation artifacts like “musical noise” which sounds somewhat
similar to talking into an empty tin. As we have a limited amount
of data, we do 3-fold cross-validation experiments (two thirds adap-
tation, one third test) and give average results. The adaptation was
achieved using MLLR [10] followed by MAP [11] and iterating that
procedure for 10 times. The resulting 7 types of recognizers are lis-
ted in Table 1.

6. EXPERIMENTS

6.1. Baseline

Table 2 shows results applying the unadapted recognition system to
the acquired recordings of the TEST data. Using the headset recor-
dings of the CONTROL data which roughly matches the age distribu-

ID adaptation data

rec-ct ct, original

rec-R1-o R1-o, original
rec-R2-o R2-o, original
rec-R3-o R3-o, original

rec-R1-d R1-d, dereverberated
rec-R2-d R2-d, dereverberated
rec-R3-d R3-d, dereverberated

Table 1. List of recognizers resulting from the different adaptation
approaches: ID (left) and adaptation data (right).

ct R1 R2 R3

original 24.3 73.2 78.2 76.1

dereverberated — 54.7 60.5 57.0

Table 2. Word error rate (WER) applying the unadapted recognition
system to the headset (ct) and room microphone (R1, R2, R3) recor-
dings of the TEST data and the respective dereverberated instances.

tion of the training set, a baseline word error rate (WER) of 18.9 was
achieved. The rather high value is due to the fact that only a uni-gram
language model is used in order to put emphasis on the acoustic pro-
perties of the data. As expected, the WER for the elderly speakers
is increased to 24.3, which is a relative change of 29% confirming
earlier findings in [6].

The performance severely degrades using the room microphones
according to their position. R1 catches most of the direct sound and
thus yields the far best recognition rates, however, the WER relative-
ly increases by more than 200% compared to the headset recordings.
R2 is mounted behind the speakers and results in the worst perfor-
mance as it is considered to be in the acoustically worst position:
nearly no direct sound and reverberation generated from all surroun-
ding walls and objects. R3 is the most distant microphone showing a
WER somewhat between R1 and R2 – it seems to catch less or more
homogeneous reverberation.

After dereverberation, the tremendously high WER of the room
microphones could be greatly enhanced. For the best microphone
R1, the WER could be reduced by roughly a third to 54.7. Similarly,
the performance is increased for the other room microphones. Ho-
wever, WER in that range are unacceptable for any use. In the next
section, we investigate additional age and acoustic adaptation to fur-
ther improve the performance.

6.2. Age Adaptation

Results above showed that if speaker age in training and test dif-
fers, recognition performance decreases. Therefore, we adapt the
ASR system to elderly speech as described in Section 5 using the
headset TEST data. Column “ct” in Table 3 shows the measured im-
provements for both headset and room microphone data; after dere-
verberating the room microphone data, the improvement in WER as
observed in the baseline experiment still holds. However, the achie-
ved WER of 34.7 using R1 is still unacceptable, thus adaptation to
the acoustic properties of (de)reverberated speech seems necessary.
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adaptation data
% ct orig. derev.

te
st

d
at

a

ct 12.4 — —
R1-o 57.5 38.2 45.5
R2-o 66.8 50.5 59.7
R3-o 64.0 44.0 50.6
R1-d 34.7 44.8 28.2
R2-d 44.7 51.9 41.0
R3-d 39.0 47.8 32.3

Table 3. Results on the TEST data in WER using different data for
adaptation (columns) and test (rows); the baseline experiment for ct
data without any adaptation is WER = 24.3.

6.3. Combined Acoustics and Age Adaptation

In a second step, we adapted the ASR system to (de)reverberated and
elderly speech at the same time using the original room microphone
data of the TEST data (labeled R[1,2,3]-o) to see if only adaptation
without dereverberation could do the job. Note that we used data of
R1 to test on R1, R2 to test on R2 and so on.

As shown in column “orig.”, the WER is reduced from 57.5 to
38.2 (a relative reduction of 34%) for the matching acoustic condi-
tion. Testing with the dereverberated signals which still show some
reverberation effects (see bottom of Figure 1), the WER could not
outperform the age-only adapted system, suggesting that the dere-
verberated signal is acoustically closer to the headset signal than to
the reverberated speech.

In a last step, we adapted the ASR system to the dereverberated
elderly speech using the R[1,2,3]-o data dereverberated with the me-
thod described in this work, resulting in R[1,2,3]-d. Column “derev.”
shows that the combination of dereverberation and adaptation yields
WER between 28.2 and 41.0 depending on the microphone positi-
on. With respect to the original unadapted system applied to headset
recordings, this is a relative increase of 16% in terms of WER for
R1.

7. CONCLUSION

Using room microphones is a very convenient way to acquire speech
for ambient assistant living systems, meeting assistants, automatic
translation devices or similar speech enabled devices. However, it
usually comes with ambient noise or, indoors, with reverberation ef-
fects. In Section 1, we listed several approaches how to reduce these
effects but all require extensive system modifications or re-training
with knowledge of the target room characteristics (e.g. a carefully
measured RIR).

In this work, we showed that the combination of dereverberation
and adaptation yields impressive results in terms of speech recogni-
tion. For the best microphone, the word error rate could be lowered
from 73.2 to 28.2, a relative improvement of about 61.5%. Given the
WER using headset microphones is 24.3 without any preprocessing
or adaptation, the combined method reduces the relative increase of
WER due to age and reverberation from over 200% to 16%.

Though the experiments were conducted using a small vocabu-
lary and read speech to study the effects of acoustic improvement
for speech recognition, we expect similar findings for spontaneous
speech with larger vocabulary as one would apply a proper language

model which tremendously boosts the performance. This may also
give insight whether or not the adaptation resulted in overfitting, as
the same text was read in every recording thus certain phone and
word sequences were favored.

Though not new in its idea, we proposed a method which is easy,
fast and robust and can be integrated into off-the-shelf products, si-
milar to speaker adaptation in commercially available dictation sys-
tems. To get going after installation, the user would first clap his
hands for a few times to automatically estimate the dereverberation
parameter and then read a predefined text, similar to dictation sys-
tems. Using this data, the system can be adapted to the new acoustic
and speaker characteristics.

For future work, we plan to confirm these results in different
acoustic settings and to compare the estimated reverberation para-
meters with ones estimated from carefully measured RIRs. Having
the focus on human-machine-interaction, recognition performance
on spontaneous reverberated speech would be of special interest –
we therefore plan to confirm our findings on data like the ICSI or
AMI meeting corpus.
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