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Abstract—The geometry of the helix has been successfully
applied in diagnostic CT for extended volume imaging without
cone-beam artifacts. However, it cannot be used for C-arm
systems due to the absence of slip-ring technology. For this
reason, the reverse helix was proposed recently for C-arm
systems, but efficient reconstruction from axially-truncated data
collected on such a helix appears to be challenging. The main
difficulty comes from the the missing R-line coverage in the
central region of the scanned object. More specifically, the reverse
helix is such that the theories that have been found for efficient
handling of axial truncation cannot be applied, because large
portions of the object are not intersected by R-lines
In this work, we revisit the option of performing extended

field-of-view imaging using a sequence of circular short-scans
connected by line segments. We find that the R-line coverage is
insufficient for a central region of interest when a line-segment
is tightly fit between parallel circular arcs. On the other hand,
extension of the line beyond the circular arc helps to increase
R-line coverage in the central region of interest. Therefore, we
propose a trajectory composed of two parallel circular arcs
connected by an extended line. This trajectory does have a nice
R-line coverage inside the ROI, but it has a discontinuity at
the endpoints of the line. To overcome this problem, we suggest
replacing the two parallel circular arcs by two helices, which
can be duplicated along the axial axis conveniently and which,
moreover, keeps the trajectory continuous and thus is more
practical.

I. INTRODUCTION

Over the decade, cone-beam (CB) computed tomography
has become a valuable tool in interventional radiology. Its
success stems from its ability to provide the medical doctor
with immediate feedback during a clinical procedure, thereby
allowing on-the-fly adjustments. So far, circular data acqui-
sition has been used, but more sophisticated geometries are
being considered due to the problem of cone-beam artifacts
and also due to limited volume coverage.
An attractive geometry for extended volume imaging with

no cone-beam artifacts is the helix. This geometry has been
very successful in diagnostic CT, but is unfortunately not
practical for interventional radiology. The problem is the need
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for slip-ring technology, which is difficult to use (if possible
at reasonable cost) with C-arm systems. To perform extended
volume imaging with a C-arm system, another geometry must
be found. Many options are possible, from using a combination
of circles and lines, to using a reverse helix, as suggested by
the group of X. Pan at the University of Chicago [1]. The
reverse helix has many merits, but efficient reconstruction from
axially-truncated data collected on such a helix appears to be
challenging [1], [2]. The main difficult comes from the R-lines
not covering the whole scanned object (an R-line is any line
segment that connects two source positions together). More
specifically, the reverse helix is such that the theories that have
been found for efficient handling of axial truncation [3]–[6]
cannot be applied, because large portions of the object are not
intersected by R-lines.

In this work, we revisit the option of performing extended
field-of-view imaging using a sequence of circular short-scans
connected by line segments. In particular, we investigate R-line
coverage with the goal of finding source-trajectory parameters
such that a central region-of-interest within the object is fully
covered by R-lines.
The paper is organized as follows. First, we describe the

data acquisition geometry of interest. Next, we discuss R-line
coverage resulting from two parallel circular arcs, and also
R-line coverage resulting from connecting a line orthogonally
to the endpoint of a circular arc. From there, we are then
able to present the R-line coverage for the whole data acqui-
sition geometry. Our results show that some parameters allow
full coverage of a region-of-interest, but these parameters
unfortunately come with practical implementation concerns.
We discuss these concerns and potential remedies in the last
section.

II. DATA ACQUISITION GEOMETRY

We consider extended volume imaging using periodic du-
plicates of a source trajectory consisting of two circular arcs
connected by a segment of line. The patient is assumed to
lie along the z-axis, the arcs are in parallel planes that are
orthogonal to this axis, and the line is orthogonal to each arc
through one of its endpoints. Figure 1 depicts this trajectory.
Two options are considered: (a) the line is spatially limited
by the arcs, (b) the line extends beyond the arcs. Figure 1
also shows how each circular arc is oriented relative to x and
y-axes that form together with the z-axis a Cartesian system
of coordinates. The distance in z between the arcs is 2 H , the
radius of the arcs is R, and the line extension in the second
path option isΔh on each side. Also, the plane z = 0 is chosen
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to be at mid-distance between the two arcs. To avoid confusion
with other arcs that will appear later in the discussion, from
now on we will use the term S-arcs to refer to the arcs forming
the source trajectories.

III. ELEMENTAL R-LINE COVERAGE

In this section, we first discuss the R-line coverage resulting
from connecting points from one arc to the other arc. Next,
we discuss the additional coverage resulting from connecting
points on the line to points on the arcs. Note that our data
acquisition is symmetric relative to the z = 0 plane. Therefore,
the R-line coverage at position z = z0 is the same as the
coverage at z = −z0 for any 0 ≤ z0 ≤ H . Hence, we only
discuss R-line coverage at positions z ≥ 0.

A. Arc-to-arc coverage

To understand the R-line coverage in this case, we start by
considering the simpler case where each S-arc has a length
of 360 degrees. Figure 2 shows how the R-line coverage can
be found in this case. Location z = 0.2 H is used for the
illustration but a similar result would be obtained at any other
z-location. Basically, we take a point on the upper S-arc, called
Ai

+, and connect it to all points on the lower S-arc. Doing so,
we create the surface of a cone that intersects the plane z =
0.2 H along a circle. This circle defines the R-line coverage
coming from Ai

+ in the plane z = 0.2 H . By moving Ai
+

along the upper S-arc, we obtain additional circles, as shown
on the right side of Figure 2. The union of these circles is
the full R-line coverage in the plane z = 0.2 H ; this union
is an annular region with external boundary, �, corresponding
to the intersection between plane z = 0.2 H and the cylinder
on which the source trajectory is drawn.Now, we consider the
case where the S-arcs are shorter. A length of 230 degrees is
used for the illustrations; similar results would be observed
with other short-scan lengths. Figure 3 shows the coverage in
plane z = 0.2 H , whereas figure 4 illustrates the coverage at
z = 0.

(a)

Oi
+

�

(b)

Fig. 2. Arc-to-arc R-line coverage when the length of the arcs is 360 degrees.
(a) Coverage in plane z = 0.2 H due to one point from the upper S-arc; this
coverage is a circle centered on a point denoted as Oi

�
in the figure. (b)

Coverage in the same plane as on the left, but due to several points on the
upper S-arc.

First, comparing figure 2a with figure 3a, we see that the
coverage from Ai

+ is not a full circle anymore, it is a circular
arc, which we refer to as an R-arc to avoid ambiguity between
such an arc and the S-arcs that form the source trajectory. By

moving Ai
+ along the upper S-arc, we obtain a union of R-

arcs that defines the R-line coverage at z = 0.2H . Identifying
the region covered by this union is not too complex. First, we
observe that the endpoints of the R-arc, Ah and Bh, move
along two arcs. The arc along which Ah moves is shown in
figure 3c; it is the intersection between the plane z = 0.2 H

and the (open) cone surface that results from connecting Ai
−

to the upper S-arc, where Ai
−
is the point on the lower arc

that is at the same (x� y) location as Ai
+. The arc along which

Bh moves is shown in figure 3d; this arc is created from the
cone based on the upper S-arc and the endpoint Ae

−
on the

lower S-arc. Secondly, compared to figure 3, we illustrate the
variation of the R-line coverage along the z-axis by looking at
the plane z = 0, as shown in figure 4. Using the same process
as in figure 3, we take a point Ai

+ on the upper S-arc and
connect it to the lower S-arc; with this procedure, we get a
surface consisting of a partial cone, which intersects with the
plane z = 0 along a partial circular arc whose two endpoints
are denoted as Ah and Bh. By moving Ai

+ along the upper
S-arc, we acquire the combination of R-arcs that forms the R-
line coverage in the plane z = 0, as illustrated in figure 4b. The
identification of the R-line coverage in the plane z = 0 could
be performed similarly to the case depicted in figure 3. The
difference is that the orbit of the endpointAh is the R-arc itself
corresponding to the point Ai

+ on the upper S-arc, as shown
in figure 4a; while the point Bh follows the dashed partial
circular arc as illustrated in figure 4c. Both tracks of points
Ah and Bh go through the center of the cylinder, on whose
surface the two S-arcs are located. Figure 4 also contains the
results of a numerical simulation. Combining the information
in figure 3, we observe that in planes orthogonal to the z-
axis, as |z| increases, the R-line coverage corresponding to
one point on the upper S-arc becomes smaller and the orbits
of the endpoints of the R-arc become larger, and thus the R-
line coverage around z axis becomes worse.

B. Arc-to-line coverage

In this subsection, we investigate another elemental data
acquisition geometry: a line orthogonally attached to a partial
circular arc at one of its endpoints. Recall from figures 1a and
1b that two S-arcs are symmetric relative to the plane z = 0.
In this case, the R-line coverage resulting from connecting the
points on the line to points on the upper S-arc is symmetric
to that obtained from connecting the points on the line to
the points on the lower S-arc. Therefore, we consider here
only the R-line coverage that results from the line located
above the S-arc. Figure 5 depicts this R-line coverage. Here,
we used location z = 0 and angular coverage 230◦ as an
example, but a similar result could be obtain at any location
−H ≤ z ≤ H . Figure 5b shows the R-line coverage resulting
from the numerical simulation.
As observed, the R-line coverage of the arc-to-line in the

plane z = 0 is a partial disk. Compared to Figure 4, we can
see the outline of the partial disk is actually the union of
the R-lines connecting the point Ai

+ to the lower S-arc in
Figure 4. The union of all the disks along the line is a cone
whose base is bounded by the lower S-arc and with peak at the
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(a) (b) (c)

Fig. 1. Data acquisition geometry. Extended volume imaging is performed using duplicates of a path consisting of two arcs plus a line. Two options are
considered for this path: (a) the line is tightly fit between the arcs, so that each endpoint of the line corresponds to one endpoint of an arc; (b) the line extends
beyond the arcs by a distance Δh on each side. (c) Orthogonal projection of the source trajectory onto the x� y plane.

(a) (c) (d)

O1
+

Ah

Bh

�

(b)

Bh

Ah

�

(e)

�

(f) (g)

Fig. 3. Arc-to-arc R-line coverage when the length of the arcs is 230 degrees. (a) Coverage in plane z = 0.2H due to one point from the upper S-arc; this
coverage is a partial circular arc centered on a point denoted as Oi

�
in the figure. (b) Coverage in the same plane as in (a), but due to several points on the

upper S-arc. (c) The track (the solid arc centered on the point Oi
�
) which Ah follows when moving point Ai

�
along the upper S-arc. It is the intersection

between the cone surface due to Ai
�
and the plane z = 0.2H . (c) The track (the dashed arc centered on the point Oe

�
) of Bh when moving the point Ai

�

along the upper S-arc. (e) Combination of arcs from (b), (c) and (d). (f) Additional outlines are needed for R-line coverage of the two S-arcs. The reason is
that when the R-arc moves along the C, due to the large angular coverage of the S-arcs, Ah and Bh are not always the furthest point to the z axis. (g) the
numerical simulation result.

(a)

Oi
+

�

Ah

Bh

(b) (c) (d)

Fig. 4. Arc-to-arc R-line coverage when the length of the arcs is 230 degrees. (a) Coverage in plane z = 0 due to one point from the upper S-arc; this
coverage is a partial circular arc centered on a point Oi

�
. (b) Coverage in the same plane as in (a), but due to several points on the upper S-arc. (c) The

track (the dashed partial circular arc) of Bh when Ai
�
moves along the upper S-arc. (d) the numerical simulation result.
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(a) (b) (c)

Fig. 5. Arc-to-line R-line coverage when the length of the arcs is 230 degrees. The line is attached to one of the endpoints of the S-arc. (a) Coverage in
plane z = 0 due to one point Ai

�
. This coverage is a partial disk centered on a point denoted as Oi

�
. (b) the numerical simulation result. (c) the union of

two symmetric cones of R-line coverage, which is resulting from connecting points on the line to the points on the two S-arcs.

point Ai
+. Due to the symmetry of the trajectory as illustrated

in Figure 1b, the R-line coverage between the line and the
upper S-arc would be an upside-down cone, congruent to that
between the line and the lower S-arc. The union of these two
cones intersected with the z = 0 plane is shown in Figure 5c.
As we can see, the R-line coverage resulting from connecting
points on the line to the two R-arcs has its minimum in the
plane z = 0 and increases when |z| becomes larger.

To give a better understanding of the relation between the
R-line coverage of the two R-arcs and that of a line and an
S-arc, we offer an illustration in Figure 6. Here we choose the
plane at height z = 0.2H as an example, but a similar result
could be obtained for any other locations with −H ≤ z ≤ H .
Figure 6 depicts the combination of R-lines from the elemental
trajectories: arc-to-arc and arcs-to-line . We observe that the
R-line coverage from the line and the S-arc and the R-line
coverage from the two S-arcs compensate each other quite
well.

(a) (b)

(c) (d)

Fig. 6. Combination of R-line coverage from arc-to-arc and arc-to-line. (a)
the outline of the R-line coverage from arc-to-line in the plane z = 0.2H .
The small partial circular arc is due to the top endpoint of the line and the
big one due to the bottom endpoint of the line. (b) Coverage between the two
S-arcs. (c) Combination of R-line coverage of (a) and (b). (d) the numerical
simulation result.

IV. TIGHT LINE PLUS ARCS

Using the R-line coverage of the elemental trajectories, we
obtain the R-line coverage for the trajectory composed of two
parallel S-arcs and a tight line, as illustrated in Figure 1. Recall
from section III that the R-line coverage of the arc-to-arc and
the arc-to-line compensate each other quite well. However, the
R-line coverage of the arc-to-line has a minimum in the plane
z = 0 while the R-arc obtained by connecting one point on the
upper S-arc to the lower S-arc reaches a maximum length; the
R-line coverage of the arc-line-arc is worst in the plane z = 0.
Figure 7 illustrates the R-line coverage of the arc-line-arc in
the plane z = 0 with source-angular coverage of 230◦ and
310◦. As we can see, the R-lines are not fully covering the
Region-of-Interest (ROI) for both angular coverages. In fact, as
long as the angular coverage is less than 360◦, there is always
an angular space touching the z axis that is not covered by
R-lines.

(a) (b)

Fig. 7. Numerical simulation results of R-line coverage for two parallel
circular arcs plus a tight line (ALA). (a) R-line coverage of ALA in the plane
z = 0 with angular coverage of 230◦. (b) R-line coverage of ALA in the
plane z = 0 with angular coverage of 310◦ .

V. EXTENDED LINE PLUS ARCS

To overcome the problem mentioned in the previous section,
we here propose the trajectory composed of two parallel S-
arcs and an extended line as shown in Figure 1b. In this case,
the R-line coverage from an arc-to-line trajectory occupies a
larger area that can offer more R-lines in the central region.
How large the R-line coverage from an arc-to-line trajectory is
depends on how long the line extends beyond the two S-arcs.
Details will be given later in this section.
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First, we would like to show the numerical simulation result
of the R-line coverage for an arc-extended-line-arc trajectory
with angular coverage of 230◦ and 310◦ in Figure 8. Here for
the angular coverage of 230◦ we use Δh = 0.832(2H) and for
the angular coverage of 310◦ we use Δh = 0.485(2H). The
circle in the middle is the ROI corresponding to the angular
coverage of 230◦. Compared to the simulation results depicted
in Figure 7, we can see the ROI is already fully covered.

(a) (b)

Fig. 8. Numerical simulation result of two parallel circular arcs plus an
extended line (AELA). (a) R-line coverage of AELA in the plane z = 0
with angular coverage of 230◦ and Δh = 0.832�2H). (b) R-line coverage
of AELA in the plane z = 0 with angular coverage of 310◦ and Δh =
0.485�2H).

We still have one open question: how far should we extend
the line, i.e., how large Δh should be? From the analysis in
seciton III, we can see that the R-line coverage of the trajectory
of two parallel circular arcs plus a tight line has its minimum
in the plane z = 0. Therefore, we only investigate here the
R-line coverage for the arc- (extended)line-arc trajectory in the
plane z = 0.
Suppose the desired ROI radius is given and denoted as

RROI . To be practical, we calculate the fan angle using
RROI and denote it as α. We first start from the short scan and
calculate the minimum Δh that is needed to cover the ROI;
then we increase the angular coverage of the trajectory and
see whether the value of Δh depends on the angular coverage
or not. Figure 9a illustrates the R-line coverage of the arc-line
that needed to cover the ROI. In this case, the R-line coverage
from an arc-to-line trajectory has to cover the whole ROI, and
thus we can calculate the minimum line extension using the
following equation:

Δh

2H
=

RROI

R −RROI
(1)

If Δh is bigger than the value obtained from equation 1, we
get additional gain of R-line coverage in the central region, as
illustrated in Figure 9b.
With the increase of the angular coverage, the R-line cov-

erage from the arc-to-arc becomes larger in the plane z = 0.
Therefore, at some critical angular coverage, the requirement
of Δh is reduced. Comparing Figure 9a and 9c, point K is
the intersection between the ROI and the circle centered on
the point Oi. In Figure 9a, point K is on the boundaries of
the ROI and the missing R-line coverage region, but it is not
the furthest such point from Ae. However, when the angular
coverage increases, for example, in Figure 9b, point K is the
furthest point from Ae such that it is still on the boundaries of

the ROI and the missing R-line coverage region. Connecting
point K and O and extending it along the direction from
K to O, we get an intersection Ac, as shown in Figure 9c;
we denote the corresponding angular coverage as θc. The
requirement for Δh changes when the angular coverage pass
through θc. Suppose now the angular coverage is greater than
θc, as illustrated in Figure 9c, and draw a dashed circle through
points K and Ae such that it is tangent to the big circle where
Ai and Ae are located. Draw a line from point Ae to O and
intersect this line with the dashed circle at point W . Letting
the distance between O and W be Rx, we can obtain the
minimum requirement of Δh using the equation below:

Δh

2H
=

rx

R− rx

. (2)

Similar to the situation in Figure 9b, if we adopt Δh larger
than the requirement shown in equation 2, we get an additional
gain of R-line coverage in the central region in the plane z = 0,
as depicted in Figure 9d.

Let θ be the angular coverage, combining equations 2
and 1, we get a complete formula expressing the minimum
requirement for Δh:

Δh

2H
=

�
RROI

R−RROI
π + 2α ≤ θ ≤ θc

rx

R−rx

θc < θ ≤ 2π
(3)

Figure 10 depicts the minimum requirement for Δh for
different source-angular coverage according to equation 3. In
the figure, three differentRROI are used, i.e., 0.454R, 0.300R
and 0.156R. Figure 10 shows that when the angular coverage

180 220 260 300 360
0

0.2

0.4

0.6

0.8

Angular length of the S−arc

 

 

Δh

2�

RROI/R = 0.454
RROI/R = 0.300
RROI/R = 0.156

Fig. 10. Minimum Δh requirement for different angular coverage. Three
RROI are used, i.e., 0.454R, 0.300R and 0.156R, where R is the radius
of the S-arc.

approaches 360◦, the minimum requirement of Δh reduces
to zero. This is consistent with the conclusion in section III
that the two parallel circles plus an orthogonally attached tight
line has full R-line coverage. Although there is always a Δh

available to make sure that the ROI is fully covered by R-lines,
it is too expensive to do so when the angular coverage is too
small and the required ROI is too large, which could lead to
an impractical trajectory. However, for a trajectory with large
angular coverage and an ROI requirement that is not too great,
the two parallel circular arcs plus an extended line does offer
nice R-line coverage in the central region, while keeping the
cost of line extension low.
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(a) (b)

(c) (d)

Fig. 9. Relation between Δh and RROI (the desired radius of ROI), such that the R-line coverage of the arc-line covers the whole ROI in the plane z = 0.
The minimum short scan here is design according to RROI. (a) The R-line coverage from the arc-line should at least cover the whole ROI for the minimum
short scan, and we denote the corresponding extension of line as Δh�OI . (b) the increase of Δh leads to the increase of central R-line coverage as described
by the central dashed circle. (c) The R-line coverage from the arc-line is not necessary to cover the whole ROI thanks to the additional R-line coverage from
the arc-to-arc, when the angular coverage is bigger than θc that corresponds to Ac in the figure. (d) As in Figure (b), the increase of Δh will give us some
gain of the R-line coverage in the central region.

VI. CONCLUSION

We have investigated R-line coverage for a trajectory con-
sisting of two circles connected by a line. We have observed
that the R-line coverage is insufficient for a central region of
interest when the line is tightly fit between the circles. On
the other hand, if the line extends beyond the circle, we find
the nice result that there exists a central ROI that is fully

Fig. 11. Trajectory composed of two helices and a line.

covered by R-lines. How big this central region is depends
on how big Δh is. Also, we have shown that some further
gain is achieved when the length of the short-scan is increased
beyond its minimal value. From a practical implementation
viewpoint, the line extension is not very satisfactory because
it requires a short pause in exposure. One way to circumvent
this problem is to replace the two S-arcs by helical arcs that
touch the extended line at its endpoints as shown in Figure
11. We have done preliminary numerical simulations with this
trajectory and have observed that it retains essentially the same
properties of the trajectory studied in this work, while being
more practical.
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