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Zusammenfassung

Computertomographie (CT) ist ein weit verbreitetes, bildgebendes Verfahren in
der Medizin. Traditionelle CT liefert Informationen über die Anatomie eines Pa-
tienten in Form von Schichtbildern oder Volumendaten. Hierbei werden sogenan-
nte Hounsfield-Einheiten verwendet, die Aufschluss über die Gewebezusammenset-
zung geben. Aufgrund der polychromatischen Eigenschaften der für CT verwen-
deten Röntgenstrahlung sind die Werte für alle Materialien bzw. Gewebetypen
außer Wasser und Luft von deren Dichte und Zusammensetzung aber auch von ver-
schiedenen CT-Systemparametern und Einstellungen abhängig. Ziel der quantita-
tiven CT (QCT) ist es, Messwerte zu liefern die bestimmte Materialcharakteristika
möglichst exakt beschreiben. Dies kann z. B. die Dichteverteilung bestimmter Mate-
rialien wie Kontrastmittel oder die lokale Röntgenabsorption sein. Darauf aufbauend
sind verschiedene spezifische Anwendungen wie etwa Perfusionsdiagnostik oder die
Schwächungskorrektion für Positronen-Emissions-Tomographie realisierbar.

Diese Arbeit widmet sich drei wesentlichen Themengebieten der QCT. Nach einer
kurzen Übersicht über die technischen und physikalischen Grundlagen wird die spek-
trale Detektion von Röntgenstrahlung für CT behandelt. Hierbei werden zwei Simula-
tionskonzepte für CT-Detektoren vorgestellt, die sich für spektrale Detektion eignen.
Dies sind der integrierende Szintillationsdetektor und der zählende Direktwandler.
Für erstere existieren spezielle Varianten, die geeignet sind, um spektrale Daten
für quantitative CT zu liefern, der letztere liefert direkt spektrale Daten. Ziel der
vorgestellten Simulationen ist es, die Simulation eines kompletten CT-Scans der-
art zu beschleunigen, dass es möglich ist, entsprechende Detektorparameter im Hin-
blick auf die Qualität der rekonstruierten Daten zu optimieren. Dies wird durch
ein auf das spezifische Detektordesign zugeschnittene Simulationskonzept erreicht,
welches durch geeignete Lookup-Tabellen unterstützt wird. Verglichen mit Standard-
Partikelinteraktionssimulationen können somit um einen Faktor 1/200 kürzere Simu-
lationslaufzeiten erreicht werden. Die hierbei erreichte Genauigkeit liegt auf dem
gleichen Niveau wie die der Standardsimulationen und konnte mit realen Ergebnissen
von Prototypen und Messstationen abgeglichen werden.

Das zweite behandelte Themenfeld sind Algorithmen für QCT, die mit den ge-
wonnenen spektralen Messdaten Anwendungen der QCT realisieren. Den Kern dieses
Abschnitts bildet die Lokale Spektrale Rekonstruktion (LSR). Die LSR ist ein it-
eratives Rekonstruktionsverfahren und liefert eine exakte Beschreibung der lokalen
spektralen Eigenschaften des rekonstruierten spektralen CT-Datensatzes. Aus dieser
Beschreibung lassen sich direkt lokale quantitative Größen für die abgebildete Ana-
tomie ableiten. Mit Hilfe der LSR lassen sich somit verschiedene Anwendungen der
QCT formulieren. Wir zeigen dies exemplarisch an einer quantitativen Strahlaufhär-
tungskorrektur, an einer Schwächungskorrektur für Positronen-Emissions-Tomographie
und Einzelphotonen-Emissions-Tomographie und an einer Materialidentifikation.

Das letzte Themengebiet befasst sich mit der Rauschreduktion für QCT-Daten,
die bei CT grundsätzlich mit Dosiseinsparung verbunden ist. Wir stellen zwei neuar-
tige Rauschreduktionsverfahren vor: Zum einen eine bildbasierte Rauschreduktion
auf Histogrammbasis, die explizit auf die Eigenschaften multispektraler CT-Daten
zugeschnitten ist. Hier zeigen wir anhand synthetischer und realer Daten ein Rauschre-
duktionspotential von ca. 20%. Das zweite Verfahren ist ein nichtlineares Filter auf



Projektionsdaten, das ein punktbasiertes Projektionsmodell nutzt, um Strukturen in
den Projektionsdaten zu detektieren und zu bewahren. Die hier gezeigte Realisierung
stellt eine angepasste Variante des bekannten Bilateralfilters dar, bei dem das pho-
tometrische Ähnlichkeitsmaß durch ein strukturelles Ähnlichkeitsmaß ersetzt wird,
das spezifisch für den CT-Abbildungsprozess ist. Die Eigenschaften dieses Filters
werden an realen und synthetischen Daten untersucht. Dabei wird ein Rauschreduk-
tionspotential von etwa 15% für gemessene Patientendaten belegt.



Abstract

Computed Tomography (CT) is a wide-spread medical imaging modality. Tra-
ditional CT yields information on a patient’s anatomy in form of slice images or
volume data. Hounsfield Units (HU) are used to quantify the imaged tissue proper-
ties. Due to the polychromatic nature of X-rays in CT, the HU values for a specific
tissue depend on its density and composition but also on CT system parameters
and settings and the surrounding materials. The main objective of Quantitative CT
(QCT) is measuring characteristic physical tissue or material properties quantita-
tively. These characteristics can, for instance, be density of contrast agents or local
X-ray attenuation. Quantitative measurements enable specific medical applications
such as perfusion diagnostic or attenuation correction for Positron Emission Tomog-
raphy (PET).

This work covers three main topics of QCT. After a short introduction to the
physical and technological basics for QCT, we focus on spectral X-ray detection for
CT. Here, we introduce two simulation concepts for spectral CT detectors, one for
integrating scintillation and one for directly-converting counting detectors. These
concepts are tailored specifically for the examined detector type and are supported
by look-up tables. They enable whole scan simulations about 200 times quicker than
standard particle interaction simulations without sacrificing the desired precision.
These simulations can be used to optimize detector parameters with respect to the
quality of the reconstructed final result. The results were verified with data from real
detectors, prototypes and measuring stations.

The second topic is QCT algorithms which use spectral CT data to realize QCT
applications. The core concept introduced here is Local Spectral Reconstruction
(LSR). LSR is an iterative reconstruction scheme which yields an analytic charac-
terization of local spectral attenuation properties in object space. From this charac-
terization, various quantitative measures can be computed. Within this theoretical
framework, various QCT applications can be formulated. This is demonstrated for
quantitative beam-hardening correction, PET and SPECT attenuation correction and
material identification.

The final part is dedicated to noise reduction for QCT. In CT noise reduction
is directly linked to patient dose saving. Here, we introduce two novel techniques:
Firstly an image-based noise reduction based on joint histograms of multi-energy
data-sets. This method explicitly incorporates the typical signal properties of multi-
spectral data. We demonstrate a dose saving potential of 20% on real and synthetic
data. The second method is a non-linear filter applied to projection data. It uses
a point-based projection model to identify and preserve structures in the projection
domain. This principle is applied to a modified bilateral filter, where the photometric
similarity measure is replaced with a structural similarity measure derived from this
concept. We examine the properties of this filter on synthetic and real patient data.
We get a noise reduction potential of about 15% without sacrificing image sharpness.
This is verified on synthetic data and real phantom and patient scans.
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Chapter 1

Introduction

Computed Tomography (CT) is a widespread modality in diagnostic medical imag-
ing as it offers a fast and detailed insight into the patient’s anatomy. This work is
dedicated to Quantitative Computed Tomography (QCT). This branch of CT ap-
plications broadens the fields of application for CT by providing real quantitative
information on the scanned anatomy. Standard single-energy CT reconstruction as-
sumes mono-energetic radiation, however, common X-ray sources for medical CT are
polychromatic. QCT algorithms take this property into account to provide quanti-
tative information on tissue composition. With this extra data, functional imaging
applications or material identification becomes possible for CT. Within the scope of
this work, several novel techniques have been developed that cover the full range
of quantitative CT data processing from multi-spectral X-ray detection over quan-
titative CT reconstruction to specialized signal enhancement techniques for QCT
applications. This introductory chapter provides the fundamentals of Quantitative
CT and spectral detection whereas the following chapters mostly focus on novel QCT
methods developed within the scope of this theses. The following section introduces
the general concepts of Quantitative CT and gives a detailed overview of the structure
of this work.

1.1 Quantitative Computed Tomography and Spec-

tral Detection

Traditional CT measures the spatial distribution of the X-ray attenuation of an ob-
ject. The X-ray attenuation of a material is energy dependent, at specific energies it
is governed by the composition of the material, more precisely on its mass density
and the atomic number and composition of its elements. A common measure for
X-ray attenuation in medical CT is the Hounsfield Unit (HU). It is normalized to the
attenuation of water so that water gets the value 0HU in a CT dataset, while air gets
−1000HU. This normalization suggests a certain level of quantitativity of the HUs,
but in fact the HU value of a material other than water and air in a CT scan depends
on the system design and settings of the CT device as well as the characteristics of the
complete scanned object. This dependency is caused by the non-linear attenuation
characteristics of polychromatic radiation.

1



2 Chapter 1. Introduction

The basics of CT X-ray measurement and its properties are covered in the follow-
ing sections of this chapter. Here, X-ray tubes and detection principles are discussed,
the physical processes behind X-ray attenuation and measurement are introduced.
The last part gives a short overview on the most important quality metrics for the
acquired signals and shows how these metrics can be computed.

The term Quantitative Computed Tomography refers to one common property of
all QCT-methods: Their result values should be solely dependent on the material
properties. This problem cannot be generally solved with standard mono-energetic
CT measurements since the reconstruction problem cannot be solved analytically for
a single measurement with polychromatic sources. Spectral input data is required,
i. e. multiple measurements with different spectral characteristics are made for
each projection ray. Most quantitative CT algorithms require two spectral measure-
ments (e. g. [Alva 76]), for several scenarios more measurements are needed [Schl 08].
Dual Energy CT (DECT) measures two image-sets at different energy weightings,
e.g. by performing two scans with tube voltages set to 80 kVp1 and 140 kVp respec-
tively. The output quantities of these algorithms differ with respect to the diagnostic
demands: They range from energy-normalized attenuation values over physically mo-
tivated quantities like density and effective atomic number to spatial distributions of
whole attenuation spectra. Other QCT applications use the quantitative informa-
tion to support algorithmic post-processing of CT or Positron Emission Tomography
(PET)/ Single Photon Emission Computed Tomography (SPECT) data. The most
popular current Dual Energy CT diagnostic applications are bone removal [Zhen 08],
PET/SPECT attenuation correction [Heis 09], lung perfusion diagnostic or quantifi-
cation of contrast agent concentrations, for instance in the myocard.

1.2 Structure of this Thesis

Spectral X-ray detection techniques and their simulations are described in Chapter
2. It introduces special simulation approaches for two CT detection concepts: The
most common standard approach of energy-integrating scintillation detectors and a
more experimental one which has not yet reached commercial medical CT: Counting
semiconductor detectors.

Chapter 3 introduces QCT algorithms that process the spectral measurement
values: The first part focuses on general concepts of QCT algorithms, then Basis
Material Decomposition is introduced, which is an important basis for many QCT
methods. The last part gives an insight into the newly developed Local Spectral
Reconstruction algorithm. It models the spectral properties of CT measurement and
reconstruction and provides a unified framework for many QCT applications such as
beam hardening correction, energy normalization and material identification.

Since QCT methods require spectral input data, the signal processing differs much
from standard CT, for instance special reconstruction techniques are applied. Of
course, the patient dose of a QCT examination should not greatly exceed the dose of

1The peak acceleration voltage of X-ray tubes is usually given in kVp (kilovolt peak). An ac-
celeration voltage of 120 kVp results in a X-ray spectrum where the individual photon energies are
distributed in the range from 0 to 120 keV. Kiloelectronvolts (keV) are a common measure for the
kinetic energy of the accelerated electrons. Section 1.3 gives an overview on X-ray generation.



1.3. X-Ray Generation and Spectra 3

a comparable standard CT examination. Several common QCT methods, however,
are prone to measurement noise which leads to poor signal quality in the quantita-
tive output values. Consequently, specifically adapted signal improvement techniques
have to be applied to get the maximum signal quality. These methods should take the
properties of spectral data into account. Chapter 4 explains two novel signal enhance-
ment algorithms for CT: The first one is a purely histogram-based post-reconstruction
approach explicitly dedicated to spectral data, the second one is an edge-preserving
general purpose CT projection data-filter that uses a projection model to merge the
benefits of projection-based and image-based approaches.

Chapter 5 summarizes the results presented in this work and gives an outlook on
possible further research directions on QCT.

1.3 X-Ray Generation and Spectra

In the following sections the basics of CT systems and data acquisition are discussed.
This work focuses on third generation CT set-ups with a rotating X-ray source and
an arc-shaped detector in a gantry (see Fig. 1.1). The following descriptions assume
a world coordinate system (CS) with the origin in the center of rotation. For the
detector descriptions a commonly used detector coordinate system is used: Its z-
coordinate has the same direction as in the world CS, and the φ-coordinate points
along the detector arc.

detector

gantry

X-ray
fan

X-ray
source

x

y

z

z
ϕ

Figure 1.1: Third generation CT layout with rotating X-ray source and a single-
row detector. The arrows annotated with (x, y, z) indicate the world coordinate
system and the (φ, z)-arrows indicate the detector coordinate system. The symbol
� indicates an arrow pointing perpendicularly outwards the paper or display plain
towards the reader.

X-ray Tubes

Medical CT systems use X-ray tubes to generate X-rays. Figure 1.2a shows a basic
set-up of an X-ray tube. A cathode emits electrons which are accelerated by an elec-
trical field. The strength of the electrical field and hence the energy of the electrons
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are determined by the tube voltage. The electron beam hits an anode in which the
electrons are slowed down and Bremsstrahlung is emitted. Additionally, inner-shell
electrons of the atoms in the anode material are hit by high-energy free electrons and
ejected from the atom. This leaves the ionized atom in an excited state. The electron
hole is filled by an electron transition from a higher orbital to the lower one with the
hole. These transitions cause the emission of photons of discrete characteristic ener-
gies. The emitted spectrum is referred to as characteristic spectrum. The resulting
tube spectrum is a mixture of the Bremsstrahlung-spectrum and the characteristic
spectrum.

cathode

rotating anode

X-ray beam

focal spot

electron beam

exit window

tube housing

(a) Basic layout of a CT X-ray tube. (b) Possible wedge filter shape.

Figure 1.2: Tube model and wedge filter.

The materials used for the anode are combinations of tungsten, rhenium and / or
molybdenum because of their heat resistance and high density. Most of the energy
consumed by the tube is converted into heat, only less than 1% of the energy is
emitted in form of X-rays [Beut 00]. Several tube designs were introduced in order to
reduce the heat-induced wear and tear of the anode. Rotating anode tubes represent
the most common tube design in CT systems. CT systems have to support high
tube voltages and have to deliver high tube currents compared to other medical X-
ray imaging modalities, so the X-ray tubes need to deal with high peak power and
also high sustained power as continuous scans, for instance helical CT acquisitions,
demand long duty cycles of the X-ray tube.2 The tube design has to ensure a very
efficient cooling of the anodes. Due to the rotation of the anode, the electron beam
distributes its energy on circlular focal path instead of dissipating its energy in a
single spot of the anode material.

The focal spot of a CT tube has a certain extent which depends on several param-
eters. Generally, its size increases with higher tube current. Larger focal spot sizes
decrease the image quality as this causes a blurring of the projection signal. The

2The typical peak electrical power of a CT X-ray tube can exceed 100 kW.
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intensity profile of the focal spot can, for instance, be approximated by a Cauchy
distribution3 with a full-width half maximum (FHWM) in the range of 1 to 2mm.

Figure 1.4a shows a typical tube spectrum for a tungsten tube at a tube voltage
of 120 kV. Tube voltage settings for medical CT range from about 60 kVp to 150 kVp.
The intensity of the X-ray beam can be adjusted with the tube current setting. Mod-
ern CT tubes can deliver tube currents up to 800mA. The acceleration voltage is the
most important parameter regarding the shape of the spectrum of Bremsstrahlung.
Other influences such as anode material, tube model, tube current and wear and tear
[Erdl 09] have additional minor influences. The peak locations of the characteristic
spectrum depend on the target material and the transition energies between its elec-
tron shells4. The visible peaks in Fig. 1.4a correspond to the transition energies for
tungsten. The larger peak resembles the Kα2 and Kα1 transition between the K and
the L2 / L1 shell at 57.99 keV and 59.32 keV. The smaller peak is caused by the Kβ1

and Kβ2 transition between the K and the N3 / N2 shell at 67.25 keV and 69.07 keV
[Lass 99]. Tube spectra are modeled using Monte Carlo simulations of particle inter-
actions such as Geant [Agos 03, Alli 06], measurements [Aich 04] or hybrid approaches
[Tuck 91].

cathode

focal spots

electron beam deflection coils

anode

Figure 1.3: Schematic illustration of an X-ray tube with single FFS. The two dots
on the anode represent the alternating focal spot positions. The deflection coils force
the electron beam to alternate between to trajectories indicated by the hatched and
solid line.

Some CT X-ray tubes have the possibility to deflect the electron beam in various
directions at very high frequencies. This is schematically illustrated in Fig. 1.3. This
way, multiple alternating focal spot positions can be achieved. This technique is called
flying focal spot (FFS) [Kach 04]. This kind of super-sampling can be used to increase
the maximum possible resolution for a given detector sampling distance. An FFS
along the patient axis (z-axis) is called z-FFS. It increases the inter-slice resolution.
The perpendicular φ-FFS increases the intra-slice resolution. Each combination of
FFS modes has to be incorporated into the reconstruction algorithms.

3Determined by applying the distribution fitting program EasyFit (MathWave, Dnepropetrovsk,
Ukraine) to a measured tube profile.

4The electron configuration of atoms is described by the atomic shell model. An overview on
theories of atomic shell models is given in [Gree 09].
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Tube Pre-Filters

Low energy X-rays are usually absorbed almost completely in the body and therefore
do not contribute to the signal but would increase X-ray dose. Additional pre-filters
are applied at the exit window of the tube to eliminate low energy X-rays. Typically
these filters consist of up to two millimeters of titanium and/or aluminum (see Fig.
1.4a for an example spectrum).
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(a) Spectrum of a tungsten tube at 120 kVp
acceleration voltage with and without filter.
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Figure 1.4: Tube spectra with and without pre-filtering. Tube spectra generated with
drasim (by Karl Stierstorfer, Siemens AG, Forchheim). The spectral attenuation
coefficients were taken from the XCOM database of photon cross sections [Berg 98].

When scanning the human body, in most situations the center rays of an X-ray
fan-beam have to pass through more matter than the outer rays and are attenuated
much stronger, so more dose is required in the center. A so called bow-tie or wedge
filter is used to shape the intensity of the fan beam accordingly. It typically consists
of an aluminum slab with a central round cavity. Figure 1.2b shows a possible layout
of such a filter. At the edges, the wedge filter can reach a thickness of approx. 3 cm
whereas there is almost no filtering in the center. Figure 1.4b shows examples how the
pre-filtered tube spectrum from Fig. 1.4a is modified by passing through differently
thick parts of an aluminum wedge filter5. The corresponding effective energies Eeff

become larger with increasing attenuation. Eeff is the centroid of the respective
spectrum. This effect is called beam-hardening. It is a side-effect of the wedge filter
which makes the characteristics of the X-ray spectrum inhomogeneous throughout
the X-ray fan [Mail 09]. This has to be taken into account when designing spectral
CT applications.

A third category of tube filters also plays a specific role in Dual Source CT devices
such as the Siemens Definition Flash (Siemens AG, Forchheim, Germany). It employs
two tube-detector pairs and produces two measurements simultaneously at different
tube voltages. For quantitative CT applications with Dual Source data it is desirable

5The attenuation coefficients for computing attenuated spectra are taken
from the NIST XCOM database of photon cross sections. It is available at
http://www.nist.gov/pml/data/xcom/index.cfm.

http://www.nist.gov/pml/data/xcom/index.cfm
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to use two spectra with as little overlap as possible in order to ensure the maximal
spectral separation between the two acquired datasets. For this task, usually the two
tubes are operated at two different kVp settings. Additionally, a special filter can be
used to attenuate the lower energy components in the high energy tube spectrum.
In practice, a thin tin filter is used. Figures 1.5a and 1.5b compare two pairs of
80 kVp and 140 kVp spectra with and without tin filter and the respective relative
overlaps. The spectral separation is clearly improved as the low energy components
of the 140 kVp spectrum are effectively suppressed by the tin filter.
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Figure 1.5: Spectral overlap without and with tin filter (data from drasim by Karl
Stierstorfer, Siemens AG, Forchheim). The intensities are displayed in arbitrary units
(a. u.).

1.4 Detection Concepts

Detectors are used to convert the incoming attenuated X-ray radiation into an electric
(digital) projection signal which is then reconstructed to a 2-D or 3-D distribution
of local object attenuation values. CT detectors are usually equipped with an anti-
scatter grid (collimator) that blocks scattered radiation, i.e. X-ray photons with a
trajectory other than the direct line from the X-ray source to detector pixel. It is
made from a very dense material like tungsten. For standard CT reconstruction
algorithms, scattered X-ray quanta do not contribute to the usable signal and reduce
the signal quality.

CT X-ray detectors can be distinguished by their working principle (scintillation
detectors and semiconductor detectors) and the type of output signal (integrating
and counting detectors). Table 1.1 gives an overview of the fields of application of
these detectors. Figure 1.6 illustrates the different signal generation principles for an
idealized case with optimal integrating and counting detectors at a very low X-ray
flux: Ideal integrating detectors yield a signal that is directly proportional to the
complete incoming X-ray energy which is the sum of all X-ray quanta weighted with
their respective energy (Fig. 1.6b). A counting detector may distinguish incoming
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quanta with respect to their energy. In practice, a counting detector is provided with
several energy thresholds and yields the number of detected quanta above or between
the thresholds. This results in multiple output signals for a single measurement. An
example signal for one threshold is shown in Fig. 1.6c. Here we assume each X-ray
photon deposits its complete energy in one interaction event and each interaction
event is observed instantaneously. Effects of practical systems such as noise or low-
pass characteristics of the detection process are neglected for the sake of simplicity.
Realistic system responses are considered in Chapter 2 which is dedicated to the
simulation of detector systems.

Working principle
/ Output type

Integrated energy Photon counts

Scintillation CT, Digital Radiography PET / SPECT
Direct conversion Mammography (a-Se) CT (experimental), PET,

SPECT [Shar 08]

Table 1.1: X-ray detector types and typical fields of application. The abbreviation
a-Se refers to amorphous selenium detectors.

1.4.1 Scintillation Detectors

Integrating scintillation detectors are the current state of the art technology for med-
ical CT systems. Figure 1.7a shows a basic layout of the detector. The detector
converts the measurements of the intensity of attenuated X-rays to a digital signal
which is then transmitted from the rotating gantry to the image reconstruction system
(IRS) using slip rings.

The incoming X-rays are first absorbed by the scintillation crystal. The absorbed
energy is emitted as visible light. The visible light is then detected by the photo-
diode layer and converted into an electrical signal. Materials used for the scintillation
crystals in CT are cadmium tungstate (CdWO4) or gadolinium oxysulfide doped with
praseodymium (Gd2O2S:Pr or GOS, see Fig. 1.7b). The scintillation crystal is divided
up into small blocks which correspond to the detector pixels. The gaps between the
blocks are called septa. These are filled with a highly reflective material like titanium
dioxide (TiO2) that prevents optical light from entering the scintillator crystal that
corresponds to another pixel. The top of the scintillator is also coated with a reflective
material.

The scintillation crystal has to fulfill several criteria in order to be qualified for
medical CT applications: The necessary frame rates of well over 1000 frames per
second require a sufficiently small decay time, otherwise portions of the signal from
one temporal sample would be present in following sample. This causes a smearing
of the signal over time and thus decreases signal quality. Materials with high atomic
numbers have to be used, since the X-ray absorption of the material has to be suffi-
ciently high, so that most incoming X-ray photons interact within a thin scintillator
layer.

The electrical current from the photodiode is integrated over a given amount of
time. At the end of the integration period, the resulting charge is read-out and the
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Figure 1.6: Sample output signals for ideal energy integration and ideal photon count-
ing for synthetic input signal of randomly distributed interaction events at different
energies.
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collimator
scintillator

materialseptum
photodiode

reflector

(a) Basic layout of a scintillator as used in CT. (b) Gadolinium oxy-
sulfide doped with
praseodymium.

Figure 1.7: Scintillation detectors.

next integration period starts. One integration time plus the read-out time is called a
reading. The typical amount of readings per gantry rotation is about 1000 if no FFS
is used. If the rotation period is 0.5 s, the reading time corresponds to approximately
500µs.

The integrated signal from the photodiodes is amplified, digitized and processed
by an analog-to-digital converter (ADC). The dynamic range of the detected signal
is very large and the amount of data that has to be transferred from the gantry
should be kept small. In order to reduce the quantization noise, the detector ASIC
(application specific integrated circuit) logarithmizes the signal and transforms it to
a pre-defined data-range during quantization before the signal is transmitted to the
IRS. These computations on the detector ASIC reduce the required datarate for the
transfer of the measurements from the gantry to the IRS.

Since one reading time comprises thousands of X-ray interaction events, the indi-
vidual events cannot be resolved in the output signal. The output signal corresponds
to the total detected energy of all incoming X-ray photons during one reading. Figure
1.8 shows the typical energy sensitivity of such a detector system. For low energy
photons it is rather linear as the amount of optical photons generated in the scin-
tillator is linearly dependent on the energy of an incoming X-ray photon. The step
at approx. 50.2 keV corresponds to the K-edge of gadolinium. At this point the
energy of the incoming X-ray photons is sufficient to eject inner-shell electrons from
the K-shell of the gadolinium atom. The average depth of interaction decreases due
to increased photoelectric absorption, causing more optical photons to be generated
further away from the photodiode, resulting in a higher signal loss. At very high
energies around 100 kV and above, the spectral sensitivity drops, as the absorption of
high energy photons decreases and an increasing amount of photons passes through
the detector without interacting with the scintillator material. Section 2.2 introduces
a concept for efficiently simulating these detectors and gives a detailed analysis of
their properties.
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Figure 1.8: Detector responsivity D(E) for a 1.4mm Gd2O2S scintillator CT detector
[Heis 08]. This is the relative detector output signal strength for a detected quantum
of given energy.

1.4.2 Semiconductor Detectors

Figure 1.9 displays the basic layout of a semiconductor detector. The principle of
counting detectors for medical CT applications was originally introduced in 1998
[Fisc 98]. Since then, an increasing amount of publications and prototype systems
has shown the potential of directly-converting counting detectors for X-ray imag-
ing modalities like Computed Tomography and others. Some of the most renowned
are the Medipix [Camp98] / Medipix2 [Llop 01, Tlus 06], the PILATUS [Schm04] or
the CIX detector [Kraf 07]. The latter represents a combined integrating/counting
detector concept. In combination with room-temperature semiconductors like cad-
mium telluride (CdTe) or cadmium zinc telluride (CdZnTe or CZT) these detector
systems benefit from accessing the spectral information of photons and superior low-
signal properties. The cathode and the pixelized anodes produce an electric field in
the semiconductor material. The signal generation from the X-ray photons to final
counts can be divided into three different stages:

1. Interaction of photons inside the sensor material and deposition of charges.

2. Motion of the charges towards the electrodes and thereby inducing electric
signals.

3. Amplifying and counting inside the electronics.

Unlike standard scintillation detectors, semiconductor detectors can be used for
photon counting in CT. Their decay time is sufficiently low and a high readout fre-
quency of the signal compared to the frequency incoming X-ray photons can be cho-
sen, so it is possible to identify individual X-ray interactions. Figure 1.10 illustrates
this property for two different integration times. The frequency of X-ray interactions
within a detector pixel is dependent on the X-ray flux (X-ray energy per unit area
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and time) and the pixel area. Semiconductor detectors offer the necessary proper-
ties: The shaping width of the signal of an individual event can be adjusted to a few
nano-seconds and low signal cross-talk between pixels allows for pixel areas below
0.05mm2 [Bald 09].

semiconductor

common cathode

pixelized anodes

e-

+ location of
interaction

electron cloud

hole cloud

fluorescence
photon

Figure 1.9: Basic layout and working principle of a directly converting semiconductor
detector.

Section 2.3 contains an in-depth analysis of the signal properties of a practical
counting semiconductor detector concept and introduces a simulation concept for this
detector type.
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Figure 1.10: Output signals for two different Gaussian impulse responses with FWHM
10ns and 50 ns. In the 10 ns signal most of the pulses remain distinguished and their
locations and pulse heights can be recovered by a suitable discriminator. The 50 ns
signal does not show this property, so it is only suited for energy integrating detection.
The average frequency of events in the input signal is 50MHz.
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1.5 Spectral CT Measurement

Spectral CT detection refers to producing multiple measurements of the same object
with different spectral weightings. The spectral weighting is defined by the tube
spectrum and the spectral sensitivity of the detector. In spectral detection techniques
one of these or both are changed between measurements. The spectral weightings
should have as little overlap as possible. This enhances the discrimination between
the spectral measurements which is beneficial for QCT algorithms.

Usually only two spectral measurements are created due to dose limitations and
the fact that most quantitative CT algorithms do not benefit from additional spectral
measurements. This fact can be attributed to the specific attenuation properties of
body materials in the CT energy range (see Sec. 1.6.1).

Dual kVp: The easiest method for producing spectral measurements is called Dual
kVp [Kelc 79]. For this method two subsequent CT scans are performed at different
tube voltages, e.g. 80 kVp and 140 kVp. No special equipment is needed for this
method. In medical CT, this method is prone to motion artifacts as the alignment of
the two datasets cannot be ensured due to patient motion in-between the two scans.
However, this can be a valid method for evaluating quantitative CT algorithms on
phantom data.

Dual Source: Dual Source CT is similar to dual kVp with the two CT scans being
performed simultaneously by a special CT system. In this system, the gantry houses
two tube-detector pairs A and B with a fixed angular offset (see Fig. 1.11). The
two X-ray tubes are operated at different tube voltages. Flohr et al. have presented
an evaluation of one of the first commercially available medical Dual Source systems
in [Floh 06]. More recent systems offer an optional tin filter on one tube to increase
spectral separation (see Fig. 1.5) whereas the two detectors are usually identical
in terms of spectral sensitivity. Most available systems, however, use differently
sized detectors due to space restrictions within the gantry. So the measurements of
the smaller detector offer a limited field of view (FOV). The data from the larger
detector can be used to compensate for truncation artifacts in the reconstruction but
Dual Energy data is only available for the smaller FOV. Since the two tube-detector
pairs are operated simultaneously, scatter radiation from tube A impairs the signal
of detector B and vice versa. This is a major drawback of this technology, as this
property decreases signal quality and leads to an increased patient dose.

KVp-switching: KVp-switching is another tube-based approach that switches the
tube voltage between two readings (see [Zou 08] and [Xu 09]). As reading times are
typically in the range of hundreds of micro-seconds, a special tube capable of chang-
ing the tube voltage very quickly is required. Due to dose efficiency, the tube current
should also be adjusted for different kVp-settings as the attenuation properties of
human body tissue are very different for different X-ray energies. The projections ac-
quired with this approach are not perfectly aligned as the projections are interleaved.
Missing projections have to be interpolated.
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detector A

detector B
tube B

tube A
gantry

Figure 1.11: Concept of Dual Source CT.

Dual layer detectors: This technology uses a variation of the detector spectral
sensitivity to produce measurements at different energy weightings. Two scintillation
detector layers are stacked upon each other and the top detector layer is a pre-filter
for the lower one. This technology is also referred to as sandwich detector. Figure
1.12 shows a possible realization of this concept. The detector efficiency is lowered, as
the top layer photodiodes and wiring absorb parts of the X-rays and escape photons
may enter the other layer and impair the energy separation of the layers [Kapp 09a].

scintillator material
reflector / septa

photodiode layer

substrate / wiring

Figure 1.12: Concept of a dual layer detector.

Counting detectors: Spectral measurements can be conducted with counting de-
tectors by using multiple energy-thresholded photon counts. Theoretically, X-ray
counting for medical CT can be performed with scintillators and semiconductor de-
tectors. As semiconductor detectors have the advantage of being very fast and having
very limited cross-talk between channels, a lot of effort has been put in evaluating
the suitability of these detectors for medical CT. However, still some issues have to
be resolved before this technology becomes commercially available in medical CT
scanners. Counting detectors perform especially good at low X-ray flux, at high
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flux levels, which typically appear in medical CT, several problems arise: Signal sat-
uration prevents distinction of individual detection events and polarization of the
semiconductor material affects the signal quality.

Due to physical effects, material defects and technical limitations the discrimina-
tion of X-ray quanta cannot be perfect. This leads to a limited spectral separation
between the spectral sensitivities for each threshold signal which is dependent of the
incoming X-ray flux. Figure 1.13 shows spectral sensitivities for thresholds produc-
ing photons counts below and above 60 keV at low X-ray flux and their overlap for a
140 kVp tube spectrum.
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Figure 1.13: Spectral sensitivity example for a counting semiconductor detector with
thresholds set to 5 keV and 60 keV. Due to several effects like cross talk, escape photons
and signal pile-up, the spectral separation is reduced by a considerable overlap of the
sensitivity curves. This example was generated using SimSD [Bald 09].

This section only lists the most common methods for multi-energy data acqui-
sition. Alternative methods have been published, for instance, Rutt and Fenster
[Rutt 80] present a split-filter approach. For this method, one half of the fan- / cone-
beam is filtered differently. The two detector halves produce signals with different
energy weightings. These methods are not commonly used in practical CT, so they
are not considered here.

1.6 CT Measurement Process

1.6.1 Physics of X-Ray Attenuation

Physical effects

When X-rays pass through matter, a fraction of the X-ray quanta is absorbed and / or
deflected from the original path. This process is called attenuation. Different physical
effects contribute to the total attenuation. The individual contributions of these
effects are non-deterministic and depend on the energy of the X-ray quanta. The
following types of interaction of radiation with matter are known:
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• Coherent (Rayleigh) scattering

• Incoherent (Compton) scattering

• Photoelectric absorption

• Pair production (in nuclear field and electron field)

The attenuation of a material is defined by its atomic composition and the mass

density of the elements. Figure 1.14 shows the mass attenuation function
(

µ
ρ

)
(E) of

water over energy E. Here, µ denotes the attenuation function and ρ the mass density.
This quantity is dependent on the effective atomic number Zeff of the material. The
mass attenuation function of water is plotted over a very large range of energies
on a logarithmic scale. The individual contributions of all the effects introduced
above are also shown. The relevant energy range for medical CT from approximately
30 keV to 150 keV is marked by the vertical bar. The only two major contributors
to the attenuation function in this range are incoherent (Compton) scattering and
the photoelectric absorption. Figure 1.14b shows only those two components in the
energy range of CT on a linear scale. In this range, Compton scattering is almost
constant with respect to energy whereas the photoelectric absorption asymptotically
approaches zero towards the upper bound of the energy range.

Figure 1.15 shows the mass attenuation of selected elements and its two major
components incoherent scattering (Fig. 1.15a) and photoelectric absorption (Fig.
1.15b). The selection covers a wide range of atomic numbers. The photoelectric
absorption shows a large variation with respect to the atomic number Z and the
X-ray energy. For high-Z materials like tungsten or lead, a K-edge is present, as
the relevant transition energies between the K-shell and other shells lie within the
CT energy range. This causes the discontinuities in the tungsten and lead lines of
Figs. 1.15b and 1.15c. For elements with lower atomic numbers these transition
energies are below 30 keV and therefore no such discontinuities are visible. Compared
to photoelectric absorption, the dependence on the atomic number is smaller for
incoherent scattering.

Spectral Attenuation Coefficient

The spectral attenuation coefficient µ(E) expresses the total attenuation of a material
with respect to energy. The mixture rule [Hubb 69, McCu75] allows to approximate

the mass attenuation function
(

µ
ρ

)
(E) of a material with errors below one percent for

the CT energy range. For a material M consisting of N elements with the elemental

mass attenuation functions
(

µ
ρ

)
i
(E), atomic mass Zi and relative frequency ri of the

element in the compound for i = 1 to N , the mixture rule reads as follows:

(
µ

ρ

)(M)

(E) =
1

∑N
i=1 riZi

·
N∑

i=1

riZi ·
(
µ

ρ

)

i

(E). (1.1)
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(b) Mass attenuation of water in the CT energy range.

Figure 1.14: Mass attenuation function of water and its contributions. Data taken
from XCOM database [Berg 98].

For water (H2O) with ZH = 1u and ZO = 16 u we get the following mass attenu-
ation6:

(
µ

ρ

)(H2O)

(E) =
1

2 + 16
·
(
2 · 1 ·

(
µ

ρ

)(H)

(E) + 1 · 16 ·
(
µ

ρ

)(O)

(E)

)
. (1.2)

The spectral attenuation coefficient µM(E) of a material is obtained as follows:

µM(E) = ρM ·
(
µ

ρ

)(M)

(E) (1.3)

6The atomic mass unit “u” equals approx. 1.660 · 10−27 kg.
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(a) Incoherent attenuation
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(b) Photoelectric effect
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Figure 1.15: Mass attenuation function and its two major components in the CT
energy range for various elements. Data taken from XCOM database [Berg 98].

where ρM is the density of the material usually given in g
cm3 . The mass attenuation

function has the unit cm2

g
, so the unit of the spectral attenuation coefficient is cm−1.

Using Eq. (1.1) the spectral attenuation of any material with known composition can
be modeled. The ICRU 46 report [ICRU92] summarizes the chemical composition
and photon-cross sections for a variety of biological tissues. The spatial distribution
of the spectral attenuation coefficients should ideally be measured by a single-energy
CT device for an effective energy Eeff .

Attenuation Law

Having determined the spectral attenuation coefficient of a material M, the number
of non-attenuated photons can be computed with the attenuation formula (Beer-
Lambert law):
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I(E) = S(E)e−lµM(E) (1.4)

where l represents the material thickness, S(E) the number of quanta per energy
E and I(E) the intensity of the quanta passing through the object without being
attenuated. If a non-homogeneous material with a spatial distribution of spectral
attenuation coefficients µ(E, r) is exposed to radiation with a spectral energy distri-
bution S(E), the attenuation law reads:

I(E) = S(E)e−
∫+∞

0
µ(E,lθ,t(α))dα (1.5)

For 2-D slice reconstruction, r ∈ R2 denotes the location in the world coordinate
system and the expression r = lθ,t(α) : R → R2 represents a parameterization of the
X-ray beam with an angular parameter θ and a distance to the origin t. Figure 1.16b
illustrates this geometry.

Detector

Origin

Source

c = 0

c(β, ν)

r

l̂ ν,
β
(α
)

l̂ν,0
(α)

ν

(a) Fan beam projection geometry.

Origin

t = 0

t(θ, r)

r

l θ,t
(α)

l θ,0
(α)

θ

(b) Parallel beam projection geometry.

Figure 1.16: Notation for fan- and parallel-beam geometries.

Section 1.3 showed that X-ray tube spectra are not mono-energetic and Sec. 1.4
introduced the type-dependent spectral sensitivities D(E) of CT detectors. These
properties have to be taken into account when formulating the relation between in-
put spectrum S(E), attenuator µ(E, r) and corresponding output signal Iθ,t of the
detector channel and reading corresponding to the ray parameters θ and t:

Iθ,t =

∫
∞

0

S(E)D(E)e−
∫+∞

0
µ(E,lθ,t(α))dαdE (1.6)

1.6.2 CT Reconstruction

The goal of CT reconstruction is to recover the spatial distribution of attenuation
coefficients from the measured Iθ,t-values. In classical single energy CT, the energy
information of the spectral attenuation coefficient is lost due to the measurement
process and cannot be recovered. Therefore the polychromatic characteristics of the
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Figure 1.17: Schematics of an X-ray attenuation measurement.

(a) Slice image of a clock phantom. (b) Measured intensities. (c) Sinogram of integrated at-
tenuation values.

Figure 1.18: Left: Slice image of a clock phantom. The attenuation coefficients
at 64 keV are gray-coded (intensity window center (c): 0.016 mm−1, width (w):
0.032mm−1). Middle: Measured intensities Iθ,t for mono-energetic radiation at 64 keV
(arbitrary units). Right: Corresponding sinogram of attenuation values (arbitrary
units). The gantry rotation angle θ (ordinate direction) covers one full rotation, the
detector channels are arranged on the horizontal axis.

input spectrum are neglected and instead of an input spectrum S(E) and a detection
sensitivity D(E), an effective detected intensity I0 is measured in a calibration step,
in order to recover an effective attenuation µ̄(r). Figure 1.17 depicts the set-up of
a standard X-ray attenuation measurement. The source S emits a flux of X-ray
quanta at an object O. The object consists of X-ray attenuating materials. They are
described by the spectral attenuation coefficient µ(E, r) at position r. The detector
D registers the quanta which have passed through the object. Two independent
measurements without and with the object are performed. The first measurement
yields the measured intensity in air, called I0, the second one yields the attenuated
intensity:

I(θ, t) = I0e
−

∫+∞

0
µ̄(lθ,t(α))dα. (1.7)

This equation can be re-formulated to:
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P (θ, t) = ln

(
I(θ, t)

I0

)
= −

∫ +∞

0

µ̄(lθ,t(α))dα. (1.8)

The collection of all measured values P (θ, t) is called sinogram because each point
r in the world coordinate system can be associated with a sinusoidal trace in the pro-
jection space of θ and t. Figure 1.18 illustrates relation between the spatial distribu-
tion of attenuation values µ(E, lθ,t(α)), the resulting intensities Iθ,t and the projected
attenuation values P (θ, t) on a simple phantom for a circular single-slice CT scan.

Equation (1.8) is called a Radon Transform [Rado 17]. Unlike Eq. (1.6), it can be
solved for µ̄(r) analytically. Many different reconstructions exist, all of which serving
specific purposes. Currently, the most popular reconstruction technique in CT is Fil-
tered Back Projection (FBP) [Kak 01]. Several variants of FBP have been developed
for different acquisition geometries. A variant for 3-D cone beam reconstruction is
called FDK [Feld 84]. Helical tube and detector trajectories are used to quickly cover
larger fields of view. This requires an adapted reconstruction technique called Spi-
ral or Helical CT reconstruction [Kale 90]. Special reconstructions are also required
for non-circular acquisition trajectories (for instance saddle trajectories [Pack 04]) or
circular short scan acquisitions [Noo 02] which do not cover the minimally necessary
acquisition angle for FBP of 180◦ plus cone / arc angle. This is especially interesting
for C-arm CT reconstruction, where a full circle trajectory is not always possible.

Compressed sensing reconstruction techniques are supposed to cope with limited
projection data. Prior image constrained compressed sensing (PICCS) [Chen 08],
for example, may be used to reconstruct data even for under-sampled projection
data, where standard FBP reconstructions suffer from strong artifacts. Iterative re-
construction schemes like the Ordered Subset Expectation Maximization (OSEM)
algorithm [Huds 94, Mang 95] provide good insensitivity to measurement noise at the
cost of increased computational efforts. These techniques are commonly used for
PET / SPECT reconstruction as FBP does not cope well with the typically bad
signal to noise ratio (SNR) of PET / SPECT data. Recently, these techniques be-
come increasingly attractive for CT reconstruction as well, since the performance
of modern multi-core processors, field-programmable gate array (FPGA) boards or
general-purpose computing on graphics processing units (GPGPU) allows to perform
these reconstructions in an acceptable computation time even for CT. The recon-
struction times of current CT systems for common scan protocols are in the range of
several seconds to up a few minutes depending on the type of the CT scan.

Indirect Fan-Beam FBP Reconstruction

In this section we briefly introduce a basic indirect fan beam FBP reconstruction.
Many of the algorithms introduced in this work make use of FBP-based reconstruc-
tion algorithms. The following one can be used for very basic realizations of these
algorithms. This reconstruction consists of three steps which are illustrated in Fig.
1.19 for a single line of the sinogram shown in Fig. 1.19a:

1. Rebinning of the fan-beam data to parallel-beam data by interpolation (Fig.
1.19b).
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(a) Original fan-beam sino-
gram.

(b) Re-binned sinogram.

(c) Line excerpt before and after filtering. (d) Back-projected filtered line.

(e) Reconstructed slice image after 1152 back-
projections (c: 0.03 mm−1, w: 0.06 mm−1).

Figure 1.19: Example illustration of the indirect fan-beam FBP reconstruction steps.
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2. Filtering of the data with a high-pass kernel (Fig. 1.19c).

3. Back-projection of all projections into image space (Fig. 1.19d).

We denote the fan beam projections P̂ (ν, β), where ν is the gantry angle and β
is the channel angle (see Fig. 1.16). The rebinned data is denoted P (θ, t).

The transformation between fan beam and parallel beam coordinates is given by
θ = β + ν and t = D sin(β). D is the distance between X-ray source and coordinate
origin.

The filtering is usually performed in frequency space in detector channel direction.
First, a discrete Fourier transform (DFT) is performed on a line of detector chan-
nels, the transformed line is multiplied with the filter kernel and an inverse Fourier
transform (IDFT) is applied. The ideal reconstruction kernel is a high pass kernel of
the form H(w) = |w| for the frequency coordinate w. As the DFT has its maximum
frequency wN at one over half the sample distance (Nyquist frequency fN), the ker-
nel has to be cut-off at this frequency. This kernel is called Ram-Lak kernel. High
frequencies are usually suppressed by practical reconstruction kernels as these usu-
ally have a bad SNR. The Shepp-Logan kernel, for instance, uses a cosine-window
which attenuates higher frequencies. Figure 1.20 compares some well known kernels.
In practice, each CT manufacturer uses an individual set of reconstruction kernels
which are adapted to specific applications. For comparisons with respect to image
quality and noise reduction, we use the above mentioned standard kernels and an ad-
ditional set of modified cosine kernels with an easily steerable trade-off between noise
and sharpness. We refer to these kernels as CosXXX kernels where XXX stands for
a two or three digit number indicating the cut-off frequency fc relative to the Nyquist
frequency. Cos50 represents a kernel with a cut-off frequency at 50% of the Nyquist
frequency, Cos675 means fc = 0.675 · fN.

The calculation rule for the discrete filter of length l samples is as follows:

K[i] = K[l − i− 1] =
i

l
· π

Nr
cos

(
π · i
ic

)
(1.9)

for
{
i ∈ N|0 ≤ i < 1

2
· l
}
. The cut-off index is defined as ic = l · fc

fN
and Nr is the

number of readings per rotation.
The back-projection requires the computation of t for all projection angles angles θ

and all spatial samples r in the image space. This requires an additional interpolation
of the filtered projection data in order to find the projection value for the distance
coordinate t.

1.6.3 Beam Hardening

As mentioned in the previous section, the polychromatic characteristics of the radi-
ation are neglected in single energy CT reconstruction. If the input spectrum was
mono energetic at energy Eeff , the equation µ̄(r) = µ(Eeff , r) would hold. Applying
Eq. (1.7) to measurements with polychromatic radiation causes artifacts in the re-
constructed images. When X-ray spectra are attenuated by matter, their effective
energy shifts towards higher energies, as lower energy components are attenuated
more strongly than higher ones. This effect is called beam hardening and causes an
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Figure 1.20: Reconstruction kernels for parallel-beam FBP.

under-estimation of the effective attenuation of strong attenuators. If this property
is not dealt with, it leads to artifacts in the reconstructed images. This causes homo-
geneous areas in reconstructed images to become darker towards the inside. Figure
1.21 shows a simulated example of an elliptical water phantom with two dense bone
insets. The cupping and streak artifacts are due to the beam hardening of the water
and especially the strongly attenuating bone insets.

We illustrate this effect and its correction on a simple example for beam hardening
in water: For the filtered 120 kVp tube spectrum from Fig. 1.4a and the detector’s
spectral sensitivity of Fig. 1.8, we get an effective energy of approx. 69.1 keV. This
energy is the centroid of the product of tube spectrum and detector sensitivity. The
attenuation coefficient for water is 0.194 cm−1 at 69 keV (see Fig. 1.14b). This is the
desired value which will be scaled to 0.0HU. For the center point of a slice through
a water cylinder of 10 cm diameter, the beam hardening causes the effective energy
to rise to approx. 74.0 keV corresponding to an attenuation coefficient of 0.189 cm−1

for water. The center of the reconstructed slice through the water cylinder will have
the erroneous value of −25.8HU (including the effects of reconstruction of beam-
hardened data). The task of a beam hardening correction is to replace the measured
projected attenuation value 1.89 with the value 1.94 (0.194 cm−1 · 10 cm = 1.94) that
would be observed with mono-energetic radiation of 69.1 keV.

Various beam hardening correction algorithms exist. For a soft-tissue calibration,
projection measurements through soft-tissue like materials of variable known thick-
nesses are performed. For these, the equivalent water thicknesses are known. A simple
function is fit through the pairs of measured and expected values. This function is
inverted and then used as a look-up table: For each measured attenuation, the equiv-
alent water thickness is looked up, which then replaces the measured attenuation.
If bone-induced beam hardening is also corrected, a separation into bone and water
components can be performed (see for instance [Jose 78, Nalc 79]). An approach that
additionally deals with the presence of the prevalent contrast agent iodine is given in
[Jose 97]. For Dual Energy CT, special quantitative correction methods exist. These
take advantage of the two measurements at different energy weightings and special
properties of the attenuation functions of body tissues. Examples for this type of
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(a) CT simulation result with mono-energetic
radiation.

(b) CT simulation result with 120 kV tube
spectrum with visible beam hardening arti-
facts.

Figure 1.21: Beam hardening example: (a) A simple phantom set-up consisting of
water (gray), bone (white) and air (black). (b) Reconstruction of the phantom with
visible beam hardening artifacts. We observe a superposition of the typical cup-
ping artifact caused by the patient water background and the funnel-shaped artifact
between strong bone absorbers.

methods can be found in [Jose 97, Yan 00]. The latter publication suggests an itera-
tive method with a linearized polychromatic forward projection. The concept of the
Local Spectral Weighting function [Heis 09, Heis 10] can also be used for a quantitative
beam hardening correction. It is introduced in Sec. 3.3.

1.6.4 Basic CT Calibration Steps

In order to suppress artifacts and deliver the image quality required for medical CT,
several calibration steps of the CT system have to be performed on a regular basis.
The most important ones are:

• Air calibration: The computation of the beam attenuation from the received
detector signal requires a precise measurement of the detector signal in air with
no attenuator in between source and detector. This quantity is denoted I0 in
Eq. (1.7). The I0 values are measured for every detector channel on a regular
basis. Multiple measurements are averaged, so that the I0 values carry as little
noise as possible.

• Water scaling: The spatial distribution of output values is usually given
in Hounsfield units instead of attenuation values. Whereas attenuation val-
ues totally depend on system characteristics, the HU values are fixed for air
(-1000HU) and water (0HU). However, the HU values are not quantitative in
a sense that a specific tissue or material composition gets identical HU values
for varying CT scanners and/or scan parameters. A evaluation of the energy
dependence was performed in [Zatz 77]. Some typical HU values for a variety
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Tube voltage gall pus pus+blood blood urine

80 kV 15-26 25-36 40-55 42-50 0-70
140 kV 7-15 13-28 32-45 35-45 0-50

Table 1.2: HU value ranges for various body fluids according to [Heis 06].

of body fluids and two different tube voltage settings are shown in Tab. 1.2.
The water scaling measures the attenuation values µ̄W of water for all available
scan protocols. During each scan, the attenuation values are normalized to the
HU scale using the according µ̄W value.

• Beam hardening calibration: Beam hardening corrections require some ref-
erence projection measurements of materials with known composition and thick-
ness. These measurements are used by the beam hardening correction to correct
the measurement values. The exact type of reference measurements depends
on the used beam hardening correction.

1.7 CT Image Quality Metrics

The image quality of CT can be assessed with various quality measures. These are
governed by noise and signal properties such as sharpness and contrast. In this sec-
tion, three important quality metrics are introduced and ways of computing these
measures from specific measurements are shown. The metrics are called Modula-
tion Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective
Quantum Efficiency (DQE).

MTF: The MTF is similar to the magnitude of a system response function. The
MTF is normalized so that the constant component is always one. The detector MTF
measures the frequency transfer behavior of the detection process, the image or system
MTF measures the behavior of the whole CT system. Due to the reconstruction
process, the image MTF is inhomogeneous throughout a CT image or volume. This
means it is two- or three-dimensional and varies with respect to space. In order to
reduce complexity, the system MTF is often characterized by giving only a 1-D MTF
for the iso-center or a radial and tangential MTF for a specific location. The MTF
is influenced by many system parameters. The most important ones are X-ray focus
size, detector pixel layout and dimensions, detector cross-talk and the reconstruction
method.

The image MTF can be measured with various techniques. For a 2-D slice MTF,
a very thin high contrast object, for instance a tungsten wire perpendicular to the
slice plane is imaged [Bisc 77]. From this measurement, the Point Spread Function
(PSF) can be extracted. The MTF can be computed using the magnitude of the
Fourier transform of the point spread function (see Fig. 1.22 for an illustration). For
1-D MTFs in a specific direction an image of an edge may be used [Judy 76]. This
yields the Edge Spread Function (ESF). A 1-D MTF corresponding the orthogonal
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edge direction can be computed using the Fourier transform of the derivative of the
ESF (Fig. 1.23). The detector MTF can be measured with similar approaches.
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(a) Example of a point spread function,
for instance from a cross section of a thin
tungsten wire.
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Figure 1.22: MTF computation from a point spread function.
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Figure 1.23: MTF computation from an edge spread function: Figure (a) shows
an example edge image, (b) is the corresponding edge spread function extracted
perpendicularly to the edge direction and (c) is the corresponding 1-D MTF.

NPS: The NPS characterizes the spectral composition of image noise. It carries
information on the noise structure and correlations. The image NPS is also inhomo-
geneous and two- or three-dimensional. It represents the noise power with respect to
frequency. Its main influences are similar to those of the image MTF except for focus
size, which has no major influence on the NPS.

The detector NPS can be measured by acquiring a flat field image. This is a
projection image with a homogeneous irradiation of the detector. Subtracting the
constant component gives a representation of the projection noise signal n(cx, cy).
The NPS can be computed from this signal by computing the Fourier transform
of its autocorrelation function. This corresponds to the squared magnitude of the
Fourier transform of the original signal:
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NPSD(fx, fy) = F {Rnn(νx, νy)} = (1.10)

= F
{∫ +∞

−∞

∫ +∞

−∞

n(cx, cy)n(cx + νx, cy + νy)dcxdcy

}
= (1.11)

= |F {n(cx, cy)} |2 (1.12)

with F {·, ·} being the 2-D Fourier transform7, cx, cy the detector channel coordi-
nates, fx, fy the frequencies in horizontal and vertical direction and Rnn(νx, νy) the
autocorrelation function of the noise signal. The NPS itself is denoted NPSD(fx, fy).

Image NPS calculation is a very complex process for CT images due to the non-
stationarity of the noise. Unlike for the detector NPS, it is not sufficient to get a
noise-representation in the image domain. Instead, all influences of the reconstruc-
tion process have to be modeled. Early approaches like [Ried 78] or [Kije 87] present
limited theories on the prediction of the image NPS from the projection NPS. In
[Bors 08a], an analytic noise propagation model is presented that matches the in-
direct fan-beam reconstruction frequently used in this work. In [Bald 10a] a noise
back-projector is presented. It is based on a projection noise model and computes
local image noise representations and local noise power spectra for arbitrary image
locations.

DQE: The DQE is a measure for the dose efficiency of the detector. It quantifies
the loss in Signal-to-Noise Ratio (SNR) caused by the detection process. As X-ray
generation and detection is a Poisson distributed random process, measurement of X-
ray quanta is always impaired by quantum noise and the input SNR has a finite SNR
value. This optimal detection SNR is defined by the square root of the ratio of signal
power over quantum noise variance. The input SNR increases with increasing dose.
It marks the upper SNR bound for any X-ray detection process. The DQE measures
to what extent the detection process additionally decreases the SNR relative to the
optimal SNR. The DQE can either be a scalar value corresponding to the squared
ratio of SNRs after and before detection (single channel DQE) [Rose 46, Zwie 65]. In
this case, the DQE value is always between 0 and 1. An alternative definition in the
frequency domain exists: The spectral DQE defines the relative SNR loss on a given
range of frequencies [Rabb 87, Cunn 99]. In this case it is dependent on detector NPS
and detector MTF. The spectral DQE is defined in the international standard IEC
62220-1 [IEC06].

The DQE computation in the frequency-domain requires measurements of the
detector Modulation Transfer Function MTFD(fx, fy), the detector NPS, the detector
gain factor G and the X-ray flux Φ in quanta per unit area. From these quantities,
the DQE is computed with the following formula:

DQE(fx, fy) =
G2 ·MTF2

D(fx, fy) · Φ
NPSD(fx, fy)

(1.13)

7The expression ·, · indicates that a transform takes a two-dimensional function of the form
R2 → R or R2 → C as input. The transformed function is also two-dimensional.
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The gain G is an amplification factor that maps the detected X-ray energy to
the output quantity of the detector. This definition expects the detector’s response
function to be linear. If this is not the case, the DQE changes with respect to X-ray
flux.

1.8 Scientific Contributions of this Work

This contents of this thesis can be divided into three major parts covering different
aspects of Quantitative CT: The first part is dedicated to spectral detection of X-
ray radiation which marks the basis for Quantitative CT. Part two is dedicated to
algorithms for QCT applications. The topic of part three is image enhancement and
noise reduction for spectral CT data.

1. Spectral Detection: We introduced a very efficient and precise way of simu-
lating these detection systems called look-up table-based detector simulation. It
enables a standard workstation PC to conduct a full-scale Monte-Carlo style CT
data acquisition simulation within several hours. Two variants of this simula-
tion concept were developed for integrating scintillation and counting, directly-
converting semiconductor detectors. Especially the latter variant was used to
study the behavior of such detector systems in a variety of medical application
scenarios as these detectors are not yet commercially available for medical CT
and research relies mostly on simulation results.

• Scintillator Simulation: Look-up Table-Based Simulation of Scintilla-
tion Detectors in Computed Tomography, IEEE Medical Imaging Confer-
ence 2008 [Bald 08]

• Semiconductor Simulation: Lookup Table-Based Simulation of Directly-
Converting Counting X-Ray Detectors for Computed Tomography, IEEE
Medical Imaging Conference 2009, Orlando [Bald 09]

Scientific results making use of these simulations were published at MIC and
SPIE Medical Imaging conferences in 2009 and 2010: In [Kapp 09a] a compar-
ison of quantum-counting with dual-layer and dual-kVp scintillation detectors
is presented. Various quality measures for quantum counting CT are derived
from simulations in [Kapp 10b] and [Kapp 10a] presents a prototype system of
a quantum counting detector which was developed using simulation results.

2. Quantitative Reconstruction: The major contribution here is the devel-
opment of a novel QCT framework called Local Spectral Reconstruction. This
method provides a unified framework for QCT applications, it can for instance
be used to formulate and perform SPECT or PET attenuation correction, en-
ergy calibration, material concentration estimation and material identification
with one common approach.

• QCT Framework Quantitative image-based spectral reconstruction for
computed tomography, Medical Physics [Heis 09]
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• Application Overview: Evaluation of an image-based algorithm for
quantitative spectral CT applications, SPIE Medical Imaging 2010 [Heis 10].

3. Noise Reduction for Spectral CT: Reconstruction CT datasets have very
specific, non-stationary noise properties that are spatially non-homogeneous.
We developed an analysis method for local noise properties. A novel post-
reconstruction method for de-noising multi-energy CT data. It introduces a
purely histogram-based denoising approach for multi-energy CT data that can
be combined with standard frequency-based filters to enhance the quality of
QCT data and enable low-dose QCT applications. Patient dose is one of the
key issues of multi-spectral medical CT acquisition. With our approach, QCT
applications are possible at the dose level of a standard CT acquisition. The last
section of this part introduces a iterative, frequency-based pre-reconstruction
filter that combines the advantages of image-based filters with projection-based
filters to achieve strong noise reduction while maintaining image details and
sharpness. This method is an adaption of the well-established concept of bilat-
eral filtering which makes use of specific properties of the CT projection and
reconstruction process.

• Local Noise Property Analysis: Non-stationary CT image noise spec-
trum analysis, Bildverarbeitung für die Medizin (BVM) 2010 [Bald 10a]

• Multi-Energy Denoising: Value-Based Noise Reduction for Low-Dose
Dual Energy Computed Tomography, 13th International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI)
2010 [Bald 10b]

• Pre-Reconstruction Filtering: Ray Contribution Masks for Iterative
Structural Sinogram Filtering, submitted to IEEE Transactions on Medical
Imaging



Chapter 2

Detector Simulation

This chapter covers the spectral detection part of quantitative CT. We provide a
detailed analysis of different detection concepts based on detector simulations. The
simulation concepts were developed within the scope of this thesis. CT detectors are
constantly improved in terms of resolution, coverage and signal quality to provide
better images and a broader range of applicability. The development of a new de-
tector requires precise evaluation of proposed designs, so that properties like pixel
dimensions or material composition can be optimized. As building detector proto-
types is very expensive, the evaluation of many parameters relies on simulations.
For this purpose, we provide efficient and precise detector simulations for different
detector types. We give a short introduction into detector simulation and introduce
two simulation concepts that are applicable to a variety of different detector layouts
based on scintillators or semiconductors. Two realizations of the simulation concepts
are discussed in detail: One for integrating scintillation detectors and one for directly
converting semiconductor detectors. The simulations are validated with data from
full-scale Monte-Carlo simulations and measured data to show that this simulation
approach offers the same precision as a full-scale Monte-Carlo particle simulation.
The computation speed is over 200 times faster for complete scan simulations with
standard MC particle interaction simulations.

2.1 Simulation Concepts

2.1.1 Monte-Carlo Simulation of X-Ray Detectors

The stochastic behavior of X-ray detectors is too complex to be characterized an-
alytically. The basic idea behind Monte Carlo (MC) simulation of detector behav-
ior is conducting a huge number of random experiments. Precise simulation of the
behavior of X-ray detectors usually requires an MC simulation of the particle inter-
actions within the detector material. For this task, a variety of tools is available.
Geant [Agos 03, Alli 06] is a frequently used general purpose tool for MC simulation
of particle interactions. It was used to generate interaction events for some of the
simulations introduced in this chapter. Other general purpose MC particle interac-
tion simulations are PYTHIA [Beng 87] or ISAJET [Baer 00]. Giersch et al. [Gier 03]

31
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demonstrate the application of the Geant-based MC simulation tool ROSI to various
simulation problems for medical X-ray detectors.

A full detector simulation from the incoming X-ray spectrum to the resulting
detector has to include additional effects which depend very much on the investigated
detector type, e. g.

• for scintillation detectors, the light transmission in the scintillator material has
to be covered (see [Wirt 03]),

• for directly converting semiconductor detectors, the charge transport in the
semiconductor has to be taken into account [Krei 08]. Additionally, effects of the
detector electronics due to amplification, quantization etc. have to be simulated.

Precise MC-based approaches offer a superior precision for the full range of input
parameters. The huge demand in terms of computation time, however, prohibits full
scale simulations on regular PC hardware. For the design of CT systems the impact
of physical effects on image quality has to be studied. Simulations of complete CT
scans including all relevant effects have to be carried out to inspect reconstructed
images. Image quality characteristics can directly be related to detector properties.
These correlations need to be understood prior to building detector prototypes.

2.1.2 Look-Up Table-Based Detector Simulation

In this chapter we introduce a look-up table (LUT)-based approach to detector sim-
ulation. In general, a look-up table holds precomputed data that can be accessed
via indices or keys. For look-up table-based detector simulation, this data can, for
instance, incorporate photon-interaction events, electrode pulses or light transport
properties. It is usually indexed by spatial location and / or event energy.

This approach enables a precise evaluation of a variety of different detector designs
at Monte-Carlo level and helps finding optimized detector settings for parameters like
pixel size and depth etc. Its superior simulation speed compared to pure MC simula-
tions makes simulations of whole CT scans on standard hardware feasible. The basic
concept is to separate the detection process into logical and / or physical steps and
define the interfaces between these steps. Then, each step is either modeled analyt-
ically or numerically or a look-up table containing a huge number of precomputed
events is generated. Random events are selected from the LUTs according to the re-
quirements of the interface. A common example for X-ray detection is the interaction
of incoming X-ray quanta with the detector material. Here, the look-up table holds
a huge number of sample interactions. The interface to the next step may require
the respective energy and a quantized interaction location so that the following effect
can be simulated for a limited number of source locations.

Look-up table-based approaches can be used for various detector types: In [Bald 08]
we have shown an application to the simulation of integrating scintillator CT detec-
tors, in [Bald 09] we have applied look-up table based detector simulation on counting
semiconductor detectors. However, different detector types usually require individual
look-up table set-ups for all detection stages, so the re-usability of simulation code
and data between different LUT-based simulations is limited.
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2.2 Integrating Scintillator Detectors

2.2.1 Simulation Principles

Several effects have to be taken into account when simulating the detection process
of integrating scintillator detectors in order to get a realistic output signal. The basic
working principle of this kind of detectors was described in Sec. 1.4. The detection
process can be separated into several stages and each stage is described by physical
effects which have to be covered by the simulation:

1. Poisson distributed measurement noise: The generation and detection of X-ray
quanta is a random process. The numbers of detected quanta per energy are
Poisson distributed (see keyword quantum noise in [Pett 98]).

2. The interaction between incoming X-ray photons and the scintillator material
depends on the photon energy and the material composition of the detector and
its pixel geometry.

3. There are different types of interactions which may deflect or create X-ray
photons on different paths (see Sec. 1.6.1). These escape photons may cause
additional interaction events which may take place in another pixel (X-ray cross-
talk).

4. Optical photons are scattered and absorbed within the scintillator.

5. The transport of optical photons may be delayed by defects within the scintil-
lator material (afterglow) [Leco 06].

6. Optical photons may penetrate the septa and leave the detector or reach the
photodiode of another pixel (optical cross-talk).

7. The read-out electronic adds electronic noise, hence influences the signal to
noise ratio.

Figure 2.1 illustrates the stages 2 to 5 of the detection process.
These effects are directly or indirectly influenced by the geometry of the scintillator

pixels, for example by the ratio of septa and active pixel area or the pixel height.
The introduced simulation can be used to investigate the influence of these detector
properties on the resulting quality of the reconstructed CT-image. It is capable
of simulating X-ray measurements with pixelized scintillation detectors. This also
covers many special types of spectral CT measurements as introduced in Sec. 1.5.
Dual layer detectors may require only minor adaptations if escape photons between
layers should be covered. Dual Energy, Dual Source and kVp-switching do not require
any adaptations. Optical counting, i. e. counting detectors based on scintillators
or scintillation detectors using special photodiodes such as avalanche photodiodes
require a redesign of the signal processing part of the simulation.

Figure 2.2 shows the steps of the integrating scintillator detection process and the
interfaces between the steps. These steps have to be considered for each incoming
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Figure 2.1: Signal generation in scintillation detectors.
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Figure 2.2: Detection steps and interfaces for integrating scintillation detectors.

X-ray photon in each detector pixel. The following section shows how this scheme
can be efficiently integrated into a LUT-based detector simulation.

Kappler et al. [Kapp 09b] have integrated this simulation into a full CT simulation
chain which generates simulated, reconstructed CT-volumes and contains all relevant
physical effects of the CT acquisition process.

2.2.2 Simulation Workflow

The effects mentioned in the previous section are usually modeled by an X-ray-
and light photon-based simulation. This approach is very time consuming since the
amount of photons to be dealt with is usually very large. We use precomputed inter-
action events and separate the X-ray photon interaction and the transport of optical
photons [Heis 08]. The data is provided in look-up tables, which have to be com-
puted only once for a specific detector geometry and material composition. Figure
2.3a shows the components of the simulation. These components are described in the
following sections. Table 2.1 gives an overview of the used LUT and simulation data
types.

X-Ray Photon Interaction: The photon interaction LUT holds data of precom-
puted X-ray interaction events for a uniformly irradiated detector pixel. The incoming
X-ray photons hit the detector orthogonally. Covering arbitrary angles of incidence is



2.2. Integrating Scintillator Detectors 35

Simulation Process

Optical Photon

Distribution LUT

Input Intensity

Sinogram

X-Ray Photon

Interaction LUT

Thread 1 Thread 2 Thread n...

Readings

Output

Sinogram

Afterglow /

Electronics Post-Processing

Photon Count

Sinogram

(a) Basic simulation layout

Input SinogramI -reading0

Replicate Mask

Simulation Simulation

Average Unmask

Calculate

Attenuation

Attenuation

Value Sinogram

Re-

construction

Slice Image

M
e
ta

d
a
ta

(b) Workflow for slice image generation
with masking for complete CT scan sim-
ulation

Figure 2.3: Signal flow diagrams for detection- and complete CT scan simulation.

LUT / data type name Indexed by Content type

Input data Channel, reading, Mean X-ray photon number
energy bin number

PhotonInteractionLUT Energy bin number Interaction data

OpticalPhotonDistributionLUT Voxel position within Histogram of optical
detector pixel photon distribution

Table 2.1: LUT and simulation data types used for integrating scintillation detector
simulation.
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not necessary for the CT case, as the anti-scatter grid eliminates most X-ray photons
from other angles.

This data can be provided by a Monte-Carlo simulation of particle interactions
like ROSI [Gier 03] or Geant4 [Agos 03, Alli 06]. The events are grouped into energy
bins with respect to the energy of the corresponding incoming photon. We chose
to have one million events available for all energy bins of 5 keV width. For these
settings, the simulation results do not show any regularity caused by the usage of
this LUT. One event contains an arbitrary amount of interaction data-sets, since an
incoming photon might not interact at all or might produce one or more interactions.
An interaction data-set contains the following entries:

• Relative 2-D detector pixel location of the interaction (non-zero in case of X-ray
cross-talk)

• Number of generated optical photons (depends on the deposited energy of the
interaction)

• Discrete 3-D location within the scintillator element. The location is quantized
to a discrete voxel position v within the pixel. The sampling of the voxel coor-
dinates has to be sufficiently dense so that changes in light transport properties
between voxel locations are very small (see Fig. 2.5).

Figure 2.4 visualizes the LUT-data for two energy bins at 25 keV and 100 keV.
Figure 2.4a shows the interaction locations and the respective energy deposition of
several thousand 100 keV events. The photon interaction LUT stores the interactions
positions in quantized form as 3-D-voxel coordinates.

Figures 2.4(b) and (c) show two histograms of the energy deposition within the
scintillator material with respect to the interaction voxel indices. In this case we used
20×20×20 voxels in φ-, z- and depth-direction for each scintillator pixel. The figure
shows only the central voxels with respect to the z-direction. This data is computed
for a photon interaction LUT that contains 106 X-ray photons (events) per energy bin.
Energy deposited within the septa is discarded and the corresponding interactions
are not stored in the LUT as they do not contribute to the output signal. The
figures show that most of the energy is deposited in the scintillator of the illuminated
pixel and, as expected, the energy deposition decreases exponentially with increasing
depth (see Sec. 1.6.1). The neighboring pixels show the energy deposition due to X-
ray cross-talk as they are not exposed to direct radiation. Here, the energy deposition
does not show such a clear dependence on depth, but decreases with distance to the
center pixel.

Optical Photon Distribution: The optical cross-talk is modeled as a set of two-
dimensional histograms dv(xp) for each discrete position v within the pixel. The
histograms dv(xp) yield the probability that an optical photon released at v reaches
the photodiode at relative pixel position xp. As the intensity of the optical cross-talk
drops exponentially with the distance to the originating pixel, it is sufficient to limit
dv(xp) to a small region. A significant amount of optical photons does not reach a
photodiode pixel, therefore

∑
xp

dv(xp) is smaller than 1. The data needed for this
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look-up table can be acquired by simulating the light transport within the scintillator
material, reflector and septa [Wirt 03]. With this data we form a so called optical
photon distribution LUT, which contains a distribution function for each voxel center
of the interaction LUT.

The total amount of optical photons generated in one interaction is distributed
over pixels within the neighborhood with the respective LUT-entries as weighting
factors. Poisson noise is applied to the optical photon numbers of each event and
pixel. Figure 2.5 shows the typical properties of this LUT by comparing the detection
probabilities for some specific voxel locations. Figure 2.5a shows the log-scaled 2-D
histogram for the center voxel.

The influence of the interaction location on the optical cross-talk can be seen in the
absolute detection probabilities as well as the amount of cross-talk in the respective
neighboring pixels: Figure 2.5b shows only a slight shift in the detection probability
if an optical photon is created on the very right or left edge of the scintillator pixel
at the same depth. The influence of the depth of interaction is considerably larger
(see Fig. 2.5c): Photons created far off the photodiode (PD) have a high cross-talk
probability and are less likely to be detected at all.

(a) (b) (c)

Figure 2.4: (a) Interaction locations of 2500 randomly picked X-ray photon events
(100 keV); (b) and (c) show excerpts of the histogram of energy deposition within
scintillator voxels for homogeneous irradiation of center pixel with mono-energetic
X-ray photons. Central slice in z-direction is shown. (b) mono-energetic 25 keV
photons, (c) mono-energetic 100 keV photons.

Input Data: For a complete scan simulation the input sinogram contains data
for all channels and readings. This data consists of mean values of incoming X-ray
photons at specific energies. The input sinograms can be computed by an analytic
projection tool like NCAT [Sega 03]. For this purpose geometric phantoms have to be
defined. For each ray from the focal spot of the X-ray tube to the detector pixels the
according lengths within the phantom materials are computed. The total attenuation
for the ray can then be estimated using the attenuation coefficients of the phantom
materials and the corresponding intersection lengths. These attenuations are applied
to an appropriate tube spectrum.
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Simulation Process: The simulation consists of the following steps:

1. Get the mean number of incoming X-ray photons for each channel, reading and
energy level.

2. Get the number of X-ray photons by taking a random sample of a Poisson
distribution with mean value from previous step.

3. For each X-ray photon, pick a random event and get all interactions. This yields
the number of created optical photons and voxel locations of interactions.

4. For each interaction: Distribute the optical photons to the according photodiode
pixels using the matching optical photon distribution LUT entries.

5. Get number of optical photons by taking a random sample of a Poisson distri-
bution with mean value from optical photon distribution LUT entry. Add the
resulting number to the output signal of the respective pixels.

The result of this process are optical photon counts at each photodiode pixel.
The process can be parallelized for subsequent readings to utilize multiple and/or
multi-core processors. The run-time of the simulation is linearly dependent on the
total number of incoming X-ray photons of all detector channels and read-outs per
channel. The energy distribution of the incoming X-ray photons can have a minor
influence on the simulation run-time as the average number of interactions varies with
X-ray photon energy.

Electronics and Afterglow Post-Processing: Electronics properties like quan-
tization or amplifier noise additionally influence the measurement. These effects can
be modeled as a post-processing step on the photon count data.

Scintillator afterglow is modeled as temporal cross-talk between subsequent mea-
surements. It cannot be handled within the simulation process as this approach does
not resolve temporal behavior. If the simulation of afterglow effects is desired, it is
treated in a post-processing step as well. It is approximated by a convolution of the
measurement signal of each channel at multiple readings with an appropriate impulse
response function that models the afterglow characteristics. In this case, a sum of
decaying exponential functions can be used. The model parameters can be acquired
by measuring the afterglow characteristics of the scintillator material [Leco 06].

Performance Improvement

Additional modifications were developed to allow to sacrifice precision for reducing
the simulation time. These speed-up techniques are optional and some can be pa-
rameterized to provide a fine grained adaption of the simulation process:

Masking: The computation time is linearly dependent on the total amount of in-
coming X-ray photons. For simulating whole CT-scans most time is spent on simulat-
ing sinogram regions that are exposed to direct radiation even though these regions
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contain little information on the detector performance and do not have a major in-
fluence on the image quality after reconstruction. In many cases the computation
time can be reduced by masking those regions prior to simulation. This can be done
by comparing the input sinogram with an I0-reading which is only exposed to direct
radiation. It is necessary to simulate at least one I0-reading for a full scan simulation,
since it is needed to convert measured intensities into attenuation values. This opera-
tion called air calibration was introduced in Sec. 1.6.4. The simulated air calibration
data allows to unmask the result using the simulated I0-reading. It is recommended
to simulate multiple I0-readings for two reasons: Firstly, a low-noise I0-reading is
needed to generate a sinogram of attenuation values from intensity values, secondly
varying I0-readings can be used for unmasking, otherwise the same noise pattern
would repeat in the unmasked regions. Pre-computed I0-reading results may be re-
used for later simulations with same detector geometry and X-ray tube settings as
they are object-independent. Figure 2.3b shows a diagram containing all necessary
steps for a complete CT scan simulation including masking and I0 simulation.

Total Cross-Talk Simulation: The usage of a total cross-talk LUT offers the
possibility to trade accuracy for speed. The total cross-talk LUT combines X-ray
photon interaction and optical photon transport properties. It contains numbers of
detected optical photons in a defined neighborhood around an irradiated pixel for a
fixed amount of incoming X-ray photons. This LUT can be computed in advance
from the photon interaction LUT and the optical photon distribution LUT data for
a very large amount of incoming X-ray photons. This is done separately for each
energy bin to preserve the energy dependence of the input data. This LUT offers
only one total optical photon distribution for each energy bin.

The usage of this LUT requires the following steps for each channel, reading and
energy bin of the input data:

1. Retrieve the number of detected optical photons in each pixel within the neigh-
borhood of the current channel (look-up in total cross-talk LUT).

2. For each pixel in this neighborhood: Scale this value with respect to the number
of X-ray photons in the current energy bin of the input data.

3. Take a random sample of a Poisson distribution with its mean value from pre-
vious step.

4. Add the resulting value of detected optical photons to the respective pixel signal
of the output data.

The decision for using this LUT or the separated X-ray interaction and optical
photon transport LUTs can be triggered with a threshold: If the amount of incoming
X-ray photons exceeds the threshold within an energy bin, the scaled values of the
total cross-talk LUT can be used to directly calculate the amount of optical photons
reaching the neighboring photodiodes. This approach is several orders of magnitude
faster than computing the optical cross-talk separately for each X-ray photon. Its time
consumption is independent of the X-ray flux and depends linearly on the number
of detector channels and read-outs per channel. However, it does not offer the high
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precision of the approach using separated LUTs. The threshold value can be used to
steer the trade-off between speed and precision.

2.2.3 Results

We evaluate two possible applications of this type of simulation: The estimation of
the image MTF and the detector NPS. All results presented in the following section
are based on simulations of Gd2O2S:Pr scintillators. The X-ray photon interaction
events were precomputed using a proprietary particle interaction simulation1. In all
cases the total cross-talk simulation was not used to get the maximum accuracy of
the simulation.
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(c) NPS in φ-direction
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Figure 2.6: (a) Image-MTF comparison; (b) detector NPS comparison (profile of
2D-NPS along diagonal of 1st quadrant) between proposed simulation and full scale
Monte-Carlo simulation; (c) and (d) NPS comparison between simulation and dif-
ferent measurements in measuring station and CT gantry. Measurements were con-
ducted by Daniel Niederlöhner, Siemens Healthcare, Forchheim, Germany.

1The proprietary X-ray particle interaction simulation moccasim by Karl Stierstorfer (Siemens
Healthcare, Forchheim, Germany) was used to obtain the interaction data for the CloudLUT.
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Image MTF Comparison: With this experiment we examine the principal pos-
sibility to conduct complete CT scan simulations with this simulation framework.
A detector with 672 channels in 32 rows with 1.3mm φ-pitch and 1.1mm z-pitch
was simulated. The results were compared to measured data of a Siemens Sensation
64 CT-scanner. A high-contrast phantom was used2. The phantom contains inlays
of line-patterns with increasing number of line pairs per cm (lp/cm). It is used to
estimate the frequency resolution of the reconstructed image.

Figure 2.6a shows a comparison of measured and simulated image MTFs for an
average body reconstruction kernel. In general, we observe a very good agreement
between measured and simulated MTF with a slight underestimation of the MTF in
the low to middle frequency range. The average error of the simulated MTF in the
range of 1 to 10 lp/cm is 3.68%.

This kind of simulation, however, includes many parameters that are not re-
lated to the detector characteristics, for instance tube and reconstruction properties.
Therefore we performed further tests that focus on the detector properties.

Detector NPS Estimation: In order to verify the simulation performance inde-
pendently of the influence of other system parameters we compute the detector NPS
from simulated and measured data. The NPS can be computed from the detector
signal response to an X-ray flat-field. It contains information on the signal noise level
and the modulation transfer characteristics of the detector. For a detailed explanation
of the detector MTF see Sec. 1.7.

First we compare simulated NPS results of our look-up table-based approach with
those of a fully single-photon based Monte-Carlo simulation. Both do not include elec-
tronics simulation. The later approach is very precise but extremely time consuming
and therefore not feasible for most simulation scenarios. The detector NPS estimates
from a flat-field image of 512 × 512 detector pixels and low intensity radiation are
compared for both approaches. The simulation with our approach took 8:15 minutes
on an Intel Core2Duo T5500 at 1.66 GHz with single-threaded simulation and total
cross-talk optimization turned off (see Sec. 2.2.2 for details). The average deviation
of the NPS values is 3.06%. Figure 2.6b shows a comparison of a diagonal profile
of the 2-D NPS. This approach is about 200 times faster than the full-scale MC
simulation.

The second detector NPS evaluation compares measurements taken from the CT
gantry and a detector measuring station and the simulation tool. The simulation
includes electronics post-processing, total cross-talk optimization is turned off. The
results are shown in Fig. 2.6(c) and (d). The NPS values between simulation and
gantry measurement again show a good agreement with an average relative deviation
of 5.23% in φ-direction. A comparison of the shapes of the NPS shows a faster
drop off towards higher frequencies in the simulated NPS. This indicates a slight
overestimation of the cross-talk.

2Catphan 500, http://www.phantomlab.com/catphan.html, The Phantom Laboratory, Salem, NY,
USA
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2.3 Directly Converting Counting Detectors

2.3.1 Simulation Principles

The scintillation detectors covered by the previously introduced simulation are cur-
rently the standard in medical CT, nevertheless there are alternative X-ray detector
technologies available. One of these detector types is called directly-converting de-
tector. The basic working principles of this technology were introduced in Sec. 1.4.
Medical CT can benefit from directly-converting counting detectors due to their supe-
rior low-signal properties and there ability to perform energy selective measurements.
As yet there is little expertise with this type of detectors in commercially available
clinical CT systems, a precise detector model is required for developing such a sys-
tem. This section presents a realization of the look-up table-based approach for the
simulation of counting detectors on X-ray photon level.

The proposed simulation approach processes incoming spectra of X-ray photons,
simulates the measurement process shown in Fig. 1.9 and yields photon count num-
bers measured by the detector. Like the previously introduced simulation it uses
precomputed look-up tables that hold complex simulation data covering different
physical effects. The contents of the LUTs are either taken from Monte-Carlo simula-
tions or contain data gathered from measurements. Each LUT is valid for a specific set
of detector layout parameters. Changing a layout parameter requires re-calculation
of the affected LUTs. Independent effects of the detection process are grouped into
simulation modules. The detector simulation efficiently cascades these modules and
can be adapted to various counting detector types and layouts.

The following physical effects are covered by this approach:

• Poisson distributed measurement noise: The generation of X-ray quanta
is a random process. The numbers of detected quanta per energy are Poisson
distributed (similar to Sec. 2.2).

• Photon interactions in the detector material: Similarly to the simulation
introduced in Sec. 2.2, the interaction events caused by the photoelectric effect
or Compton scatter within the detector have to be simulated according to X-ray
energies and detector composition and layout. Unlike the scintillators covered in
the previously introduced simulation, the semiconductor is fully homogeneous.
Septa made of a different material do not have to be considered. Therefore it
is sufficient to store interaction positions relative to the photon impact location
instead of absolute locations within the pixel. This greatly reduces the required
amount of precomputed random interactions.

• Electrode pulse generation: X-ray interactions in the semiconductor ma-
terial generate electron clouds which travel towards the anode. This process
has to be modeled analytically in order to compute the induced electric current
signals on the electrodes.

• Read-out electronics: The electric current signals are processed by a com-
parator and the resulting photon count signals are digitized. The influence of
the sampling frequency of the simulated signals has to be considered.
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• Electrode signal processing: The digital electrode signal is processed in or-
der to compute the photon count output values. Different processing strategies
have to be supported.

The photon interaction data as well as signal characteristics are provided in the
form of detector-specific look-up tables. The photon interaction data is generated
by a Monte-Carlo simulation of particle interactions. For this simulation, the ROSI
framework [Gier 03] was used. The associated electrode signals are precomputed for a
limited number of discrete locations based on a physical model [Krei 08]. The detector
electronics behavior is also modeled. The validity of the simulation results is verified
with measured data.

Figure 2.7 shows the steps of the detection process of a counting semiconduc-
tor detector. This illustration corresponds to Fig. 2.2 for integrating scintillator
detectors.
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Figure 2.7: Detection steps and interfaces for counting semiconductor detectors.

2.3.2 Simulation Elements and Workflow

Table 2.2 shows an overview of all LUT and simulation data types.

LUT / data Indexed by Content type
type name

Input data Channel, reading, Mean X-ray photon number
energy bin number

CloudLUT Energy bin number Interaction data (see Tab. 2.3)

PulseLUT Relative interaction location Sampled electrode pulse

PulseShapingLUT Pulse energy Pulse stretch factor

ThresholdLUT Threshold type, threshold number Threshold value

Output data Channel, reading, threshold type, Photon count value
threshold number

Table 2.2: LUT and simulation data types used for counting semiconductor detector
simulation.
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Description Example value

Interaction number 0
Relative 3-D location (µm) (0.6; 1.0; 665.4)
Deposited energy 47.4 keV

Interaction number 1
Relative 3-D location (µm) (229.6;−67.0; 898.6)
Deposited energy 23.0 keV

Table 2.3: Example event dataset taken from the energy bin from 70 to 75 keV and
consisting of two interactions.

Input Data: The input data consists of discretized energy spectra of mean values
of incoming X-ray photons for all detector pixels and readings. For a complete CT
scan simulation an input sinogram can be generated with an analytic projection tool.
It calculates the intersection lengths of all rays with a geometrically defined phantom.
The attenuated tube spectrum for each ray can be computed using the attenuation
coefficients of the phantom materials and the corresponding intersection lengths.

CloudLUT: This LUT is produced with a Monte Carlo particle interaction sim-
ulation like ROSI [Gier 08] resp. Geant [Agos 03, Alli 06]. It yields electron cloud
data generated by interactions of X-ray photons impinging perpendicular on a bulk
semiconductor sensor, saved relative to the position where the photon penetrated the
sensor. One X-ray photon may interact at several locations in the sensor caused e.g.
by Compton scattering or fluorescence photons. This results in energy deposition in
several charge clouds. The CloudLUT contains many random events per energy bin,
in our tests we used 105 events per bin. This amount turned out to be sufficient to
avoid LUT-induced regularities in the results. The incoming photon energy distri-
bution is assumed to be homogeneous within any energy bin. Each photon event is
described by the number of charge clouds and the center of mass location, cloud size
and the deposited energy for each charge cloud. An example event dataset is shown
in Tab. 2.3.

As this layout only saves relative interaction locations, it only supports simulating
homogeneously illuminated detector pixels. Several applications, however, require
inhomogeneously irradiated pixels. MTF measurements, for instance, are conducted
using a slit collimator placed onto the detector. Here, the slit-width may be well below
the pixel size. In order to simulate such a measurement, the interaction locations of
the CloudLUT can be converted to absolute locations by randomly placing events
from the standard CloudLUT at absolute locations that represent the slit geometry.
The modified CloudLUT with absolute event locations can be used for simulations
with arbitrary irradiation patterns and only minor adaptions in the simulation work
flow are necessary, but one absolute CloudLUT is only valid for one given geometry.

PulseLUT and PulseShapingLUT: These LUTs contain data on how charge
clouds generated at specific discrete positions are converted into time dependent sig-
nals. The conversion is done in two subsequent operations: First, the location and
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Figure 2.8: Pulse sample locations of a standard PulseLUT. Locations outside center
pixel denote induced pulses by interactions in neighboring pixels. Color coded loca-
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Figure 2.9: Example pulses for pulse locations marked in top view of Fig. 2.8. The
colors of bullets marking the sample locations in Fig. 2.8a and function plots are
matched.
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Figure 2.10: Example pulses for pulse locations marked in side view of Fig. 2.8. The
colors of bullets marking the sample locations in Fig. 2.8b and function plots are
matched.

energy information is transcribed into a signal pulse by the PulseLUT, and secondly
more complex correlations of the pulse shape can be modeled by the PulseShaping-
LUT which modifies the pulse height at given area. The PulseLUT is the result of the
adjoint induction problem [Krei 08] solved with the finite element software COMSOL
(COMSOL AB, Stockholm, Sweden). The adjoint induction problem results in the
charge-induction-map (CIM) for each time step. The CIM is converted into a elec-
tric current pulse for any location of the charge cloud inside the corresponding pixel
volume. For every position inside the hit pixel also the induced signals on all directly
neighboring pixels are stored and processed for a 3 × 3 pixel neighborhood. Each
current pulse is convolved with the shaping characteristics of the electronics. The
stored pulses yield a direct correlation of pulse height and amount of charges (pulse
area). The PulseShapingLUT allows to change the pulse height-to-charge relation
with respect to the energy of a pulse.

Figure 2.8 shows the sampling grid of a standard PulseLUT and Figs. 2.9 and
2.10 show sample pulses for the marked grid locations. Note that for pulses induced
by charge clouds in neighbor pixels (y = 1.1 and y = 1.38 in Fig. 2.9) the current
gets negative as the charge cloud reaches the neighbor electrode.

Since the pulses of PulseLUT are simply scaled with the respective energy, pulse
height and area are related linearly. In order to model a realistic relation between
pulse height and area, these quantities have been assessed with a measurements from
a probe card (see Fig. 2.11). These results are incorporated in the PulseShapingLUT,
which provides an energy dependent stretch factor that is used to alter the area-to-
height ratio of each individual pulse by resampling.

Electronics Noise Generator: The signal processing stage is influenced by vari-
ous effects of the detector electronics like amplification or quantization noise. These
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Figure 2.11: Measured relation between pulse amplitude and charge. Hatched line in-
dicates ideal linear relationship. Slight deviations from the ideal line can be observed
for low charges. Data from Daniel Niederlöhner, Siemens Healthcare, Forchheim,
Germany.

effects are incorporated into the simulation by adding a colored noise signal to the
ideal electrode signal from the signal generation stage. This noise signal can be pro-
vided by noise measurements or an electronics noise simulation which takes noise
correlations and variance into account.

ThresholdLUT: The ThresholdLUT contains a set of discriminators which are
used to process the signal. Each discriminator is associated with an arbitrary number
of signal thresholds and optional additional discriminator parameters. A very simple
discriminator counts the times a given detector signal exceeds a threshold (rising
edge discriminator). The clocked discriminator sub-samples the signal and counts
the number of samples where the signal exceeds a threshold. More sophisticated
discriminators can be introduced that reduce paralysis effects caused by the fact that
with increasing flux, pulse signals overlap (pile-up) and the characteristics of the
individual pulses can hardly be identified from the signal.

Basic Simulation Work Flow: Figure 2.12 shows the basic signal flow of the
simulation process. The Interaction Event Generator picks random events from the
CloudLUT according to the input spectra. A Poisson distributed noise operator
is then applied to the mean photon numbers of each energy bin. The events are
distributed equally over the respective pixel surface and the absolute locations of
the resulting electron clouds are computed. Each drawn event gets a random time
offset within the selected reading time. An event may contain an arbitrary number
of interactions. For all absolute interaction locations a quantized position within
the according detector pixel is calculated. From the quantized interaction location
the according pulse shape indices are gathered from the PulseLUT. An interaction
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Figure 2.12: Basic model of the simulation signal flow.
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location can be associated with multiple pulses on different anodes as an electron
cloud induces pulses on several proximate anodes. For each detector pixel all pulse
data are gathered in an intermediate Interaction Data Stack. When all interactions
are generated, the Signal Generator processes the interaction stacks: Firstly, a noise
signal is generated that covers the whole reading time. Then, for each interaction the
according pulse is scaled and shaped according to the interaction energy and added
to the signal with respect to its time offset. The resulting signal represents the read
out electrode signal of one reading. The Signal Processor generates the pixel photon
counts from this signal. It uses an arbitrary number of thresholds which can be defined
individually for each pixel in the ThresholdLUT together with a discriminator. The
output sinogram consists of counts for each threshold, detector pixel and reading.

Complexity and Optimization: The influence of the simulation parameters on
the simulation time is very different for the two simulation stages signal generation
and signal processing. These two stages are alternated for each pixel.

The computation time of the signal generation stage mostly scales with the total
number of incoming photons and their average energy, as these two quantities influ-
ence the number of interactions. The computation time of the signal processing stage
is mostly governed by the total integration time over all readings and the pre-defined
sampling frequency of the pulses and signals. The X-ray flux has only a minor in-
fluence on the computation time of this stage. The computation time of phase one
scales linearly with the total number of interactions, phase two scales with product
of the number of simulated pixels times the number of samples per signal.

Two optional preprocessing steps are available to speed up the simulation: Di-
rectly irradiated areas can be removed by comparison with an input reading of an
air scan. As the computation time of the signal generation part scales with input
X-ray intensity, removing directly irradiated areas may reduce the simulation time
significantly, depending on the size of these areas.

Secondly, the input data is divided into sub-regions that are processed in parallel,
so each sub-region is processed by an individual computation thread. As the effect of
cross-talk from neighboring pixels has to be covered, the sub-regions should overlap.
The size of the overlap is determined by the maximal cross-talk range. Each thread
writes its result data into an exclusive region of the common result structure. Thus,
almost no synchronization between threads is needed and the simulation time scales
well with the number of simulation threads. The optimal size of the sub-regions
depends on the total number of interactions within one sub-region and the desired
memory consumption for one computation thread. Performance and memory usage
can benefit from a non-equidistant division into sub-regions that takes the input pho-
ton numbers within the sub-regions into account and assures similar photon counts
in each sub-region.

2.3.3 Results

Run-Time and Memory Usage: Run-time and memory usage depend very much
on the input data and the sampling time for the electrode signals. Setting the maxi-
mum size of the interaction data stack allows to steer a trade off between performance
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and memory usage. This way full scan simulations may consume from less than one
up to several GBs of memory depending on input data and signal sampling rate. A
full scan of a water cylinder phantom with a diameter of 40 cm with a detector of
2475 pixels, 1600 readings and a reading time of 1ms using a sampling time of 2 ns
takes 8 h on a workstation equipped with 4× 2 AMD 885 Opteron cores at 2.6MHz
and 16GB of RAM.
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Figure 2.13: Comparison of measured and simulated MTF estimate. The fluorescence
photons yield a crosstalk-like behavior which results in a slightly decreased MTF.
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Figure 2.14: Comparison of measured and simulated DQE estimate.

Comparison with MTF and DQE Measurements: For comparison of simu-
lation and measurements we used various quantities like linearity, spectral behavior,
DQE, etc. As an example we compare the measured and simulated detector MTF of
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one combination of detector parameters here. All the results produced by our simu-
lation are in good agreement with the measurements we have acquired3. Figure 2.13
compares the MTF curves from the simulation and a measurement conducted with a
single detector module. The simulation was conducted using the proposed modified
CloudLUT for inhomogeneous pixel illumination (see Sec. 2.3.2).

This MTF estimate was used together with a NPS estimated from a simulated
and measured flat-field illumination to compute the DQE of the detector model. This
comparison is shown in Fig. 2.14. Here, a good agreement in terms of shape can be
observed. The difference with respect to scale can be attributed to an increased noise
level in the measured data due to the detector module, which is not covered by the
noise signal generator part of the simulation.
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Figure 2.15: Discretized 140 kVp input spectra for full, half and 10% CT flux with an
energy bin width of 5 keV.

Detector Signal at Various Flux Levels: For this experiment a detector with
a pixel area of 0.05mm2 and 1.0mm depth was simulated. For each pixel, a typical
140 kVp tube spectrum containing a total of approximately 3.2 · 104 X-ray photons
for the full flux case was used as input (see Fig. 2.15). The total signal length for
one reading is 2.14ms and the sample time of pulses and signal was 2.0 ns. Pulses
where shaped to 21 ns full width half maximum (FWHM). Figure 2.16 shows excerpts
of the according detector signal prior to the signal processing stage. The 10% flux
case shows distinguished pulses, in the half flux case, some pile-up can be observed.
The full flux case shows a huge amount of pile-up which renders the detection of
individual events and their respective energy very difficult.

3All measurements were conducted at Siemens Healthcare CT (Forchheim, Germany) by Daniel
Niederlöhner and Edgar Kraft.
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Figure 2.16: Resulting detector signals for spectra of Fig. 2.15.
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Detector Linearity: In order to demonstrate the influence of signal pile-up we
show the performance of a simple rising edge discriminator on signals like the ones
depicted in Fig. 2.16. Figure 2.17 shows the resulting counts for thresholds from 15
to 75 keV with respect to the relative CT flux. Up to approx. 10% of the full CT flux,
all thresholds show a linear counting behaviour. For higher flux, the count signals
start to paralyze especially for lower thresholds. At a flux level at approx. 90% of the
maximum CT flux, the signal level remains above a low threshold when strong signal
pile-up is observed. This causes a decrease in counted photon numbers with increasing
flux. In order to deal with high flux levels, a more sophisticated discriminator and
additional linearity corrections are required. Figure 2.18 shows a linearity comparison
between measured data from a prototype detector element and simulated data on
a logartihmic scale. Deviations between measurement and simulation are mostly
present in the low-flux area with a slight overestimation of the counts for the 30 keV
threshold whereas the 60 keV threshold shows an underestimation of the counts. For
the very low-flux case and the 60 keV threshold the error is maximal with approx.
30%. In the high-flux areas the paralysis of the detector can be observed at the
same flux in both results. In this region, the match between simulated and measured
counts is very good with errors well below 5%.
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Figure 2.17: Count rate behavior of rising edge discriminator for various thresholds
and flux levels.

Energy Transfer Probability: The spectral sensitivity of a counting detector is
dependent on the selected thresholds. This property can be examined with the energy
transfer probability of the detector. It shows the probability density for an X-ray
photon of energy E of triggering a threshold corresponding to energy E ′. Ideally this
would be 1 for E = E ′. In practice, of course, various physical effects and detector
properties degrade the spectral detection performance as shown in Fig. 2.19. Besides
the local maximum of the probability at E = E ′, another prominent local maximum
is observed at E = E ′−E

(i)
f . This is caused by fluorescence photons, which escape the
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Figure 2.18: Simulated and measured linearity for two thresholds at 30 and 60 keV.

respective detector pixel and may be detected in another pixel. The energy / energies
E

(i)
f depend(s) on the K-edges of the materials in the semiconductor. Here, i denotes

the number of significant K-edges of the detector material. This effect also causes
several counts at energies below the respective K-edge energy due to escape photons
entering from neighboring pixels. The large number of counts at very low energies is
mostly due to electronics noise. The observed effects are more prominent for the small
pixel case, the difference image in Fig. 2.19c shows that the probability of correctly
detecting photons at E ≈ E ′ decreases for smaller pixels in favor of erroneously
detected photon energies at E ′ < E. This effect is caused by increased X-ray cross-
talk and charge sharing within small pixels. Large pixels, however, show increased
signal pile-up and paralysis for high flux levels. These effects were previously shown
and discussed in the linearity and electrode signal evaluations.

2.4 Conclusions

We have introduced a new type of detector simulation that combines the precision
of a Monte-Carlo particle simulation with the performance that is necessary to cover
realistic scenarios such as complete CT scans. The simulation concepts can be used
to study the influence of various parameters of a proposed detector design on the re-
constructed CT image. Two realizations were presented: The first one covers the still
most common CT detector technology of integrating scintillator detectors. The sec-
ond simulation deals with photon-counting semiconductor detectors. This technology
is still in an experimental stage for medical CT applications.

Both concepts were successfully validated with measured data. Two possible ap-
plications for the scintillator simulation were shown: Investigation of the effects of
the detector on the MTF of the reconstructed image and a detector NPS estima-
tion. The results show that our look-up table-based simulation models the detector
performance sufficiently precise, so that its effects on CT image quality can be ex-
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Figure 2.19: Energy transfer probability for X-ray photon of energy E and thresh-
olds corresponding to energies E ′. (a): Small pixels (0.05mm2), (b): large pixels
(0.20mm2), (c): difference image. Intensity windows are for left and center image:
Center 0.025, width: 0.05; Right image: Center 0, width: 0.02. The values reflect
detection probabilities.
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amined. In the investigated cases, the level of precision matches that of a full-scale
MC simulation. For the semiconductor concept, a DQE comparison and a detector
linearity test was performed in addition to the MTF test. Additional experiments
were conducted that yield information which can hardly be retrieved from measure-
ments with a prototype system. These additional studies comprised energy transfer
probability assessment, electrode signal examination at various flux levels and a fine
grained count rate behavior analysis.
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Chapter 3

Quantitative CT

This chapter gives a general introduction into Quantitative CT and explains its most
important elementary methods. Several basic scientific works on this topic are intro-
duced and discussed. The main part focuses on a novel QCT framework called Local
Spectral Reconstruction (LSR) and describes its application to a variety of traditional
QCT problems. Additionally, new diagnostic possibilities of LSR are demonstrated
and an in-depth evaluation of various performance aspects of LSR applications is
performed. Theory and applications of the LSR were published in [Heis 09].

3.1 Concepts of Quantitative CT

Traditional single energy CT measures Hounsfield units H(r) at position r. They
correspond to weighted attenuation coefficients µ̄(r). Physically, the ground truth
of the scanned object (e.g. patient) is the energy-dependent attenuation coefficient
µ(E, r). The measurement process corresponds to a weighting of the physical ground
truth µ(E, r) to the weighted µ̄(r).

The spectral weighting is determined by both the measurement system and the
scanned object itself. The main components of the measurement system are the X-
ray source and the CT detector. The X-ray tube spectrum S(E) defines the energy
distribution of the tube quantum field (see Sec. 1.3). The CT detector has an energy-
dependent detector responsivity D(E). It describes the relative signal contribution
of a quantum of energy E (see Sec. 1.4).

The product of the tube spectrum and the detector response function is normalized
to one to yield w(E) as the System Weighting Function (SWF):

w(E) =
S(E)D(E)∫∞

0
S(E ′)D(E ′)dE ′

. (3.1)

For small objects, it approximates the local energy weighting. However, typical
patient and object diameters in practical CT reach several tens of centimeters. In
this case the self-absorption of the object shifts the local energy weighting to higher
energies (see Sec. 1.6.3 Beam Hardening). Commercial CT systems typically employ
beam hardening correction algorithms. Single energy beam hardening corrections
reduce the typical beam hardening artifacts and provide homogeneous HU values for

59
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identical material compositions throughout the CT volume. Generally, these meth-
ods cannot guarantee that the identical material gets the same HU values among
scans of different surrounding objects or alternative system settings. Quantitative
beam hardening corrections use multi-energy data to completely eliminate the effects
of the surrounding object from the HU values of a given material. Methods like the
polychromatic CT reconstruction from Yan et al. [Yan 00] incorporate the polychro-
matic nature of the tube radiation into a special iterative dual energy reconstruction
method.

Fully quantitative CT approaches generally yield measures that are directly re-
lated to physical properties of the imaged object or tissue. Unlike Hounsfield units,
these measures should not be system-dependent or be influenced by the surrounding
object. The following sections introduce two quantitative methods: Basis Material
Decomposition (BMD) [Alva 76] and Local Spectral Reconstruction [Heis 09]. The
first one yields two or more effective basis material densities to characterize underly-
ing material compositions. LSR provides a unified framework for QCT applications.

3.2 Basis Material Decomposition

In general, the spectral attenuation coefficient of a material can be expressed as a
linear combination of M energy-dependent basis functions fj(E):

µ(E, r) =

M∑

j=1

cj(r)fj(E). (3.2)

We have shown in Sec. 1.6.1 that the spectral attenuation coefficients of body ma-
terials are dominated by two effects in the energy range of medical CT: photoelectric
absorption and Compton scattering. This is the basic principle behind BMD. Since
two basis materials are sufficient to express µ(E, r) for body materials with very small
errors in the energy range of medical CT, a separation of the the energy-dependent
basis functions fj(E) from the spatially-dependent coefficients cj(r) is possible. The
typical choice for basis functions in medical CT is a set of water and bone mass
attenuation functions [Hawk86, Vett 86]. We denote the basis functions fW(E) and
fB(E). The fW(E)-component corresponds to the mass attenuation coefficient of wa-
ter and fB(E) to femur bone. The compositions were chosen according to [ICRU92].
The according basis material coefficients are denoted cW(r) and cB(r). For this basis
material set, Eq. (3.2) reads:

µ(E, r) = cW(r) · fW(E) + cB(r) · fB(E). (3.3)

In the original BMD publication, Alvarez et al. [Alva 76] suggested the physically
motivated basis-material set of mass attenuation functions corresponding to a Comp-
ton scatter and a photoelectric absorption component. The mass attenuation due
to photoelectric absorption can be modeled as fPA(E) = 1

E3 . The Compton scatter
basis function is modeled with the Klein-Nishina formula fKN(E). See [Klei 29] for a
definition of fKN(E).

For this parametrization, however, the accuracy of the basis material represen-
tation is reduced, as the basis function fPA(E) does not model the photoelectric
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absorption (see Fig. 1.15b) exactly. Thus, basis functions that represent composi-
tions of dominant materials or compositions like water and bone are used. Generally,
solving the BMD is an ill-posed problem which results in an increased sensitivity to
noise in the measured data. Weaver and Huddleston [Weav 84] alleviate this effect by
performing a principal-components analysis on various body tissue attenuation func-
tions. This yields an optimally separated set of orthogonal basis-functions. Stenner,
Kachelrieß et al. [Sten 07, Kach 06] have proposed an empirical Dual Energy calibra-
tion that yields a set of decomposition functions that does not require the knowledge
of X-ray spectra, detector sensitivities and attenuation coefficients.

The water / bone set is still very popular as it offers a good separation of the basis
functions and physically meaningful basis material coefficients. Special attention has
to be paid to the presence of contrast agents as these usually contain elements with
an atomic number greater than 25, for instance, iodine or gadolinium. This means
that their K-edge lies in the relevant energy range of medical CT. The elements have
to be contained in the set of basis materials in order to be able to model the observed
spectral attenuation coefficients precisely [Hawk97].

3.2.1 Projection Data-Based BMD

Inserting Eq. (3.2) into the line integral of the spectral attenuation law of Eq. (1.6)
yields:

∫
∞

0

µ(E, lθ,t(α))dα = fW(E)

∫
∞

0

cW(lθ,t(α))dα+ fB(E)

∫
∞

0

cB(lθ,t(α))dα (3.4)

We denote the line integral over the water coefficients AW(θ, t) =
∫
∞

0
cW(lθ,t(α))dα,

the integral AB(θ, t) over the bone coefficients is defined analogously. The beam ge-
ometry is illustrated in Fig. 1.16b.

Conducting a dual energy measurement at two energy weightings S1(E)D1(E)
and S2(E)D2(E) gives the following system of non-linear equations:

I1(θ, t) =

∫
∞

0

S1(E)D1(E) exp {−fW(E)AW(θ, t)− fB(E)AB(θ, t)} dE (3.5)

I2(θ, t) =

∫
∞

0

S2(E)D2(E) exp {−fW(E)AW(θ, t)− fB(E)AB(θ, t)} dE (3.6)

This system has to be solved for AW(θ, t) and AB(θ, t). For a survey on numerical
solvers for systems of non-linear equations see [Burd 01] pp. 600. Then the basis ma-
terial coefficients cW(r) resp. cB(r) can be recovered from AW(θ, t) resp. AB(θ, t) with
a plain inverse Radon transform as used for standard CT reconstruction. However,
this approach is prone to reconstruction artifacts as noise in the measured I1(θ, t)
and I2(θ, t) may lead to inaccurate solutions of the system of non-linear equations
(Eqs. 3.5, 3.6). This causes inconsistencies in the forward projected basis material
coefficients AW(θ, t) and AB(θ, t) which appear as streak artifacts in the reconstructed
cW(r) and cB(r) values, as the contributions from different directions do not match
accurately. This generally produces streak-artifacts in FBP-like reconstruction meth-
ods.
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A general drawback of projection data-based methods is the requirement of per-
fectly matched raw-datasets and not all dual-energy detection techniques (see Sec.
1.5) are able to produce perfectly matched raw-data.

3.2.2 Image-Based BMD

Image-based BMD avoids this problem by performing the BMD in the image do-
main. For this purpose, the reconstructed attenuation values need to correspond to
a constant, known energy weighting throughout the CT volume. For data measured
with a polychromatic source, this can be achieved by a quantitative beam hardening
correction such as [Yan 00]. It homogenizes the energy weighting throughout the re-
constructed CT volume. The homogenized energy weighting is denoted w̃i(E). Here,
i numbers the Ni spectral measurements. As for projection data-based BMD, multi-
ple measurements at different energy weightings are required. The relation between
spectral attenuation coefficient and measured attenuation coefficient after beam hard-
ening correction µ̃i(r) is defined by the energy weighting:

µ̃i(r) =

∫
∞

0

w̃i(E)µ(E, r)dE (3.7)

With an arbitrary BMD of µ(E, r) (3.2), we get:

µ̃i(r) =

∫
∞

0

w̃i(E)
M∑

j=1

cj(r)fj(E)dE (3.8)

Here, we can exchange summation and integration,

µ̃i(r) =

M∑

j=1

cj(r)

∫
∞

0

w̃i(E)fj(E)dE (3.9)

and form the matrix K̃ = [[k̃ij]] with

k̃ij =

∫
∞

0

w̃i(E)fj(E)dE. (3.10)

The complete BMD with all measurements then leads to the following linear
system of equations:

µ̃(r) = K̃ · c(r) (3.11)

with µ̃(r) = (µ̃1(r), µ̃2(r), . . . , µ̃Ni
(r))T and c(r) = (c1(r), c2(r), . . . , cM(r))T and

K̃ ∈ R
Ni×M . Solving this system for c(r) yields the basis-material coefficients at

location r.
The quantitative accuracy of the image-based BMD approach depends on the

accuracy of the beam-hardening correction and the image quality of the resulting
basis-material images is reduced since the solution of Eq. (3.11) is very sensitive to
noise in the input data. Advanced image-based material decomposition methods such
as [Maas 09] have been developed to overcome these drawbacks.
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3.3 Local Spectral Reconstruction

This section presents an image-based quantitative framework for spectral CT applica-
tions. It is referred to as Local Spectral Reconstruction [Heis 09]. The LSW approach
can be used to perform a BMD without the need of a beam hardening correction.
It calculates the spatially dependent local spectral weighting Ω(E, r) instead of ho-
mogenizing the energy weighting. Its application to BMD is demonstrated in Sec.
3.3.2.

3.3.1 Concept of Local Spectral Weighting

The central element of LSR is the Local Weighting Function (LWF) Ω(E, r). The
LWF serves as the weighting function in the spectral integration of the physical
ground truth µ(E, r) to the measured CT data µ̄(r).

This has two main implications: On a fundamental level, it allows us to evaluate
the spectral weighting process in arbitrary CT images. Energy weighting shifts can
be expressed and evaluated in terms of the local energy weighting function. From
an application point of view, the image-based link between ground truth and mea-
sured data enables a unified formulation of many spectral CT applications. These
include beam hardening corrections, energy calibrations for CT, attenuation correc-
tions for SPECT and PET as well as image-based Basis Material Decompositions or
decompositions into density and atomic number.

We first review the impact of source, detector and scanned object in a spectral
CT measurement. Based on this, an image-based formulation of the measurement
process is derived. The main element is the LWF. We provide a novel iterative
LSR algorithm for its calculation. In order to verify the framework, we investigate
measured and simulated CT image data. We use measured images of a water and an
abdomen phantom as well as simulated images of a human thorax with ground truth
representations of the spectral attenuation coefficients. Both data sources are used to
calculate and discuss the main properties of the LWF. As exemplary applications we
perform beam hardening corrections to various target energy weightings, a calculation
of an attenuation map for SPECT/CT and PET/CT and a quantitative iodine density
estimation. The resulting attenuation coefficients are compared to the respective
ground truth of the measured and simulated objects. The algorithmic convergence,
as well as the quantitative accuracy and precision are analyzed. A direct material
identification using the LWF result is demonstrated. We conclude by summarizing
the potential applications of the LSR framework in quantitative spectral CT.

3.3.2 Theory

We briefly review the properties of X-ray attenuation measurements in general and
the spectral measurement process in CT in particular. The dilemma between a cor-
rect physical description of the X-ray measurement and the limited measurement
information in single-energy CT is discussed. The local energy weighting in CT is
analyzed.
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Spectral CT Measurements

With the parameterizations of source, object and detector introduced in Sections 1.3-
1.6 we can integrate the concept of the System Weighting Function (SWF) into the
description of the measurement process: The measured attenuation A is given by the
ratio of the two measured intensities I and I0 as

A =
I

I0
=

∫
∞

0

S(E)D(E) exp

(
−
∫

∞

0

µ(E, lθ,t(α))dα

)
dE

∫
∞

0

S(E ′)D(E ′)dE ′

(3.12)

The projection path is again parameterized with lθ,t(α). For the sake of simplicity,
the parameters angle θ and distance to origin t are omitted for A and I. We can
write this as

A =

∫
∞

0

w(E) exp

(
−
∫

∞

0

µ(E, lθ,t(α))dα

)
dE (3.13)

with the definition of the SWF w(E) of Eq. 3.1.
The SWF can be calculated from parameterizations of S(E) and D(E) or ob-

tained by transmission measurements [Yan 99, Ruth 97, Sidk 05]. Figure 3.1 shows
two SWFs for a typical Dual-kVp CT scan. The corresponding tube and detector
parameterizations are found in Figs. 1.5a and 1.8.

For mono-energetic radiation with energy E = E0 we have w(E) = δ(E − E0)
1,

and Eq. (3.13) simplifies to

ln(A) = −
∫

∞

0

µ(E0, lθ,t(α))dα. (3.14)

This is equivalent to the Radon Transform [Rado 17] which will be denoted R{·}
consecutively.

Equation (3.13) and its mono-energetic version Eq. (3.14) reveal a basic dilemma
of standard single-energy CT imaging: The physical ground truth values of the
scanned object are the spectral attenuation coefficients µ(E, r). The measurement
process is correctly described by Eq. (3.13). However, the corresponding data µ(E, r)
cannot be reconstructed from standard CT measurements. We would require spec-
trally resolved sinogram data A(E) to fully reconstruct the spectral coordinate of
µ(E, r). Even if these were available, quantum noise would lead to very limited rep-
resentations of µ(E, r). Thus, Eq. (3.13) actually describes the experimental data
correctly, but the corresponding ground truth variable µ(E, r) cannot be recovered
due to missing information.

In single-energy CT this dilemma leads to a common approximation. The Radon
transform and its inverse assume the linear X-ray physics of Eq. (3.14) to reconstruct
µ̄(r) images. The errors generated by this approximation are commonly referred to
as beam hardening artifacts. The underlying model assumes that we can use Eq.
(3.14) as an approximation for µ̄(r). The X-ray quanta passing through the object
are considered to have an effective energy. When quanta pass through thick or high

1The expression δ(E) resembles Dirac distribution.
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Figure 3.1: System Weighting Functions w1(E),w2(E) according to Eq. (3.1) for the
80 kV and 140 kV tube spectra in Fig. 1.5a and the detector responsivity D(E) in
Fig. 1.8. The two weighting functions reflect a common Dual Energy measurement
case, often referred to as a Dual-kVp CT measurement.

atomic number object regions like bone, the effective energy of the detected quanta
increases by several keV due to the characteristics of µ(E), see Fig. 1.15. The
beam spectrum is hardened. As a consequence reconstructed µ̄(r) are decreased with
increasing beam hardening. The quantity µ̄(r) is obtained applying a standard mono-
energetic reconstruction (Sec. 1.6.2) to projection data from a polychromatic source
without performing any beam hardening correction.

We can analytically derive the error of the approximation. The attenuation for-
mula Eq. (3.13) can be written as

A = exp

(
−
∫

∞

0

µ̄(lθ,t(α))dα+R

)
(3.15)

with

R =
1

2

∫
∞

0

w(E)

(∫
∞

0

µ(E, lθ,t(α))dα

)2

dE + . . . (3.16)

The dots (. . . ) indicate the higher orders of the Taylor series expansions used for
this approximation.

The first term in R generally leads to an overestimation of A and a consequent
underestimation of µ̄(r) in the reconstructed image. We present a derivation of this
approximation in the Appendix of [Heis 09].

Beam hardening corrections can alleviate most of these artifacts in practical single-
energy CT. When we assume that R is small due to limited object attenuations or a
beam hardening correction, we obtain an important result. The weighted attenuation
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coefficient µ̄(r) of a CT image and the underlying physical ground truth µ(E, r) are
approximated by

µ̄(r) ≈
∫

∞

0

w(E)µ(E, r)dE (3.17)

for small, low attenuation objects.
Note that this is a local relationship at each point r in the CT data set. It

allows us to link measured and reconstructed CT data to the ground truth object
variable µ(E, r). Equation (3.17) underlines an important fact of single-energy CT
imaging. The reconstructed CT attenuations µ̄(r) depend on the SWF w(E). When
we change the X-ray source spectrum characteristics S(E) or use a different detector
responsivity D(E), the reconstructed attenuation values change. Contrasts of the
image are altered. In practice, for water-like materials only minor deviations are
expected in the HU numbers due to the water normalization, however, quantitative
measures of attenuation values and contrast of non-waterlike structures may not be
identical between CT systems.

Local Weighting Function

Following Eq. (3.13) we have the physical projection formula

P {µ(E, r)} = − ln

(∫
∞

0

w(E) exp (−Mθ,t(E)) dE

)
(3.18)

with the measurement operator P {·} and

Mθ,t(E) =

∫
∞

0

µ(E, lθ,t(α))dα (3.19)

as an abbreviation for the spatial path integration. The reconstructed effective
attenuation coefficient is

µ̄(r) = R−1 {P {µ(E, r)}} (3.20)

with R−1 {·} as the inverse Radon transform operator.
Subsequently we derive an iterative scheme to solve Eq. (3.20). Unlike typical

minimization schemes derived from

µ̂(E, r) = arg min
µ(E,r)

{
|µ̄(r)−R−1 {P {µ(E, r)}} |

}
, (3.21)

it has the same mathematical form as Eq. (3.17). This allows the direct applica-
tion of the method to image-based spectral CT methods like the image-based basis
material decomposition, featuring a high computational efficiency and fast conver-
gence: Only one forward and one backward projection per iteration and input image
is required and one to two iterations lead to a sufficient accuracy for all evaluated
practical applications. We insert a factor 1 =

∫
∞

0
w(E)dE into Eq. (3.20),

µ̄(r) =

∫
∞

0

w(E)dE · R−1 {P {µ(E, r)}} , (3.22)
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and use that the projected sinogram data P {µ(E, r)} is independent of E. This
yields

µ̄(r) =

∫
∞

0

w(E)R−1 {P {µ(E, r)}}dE. (3.23)

Expanding with µ(E,r)
µ(E,r)

yields

µ̄(r) =

∫
∞

0

w(E)
R−1 {P {µ(E, r)}}

µ(E, r)
µ(E, r)dE. (3.24)

This can be written as

µ̄(r) =

∫
∞

0

Ω(E, r)µ(E, r)dE, (3.25)

which yields the following definition of the LWF:

Ω(E, r) = w(E)
R−1 {P {µ(E, r)}}

µ(E, r)
. (3.26)

Equation (3.25) connects the spectral attenuation coefficient to the measured
weighted attenuation coefficient. It yields an image-based quantitative description of
the CT measurement and reconstruction process.

The LWF Ω(E, r) given by Eq. (3.26) describes the effective spectral weighting
at an arbitrary object position. It depends on the scanned object µ(E, r), the image
reconstruction process given by R−1 {·} and the measurement process described by
P {·}. The weighting function w(E) is given by the SWF of Eq. (3.1).

In the derivation of Eq. (3.26) the weighting function w(E) was an arbitrary
function normalized to one. However, for a small object we have R−1 {P {µ(E, r)}} ≈
µ(E, r) and thus Ω(E, r) ≈ w(E). This means that Eq. (3.25) turns into the small
object approximation given by Eq. (3.17) and w(E) is indeed given by the CT tube
and detector characteristics.

Calculation of the LWF

In practical CT we measure weighted attenuation coefficients µ̄(r). In order to cal-
culate the LWF, we need an estimate of µ(E, r) based on the input data. There
are various ways to produce estimates of µ(E, r). In this section we assume that we
have performed a Dual Energy scan. This yields two sets of attenuation value data
µ̄1(r) and µ̄2(r). We employ the BMD in an image-based form [Tagu 07] to obtain a
parametrization of µ(E, r) into two basis material coefficients c1(r) and c2(r). Unlike
the BMD-definition in Sec. 3.2.2, we can directly use the reconstructed values with-
out beam hardening correction together with the LWF by incorporating Eq. (3.2)
into Eq. (3.25) and exchanging the order of summation and integration:

(
µ̄1(r)
µ̄2(r)

)
= K

(
c1(r)
c2(r)

)
. (3.27)

The elements of the matrix K, kij , are given by
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kij =

∞∫

0

Ωi(E)fj(E) dE. (3.28)

Equation (3.27) is solved for the coefficients ci(r) by inverting K. However, the
circular dependency of solving Eqs. (3.25) resp. (3.26) and (3.27) resp. (3.28) has to
be resolved. This leads to a two-phase iterative procedure according to the flowchart
shown in Fig. 3.2. Initially, we set Ω

(k=0)
j (E, r) = w(E). With each iteration step,

the algorithm updates the estimates of µ(k)
j (E, r) and Ω

(k)
j (E, r).

This iteration procedure defines the LSR. It yields an estimate of both the LWF
and µ(E, r). We can adapt the LSR procedure to multi-channel spectral CT and Basis
Material Decomposition, i.e. a number of N > 2 spectral channels and a number of
M ≤ N basis materials. Note that for medical CT it is questionable to work with
more than two basis materials. This is due to the fact that the K-edges of the atoms
found in biological tissues lie below the lower threshold energy of around 30 keV in
CT imaging.

An algorithmic description of an efficient LSR implementation for Dual Energy
CT is given in Algorithm 1.

Input: CT attenuation datasets µ̄0(r) and µ̄1(r) with corresponding system
weighting functions w0(E) and w1(E), number of iterations I

Output: Local spectral weighting function estimates Ω
(I)
0 (E, r) and Ω

(I)
1 (E, r)

and spectral attenuation coefficients µ(I)(E, r)

Ω
(0)
0 (E, r) = w0(E)

Ω
(0)
1 (E, r) = w1(E)

for i = 1 to I do
Basis material decomposition:
(ρW(r), ρB(r)) = BMD

(
Ωi−1

0 (E, r),Ωi−1
1 (E, r), µ̄0(r), µ̄1(r)

)

µ(i)(E, r) = ρW(r) · µW (E) + ρB(r) · µB(E)
Forward projection FP of basis material coefficients:
RW (θ, t) = FP (ρW (r))
RB(θ, t) = FP (ρB(r))
Mθ,t(E) = RW(θ, t) · µW (E) +RB(θ, t) · µB(E)
LWF calculation according to Eq. (3.26):

Ω
(i)
0 (E, r) = LWF

(
µ(i)(E, r),Mθ,t(E), w0(E)

)

Ω
(i)
1 (E, r) = LWF

(
µ(i)(E, r),Mθ,t(E), w1(E)

)

end

return Ω
(i)
0 (E, r),Ω

(i)
1 (E, r), µ(i)(E, r)

Algorithm 1: Local Spectral Reconstruction algorithm. The function BMD()
solves Eq. 3.27 and yields the basis material coefficients, FP() is a forward
projection of basis material coefficients and the function LWF() calculates the
LWF according to Eq. (3.26).
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Figure 3.2: The LSR procedure is a two-phase update process, starting with the
SWF as an initial estimation of the LWF, updating µ(1)(E, r), updating Ω

(1)
j (E, r),

updating µ(2)(E, r), etc. After S steps we obtain an estimate for both the LWF and
the object attenuation coefficient. Image taken from [Heis 09].

Applications

The LSR framework (Eqs. (3.25), (3.26)) yields an estimate of the LWF and the
object ground truth µ(E, r). For practical quantitative spectral CT applications,
three main fields exist:

The first group of applications targets the obtained µ(E, r) object data. The
resulting parameters like basis material coefficients can be displayed and analyzed
for specific diagnostic tasks. In comparison to existing image-based calculations, the
effects of beam-hardening and system energy weighting properties are incorporated
quantitatively into the algorithm. We investigate the quantitative accuracy and pre-
cision in the experimental section.

It is important to note that the µ(E, r) are theoretically independent of object
self-attenuation effects and characteristics of the reconstruction and measurement
process. For example, the difference in reconstruction kernels between the two Dual-
kVp measurements can be incorporated into the measurement model of Eq. (3.20).
This can improve pixel registration between the input data sets. Note that the
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spatial resolution of the µ(E, r)-estimate, however, is limited by the input image
discretization.

In practice, accurate descriptions of w(E) and the measurement operator P {·}
are required to ensure quantitative results. Note that the inverse Radon transform
operator R−1 {·} enters both the input image reconstruction and the LWF calculation
in the same way. Hence it has no additional effect on the accuracy and precision of
µ(E, r).

Scatter radiation can be included in the measurement model, Eq. (3.18), or cor-
rected by an appropriate scatter correction algorithm. For the Dual-kVp experiments
carried out in this work, scattered radiation plays only a minor role and is not cor-
rected for.

It should be noted that alternative µ(E, r) parameterizations can be employed
in the LSR framework. An example is the image-based Rho-Z projection method
[Heis 03]. Here the attenuation coefficient is modeled as

µ(E, r) = ρeff(r)

(
µ

ρ

)
(E,Zeff(r)) . (3.29)

In this case we obtain effective density and atomic number representations (ρeff , Zeff)
as a result of the LSR framework.

A second class of applications is energy calibration. Here new images are calcu-
lated which, for instance, contain the contrasts of an alternative tube voltage setting.
Mathematically, this corresponds to a pre-defined, constant energy weighting wc(E)
throughout the whole CT image data. A number of different target weightings exist:
CT beam hardening corrections, for example, typically aim at a constant System
Weighting Function throughout the image, see e.g. Fig. 3.1 for the w(E) of CT
measurements with 80 kV and 140 kV tube voltage settings.

This can be extended to mono-energetic calibrations with the target weighting
function given by wc(E) = δ(E −E0). An application of mono-energetic attenuation
coefficients is contrast enhancement for specific tissue differences.

A further energy calibration application is the attenuation correction in SPECT/CT
and PET/CT. Mono-energetic attenuation coefficients at e.g. 141 keV and 511 keV
for the respective tracer emission lines of 99mTc and 18F-glucose are required.

We can express all of the above energy calibration applications in a common
formula:

µ̄c(r) =

∫
∞

0

wc(E)µ(E, r) dE. (3.30)

Here µ̄c(r) denotes the corrected image data for the LSR-determined µ(E, r) and
a chosen target energy weighting wc(E).

The third field of applications employs the LWF result. Fundamentally, the LWF
offers a deeper understanding of the energy weighting process in CT. In practice it
enables a direct identification of an arbitrary object material. Based on the LWF
and Eq. (3.25), the measured spectral data µ̄i(r) can be compared against reference
spectral attenuation functions. This is demonstrated by a proof of concept in Section
3.3.4.
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3.3.3 Materials and Methods

In order to verify the LSR framework we have applied it to a number of measured
and simulated CT phantom set-ups. In this section we describe the measurement
and simulation procedures, the evaluated phantom set-ups and the implementation
of the LSR algorithm.

Measurements and Simulations

For the measurements a Siemens Definition AS+ CT scanner (Siemens Healthcare,
Forchheim, Germany) was employed. Two consecutive sequential scans at tube volt-
ages of 80 kV and 140 kV were performed for each phantom. The tube current was
set to 550mAs for the 80 kV measurement and 600mAs for the 140 kV measurement.
The rotation time was set to 0.5 s and 1152 readings were acquired during one rota-
tion. We used a standard filtered back-projection (FBP) algorithm with rebinning to
parallel beam geometry for reconstruction. For all scans a soft body kernel was used
for reconstructing 32 slices of 1.2mm thickness.

In order to apply the LSR framework to practical CT measurements, the wedge
filter at the exit window of the X-ray tube has to be considered. Figure 1.2b shows
an example for this type of tube-filter. The material thickness is minimal at the
center and increases to the full aluminum thickness towards the edges. A detailed
description can be found in Sec. 1.3. This geometry increasingly reduces the primary
X-ray intensity – and thus patient dose – towards the borders of the fan beam. As a
secondary effect, it changes the spectral composition of the primary X-ray spectrum
[Mail 09]. Due to this the effective System Weighting Function has the form

wj(E) =
S(E)D(E)e−ljµF (E)

∫
∞

0
S(E ′)D(E ′)e−ljµF (E′)dE ′

(3.31)

for the j-th sinogram channel, with µF (E) as the attenuation function of the bow-
tie filter material (e.g. aluminum) and lj as its local thickness. It replaces w(E) in
Eqs. (3.18) to (3.26).

As a second source of CT data, we have used simulated CT images µ̄(r). An
analytic forward projector software implements Eq. (3.13) to calculate the sinogram
from the object phantom data µ(E, r). The simulated CT scanner X-ray geometry
as well as tube and detector properties correspond to those of the CT scanner used
in the measurements. The required X-ray tube spectra and detector responsivity
functions for 80 kV and 140 kV tube voltages are shown in Fig. 3.1. Detector cross-
talk and electronic noise effects were neglected as they contribute only minor errors in
our applications. A standard filtered back projection algorithm for indirect fan-beam
data with a cosine filter kernel (Fig. 1.20) was used for reconstruction. A detailed
description can be found in Sec. 1.6.2. The simulation results were limited to a
central single slice.
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Phantom Set-Ups

A total number of five measurement and simulation set-ups are used to generate input
image data for a verification of LSR applications. Table 3.1 summarizes the chosen
configurations A to E.

Configurations A and C are measurement cases. A body abdomen phantom (A)
and a water-filled cylinder with 25 cm diameter (C) were scanned. Configurations B,
D and E employ simulated data. The phantoms comprise a water cylinder of 40 cm
diameter (B) and an anthropomorphic thorax phantom consisting of several different
body tissue classes (D and E). Fig. 3.3 shows the phantom set-up E. The tissue
classes are defined in Table 3.2. The material compositions are chosen according to
Table A1 of the ICRU46 Report [ICRU92]. Tissue classes XV to XVII correspond
to three blood classes with slightly different concentrations of the contrast agent
iodine. They are positioned in the heart chambers and the aorta. All three contain
1.06 g

cm3 of blood. Tissue XV additionally contains 5.42 ·10−3 g

cm3 of iodine, tissue XVI
4.76 · 10−3 g

cm3 and tissue XVII 3.40 · 10−3 g

cm3 . For configuration D all three blood
classes containing iodine are substituted by the standard blood parametrization XIV.

LSR Implementation

The LSR implementation is based on the image-based Basis Material Decomposition
given by Eq. (3.27). Basis material function pairs of water / femur bone and blood /
iodine are used. The choice between the two sets in Tab. 3.1 aims at a minimization
of systematic model errors. Blood / iodine is used as soon as iodine contrast agent
material is present, c.f. [Alva 76, Hawk86]. We evaluated the model mismatch of these
basis material pairs on various body material compositions. The results presented in
Tab. 3.2 show a good performance of the water / femur bone set on all evaluated body
materials. In the presence of iodine, however, this parameterization fails to deliver
the required accuracy. The blood / iodine set yields better accuracy in these cases
but is not suited to model bone tissue types accurately. Both sets are sufficiently
accurate in representing soft tissue types.

As the result of the LSR process for set-ups A to E, we obtain an LWF Ω(E, r)
and the object representation µ(E, r) after each iteration.

Ground Truth Comparisons

In order to verify the quantitative accuracy and precision of the LSR framework,
we compare application results to ground truth values at various points throughout
this work. For a predefined object the ground truth attenuation coefficient µGT(E, r)
is known. It can be expressed by Eqs. (1.1) and (1.3). We can directly compare
the ground-truth µGT(E, r) to the LSR result µ(E, r). For energy calibration to a
defined weighting function wc(E) according to Eq. (3.30), we define the relative scalar
comparison result
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Id. Description Data Source Basis material set

A Upper abdomen phantom measured water-bone
B 40 cm water cylinder simulated water-bone
C 25 cm water cylinder measured water-bone
D Thorax phantom w/o iodine simulated water-bone
E Thorax phantom with iodine simulated blood-iodine

Table 3.1: Measurement and simulation set-ups A to E used for the LSR validation.
For each set-up, the phantom, data generation method and chosen basis material
functions are listed.

Dµ̄ =
|µ̄(r)− µ̄GT(r)|

µ̄GT

= (3.32)

=

∣∣∫∞

0
wc(E) (µ(E, r)− µGT(E, r)) dE

∣∣
∫

∞

0
wc(E)µGT(E, r) dE

. (3.33)

The smaller Dµ̄, the more accurately the corresponding energy calibration task
was performed. In the following section we use the ground truth comparisons to
examine the qualitative and quantitative characteristics of the results for a number
of spectral CT applications.

Figure 3.3: Thorax phantom set-up used as set-up D and E in Tab. 3.1. The roman
number annotations indicate specific body materials listed in Tab. 3.2. The spectral
attenuation coefficient µ(E, r) is provided for each material type according to the
body compositions in the ICRU46 report. At regions XV to XVII, set-up E contains
blood with varying iodine contrast agent concentrations, whereas set-up D substitutes
the three regions by the standard blood parametrization XIV.

3.3.4 Results and Discussion

We used the measurement and simulation set-ups A to E listed in Tab. 3.1 to evaluate
the following properties:

First, we assess the basic characteristics of the LWF for an upper abdomen phan-
tom containing a bone inset and a homogeneous water phantom. Secondly, we eval-
uate the accuracy and precision of an LSR-based energy calibration procedure. Both
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water / bone

No. Tissue name 60 kV 100 kV 120 kV
I Average soft tissue (male) 6.53e-3 8.19e-4 4.06e-4
II Kidney 2.84e-3 5.27e-4 2.74e-4
III Liver (healthy) 2.16e-3 4.28e-4 2.17e-4
IV Lung (healthy, inflated) 1.31e-3 3.92e-4 2.15e-4
V Skeletal muscle 3.19e-3 5.93e-4 3.10e-4
VI Red marrow 1.70e-2 2.14e-3 1.20e-3
VII Bone cortical 6.97e-3 1.00e-3 5.58e-4
VIII Bone cranium 4.97e-3 6.74e-4 3.78e-4
IX Bone femur (30 years, male) 4.76e-6 1.99e-6 3.82e-6
X Bone rib 2 to 6 3.12e-3 4.02e-4 2.53e-4
XI Bone spongiosa 6.20e-3 8.99e-4 5.42e-4
XII Bone humerus 2.31e-3 3.32e-4 1.76e-4
XIII Cartilage 8.85e-3 1.18e-3 7.33e-4
XIV Blood 5.92e-3 1.07e-3 6.47e-4
XV Blood (high contrast) 1.54 2.14e-1 1.44e-1
XVI Blood (medium contrast) 1.40 1.93e-1 1.29e-1
XVII Blood (low contrast) 1.07 1.45e-1 9.65e-2

blood / iodine

No. Tissue name 60 kV 100 kV 120 kV
I Average soft tissue (male) 2.49e-1 3.09e-2 2.01e-2
II Kidney 6.89e-2 8.58e-3 5.60e-3
III Liver (healthy) 4.95e-2 6.11e-3 3.99e-3
IV Lung (healthy, inflated) 2.74e-2 3.39e-3 2.24e-3
V Skeletal muscle 6.46e-2 8.06e-3 5.26e-3
VI Red marrow 4.15e-1 5.12e-2 3.32e-2
VII Bone cortical 4.04 6.95e-1 4.91e-1
VIII Bone cranium 3.58 5.93e-1 4.14e-1
IX Bone femur (30 years, male) 2.92 4.59e-1 3.16e-1
X Bone rib 2 to 6 3.08 4.89e-1 3.38e-1
XI Bone spongiosa 1.98 2.90e-1 1.96e-1
XII Bone humerus 3.27 5.27e-1 3.65e-1
XIII Cartilage 3.07e-1 4.02e-2 2.63e-2
XIV Blood 9.12e-7 2.12e-7 2.90e-8
XV Blood (high contrast) 2.67e-7 6.00e-7 8.53e-7
XVI Blood (medium contrast) 6.64e-6 6.92e-7 1.02e-6
XVII Blood (low contrast) 5.79e-6 4.00e-7 2.14e-6

Table 3.2: List of body materials used in the thorax phantom set-ups D and E, with
the former shown in Fig. 3.3. Roman numbers provide an index to each material.
Columns 3 to 7 contain the relative systematic deviation of the material ground truth
to the basis material representation, see Eq. (3.33). The values represent relative
deviations, not percent-values. The upper half of the table includes relative deviations
for the water / bone µ(E, r) representation and the lower half includes the deviations
for blood / iodine representations. The respective target energy weighting is given by
a tungsten spectrum with the tube voltage stated in the column title. Cases where
the relative deviation exceeds 1% are highlighted.
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beam hardening corrections to different X-ray tube target weightings and an attenu-
ation correction for SPECT/CT are evaluated. Moreover, the accuracy of an iodine
contrast agent density estimation is evaluated. Finally, a direct material identification
based on the LWF is demonstrated.

Characteristics of the Local Weighting Function

In order to show the basic characteristics of the LWF, it is evaluated for the measured
upper abdomen phantom data (set-up A). Figure 3.4 shows the 80 kV input image
with markers at different locations within the thorax phantom slice. Figure 3.5 shows
the corresponding LWFs. Several effects are visible. The central red and black soft
tissue points have a very similar LWF. In comparison to this the blue point close
to the phantom border exhibits a reduced LWF. The shape change within the same
tissue class is mainly due to the bow-tie filter. In this case the LWF values are
decreased towards the phantom boundaries as the beam hardening of the bow-tie
filter is stronger than the object induced beam hardening. Finally, the violet point
at the spinal bone inset shows a strong reduction of the LWF for lower energies.

Figure 3.4: CT image of the upper abdomen phantom and location of the sample
points for the LWF plots of Fig. 3.5.
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Figure 3.5: Samples of the local spectral weighting function within the thorax phan-
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76 Chapter 3. Quantitative CT

We can further understand this behavior with set-up B. It comprises a simulation
of a 40 cm water phantom. The X-ray tube bow-tie filter is omitted to obtain the
pure object effect. Table 3.3 shows the resulting change of the LWF integral value
for varying distances from the center of the water cylinder slice. The integral of the
LWF at the center is reduced by around 5% compared to the edge of the phantom.
Unlike the SWF, the LWF is generally not normalized to one. The integral value
over energy decreases with increasing beam hardening. This property reflects the
under-estimation of the attenuation values due to beam hardening in the uncorrected
input image.

These basic results indicate that the shape of the LWF is originally given by the
SWF. Local changes in the shape are governed by the attenuation function of the
underlying material. Furthermore, beam hardening mainly affects the integral value
of the LWF. This corresponds to the mathematical structure of the LWF definition
in Eq. (3.26).

Distance from cylinder center (cm) Integral value of the LWF

80 kV system weighting 1.0000
0 0.9533
4 0.9549
8 0.9551
12 0.9656
16 0.9707
20 1.0047

Table 3.3: Integral values of the SWF and LWFs at different locations within the
40 cm water cylinder slice.

Energy calibration

As the first energy calibration experiment, the 80 kV and 140 kV measurement data
of the 25 cm water phantom set-up C is provided to the LSR algorithm. With the
resulting µ(E, r) representations an energy calibration according to Eq. (3.30) is
performed. The target weightings wc(E) are chosen as the SWFs for the 80 kV and
140 kV measurement.

The 140 kV beam hardening correction result is shown in Fig. 3.6 after the first
iteration step. A nearly homogeneous water value is obtained in the line plot. We
can compare the water values µ̄(r) against the water attenuation function of Eq.
(1.2) weighted by the respective target SWFs. The average ground truth deviations
are Dµ̄ = 2.86% for the shown 140 kV case and Dµ̄ = 2.05% for the 80 kV case.
Additional iterations do not lead to further improvements of the accuracy. The
remaining ground truth deviations are probably due to inaccuracies in the system
descriptions, especially the parameterizations of the SWF and the bow-tie filter. The
next section investigates the potential algorithmic inaccuracies.

In order to evaluate the algorithmic accuracy and precision, we use the simulated
thorax-phantom set-up D. For the simulated data, the measurement system descrip-
tion is known and accurate by definition. Any remaining ground truth deviations can
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Figure 3.6: Beam hardening correction result after first iteration compared to original
and ground truth attenuation values. The higher values at the border of the phantom
are caused by the plastic casing of the water phantom.

be attributed to LSR inaccuracies. The simulated image data include Poisson quan-
tum noise. It is determined by maximum input quantum numbers of N (1)

0 = 6.38e5
(80 kV) and N

(2)
0 = 2.83e6 (140 kV) per detector pixel reading. This enables us to

evaluate the precision of the LSR iteration results. For the target weighting wc(E),
the detector responsivity is kept constant and spectra for the tungsten tube voltages
60 kV, 80 kV, 100 kV, 120 kV and 140 kV are used. We also evaluate mono-energetic
spectra at 141 keV and 511 keV. This corresponds to the emission energy of 99mTc and
18F as the most common SPECT and PET tracers. The resulting attenuation values
can be used to perform an attenuation correction in PET/CT and SPECT/CT.

Accuracy, Precision and Convergence

Figure 3.7 shows the absolute error for average soft tissue attenuation values after
energy calibration with a 80 kV target weighting. The error is given by the absolute
difference to the ground truth attenuation function which has been weighted with the
same target weightings. The first four LSR iterations are shown. The mean deviation
for each step is shown as the straight blue line. It describes the systematic deviation
from the ground truth and thus the accuracy of the obtained soft tissue values. The
error bars represent the standard deviation of all soft tissue voxels and the dashed
lines indicate the 25% and 75% quantiles. These values represent the precision of the
obtained values.

The mean error drops strongly in the first LSR iteration cycle. Here the image
inhomogeneities caused by beam hardening are already reduced substantially. After
the second iteration step the average deviation is completely eliminated. Further
iteration steps do not contribute increasing accuracy. At the same time the standard
deviation indicated by the error bars rises. This is due to the image noise which is
introduced by the basis material representations and amplified with each step. A
trade-off between accuracy and precision has to be defined. For this particular result
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one to two iterations are a reasonable choice to obtain a very good accuracy without a
major sacrifice in precision. From the results we can also deduce that the convergence
rate shows an approximately exponential behavior.
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Figure 3.7: Absolute error for average soft tissue attenuation values after energy
calibration with 80 kV target weighting.

Accuracy and Convergence for Multiple Target Weightings and Tissue
Classes

We can extend the findings of the last sections to all twelve material classes present in
phantom set-up D. Since we focus on the accuracy and convergence behavior, Poisson
noise is not added to the input data in this case. Figure 3.8 shows the relative errors
Dµ̄ of the mean attenuation values for all available tissue classes in the uncorrected
image and the first four iterations. Again, a 80 kV target weighting has been used.

All materials show a convergence behavior similar to the soft tissue depicted in
Fig. 3.7. Note that the bone materials require the strongest value shifts as they are
affected the most by beam hardening impacts.

Figure 3.9 demonstrates convergence and accuracy of an energy calibration to a
mono-energetic 511 keV spectrum. This is equivalent to the calculation of an attenu-
ation correction map for PET/CT. Again, the LSR process converges exponentially.
There is almost no change in the values after two iterations and the errors are in the
same range as in the 80 kV beam hardening correction case. Similar results are ob-
tained for a mono-energetic 141 keV target spectrum (Fig. 3.10). The results indicate
that the calculation of both PET/CT and SPECT/CT attenuation maps is feasible
with appropriate accuracy. This means that LSR can be used for an exact quanti-
tative attenuation correction instead of merely approximative approaches commonly
used with single energy CT data.

Figure 3.10 also summarizes the remaining energy calibration cases. Relative er-
rors for energy calibrations to all evaluated target weightings for all available tissue
classes are shown. Only the results for the fourth iteration are displayed. In gen-
eral, the error is smaller for soft tissues. All tissues tend to have smaller errors for
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higher polychromatic target energies whereas the error of the monochromatic 141 keV
spectrum is larger for some tissues. The range of relative errors is very small for all
tissues and mostly below 0.1% deviation from the ground truth tissue attenuation
value. The comparably high error in the inflated lung tissue is caused by the very
low attenuation values and the resulting high relative error even for minor absolute
deviations.
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Figure 3.8: Relative error for energy calibration with 80 kV base and target weighting
(negative values indicate over-estimation). The tissue classes are described in Tab.
3.2 and illustrated in Fig. 3.3.
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Figure 3.9: Relative error for energy calibration from 140 kV base to mono-energetic
511 keV target weighting (negative values indicate over-estimation).

Iodine Density Estimation

We evaluate the accuracy of the basis material coefficients for the iodine filled blood
insets in set-up E of Tab. 3.1. The coefficients should represent the true densities
of blood and iodine, since the basis materials exactly correspond to the mixture
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Figure 3.10: Relative errors for energy calibration of 80 kV input data to target
spectra from 60 kV to 140 kV and a mono-energetic 141 keV spectrum.

materials of the tissue classes. Figures 3.11a and 3.11b show the resulting absolute
deviations.

The estimated blood densities range from 1.0601 to 1.0604 with decreasing iodine
concentration which equals a relative error of less than 0.05%. The iodine concen-
tration values for the three tissue classes are 5.40 · 10−3 g

cm3 (relative error 0.33%) for
high concentration, 4.75 · 10−3 g

cm3 (relative error 0.19%) for medium concentration
and 3.42 · 10−3 g

cm3 (relative error 0.005%) for low concentration.
Interestingly, the model mismatch of the iodine / blood basis functions to the

bone constituents of the phantom (s. Tab. 3.2) does not influence the quantitative
accuracy of the obtained densities. This can be attributed to the fact that the bone
forward projection errors do not contribute substantially to the error in the evaluated
quantities. In bone-dominated regions like shoulder or head slice images, this can
potentially lead to more pronounced deviations. A more accurate modeling of the
µ(E, r) could be required then, for instance with a spatially varying basis set.
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Figure 3.11: Absolute error for blood and iodine densities in blood-iodine mixtures
estimated with LSR.
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Tissue H C N O Others Density (g/cm−3)

Average
soft tissue

10.5 25.6 2.7 60.2 0.1 Na, 0.2 P, 0.3 S,
0.2 Cl, 0.2 K

1.030

Liver
(healthy)

10.2 13.9 3.0 71.6 0.2 Na, 0.3 P, 0.3 S,
0.2 Cl, 0.3 K

1.060

Skeletal
muscle

10.2 14.3 3.4 71.0 0.1 Na, 0.2 P, 0.3 S,
0.1 Cl, 0.4 K

1.050

Blood 10.2 11.0 3.3 74.5 0.1 Na, 0.1 P, 0.2 S,
0.3 Cl, 0.2 K, 0.1 Fe

1.060

Table 3.4: Chemical composition of soft tissue reference materials, taken from
[ICRU92]. The table lists mass percentages of the four main elements Hydrogen,
Carbon, Nitrogen and Oxygen as well as other elemental contributions. The tissue
density is given in the right most column.

Direct material identification

The previous applications are based on the µ(E, r) result of the LSR procedure. In
this section we demonstrate that the LWF result can be used for a direct identification
of spectral attenuation functions. Like in the previous section the analysis of the
algorithmic accuracy is the main target.

We can rewrite Eq. (3.25) as

∣∣∣∣µ̄i(r)−
∫

∞

0

Ωi(E, r)µt(E, r)dE

∣∣∣∣ = εi (3.34)

For a known LWF Ωi(E, r), a measurement result µ̄i(r) can be compared against a
model function µt(E, r). The index i corresponds to a spectral measurement channel
and t is an index to a list of different spectral attenuation functions. The resulting εi
is a measure for the deviation between the model function and the CT measurement
data. For a Dual Energy measurement, the net deviation can be expressed by e.g.
a quadratic sum ε =

√
ε21 + ε22. When we compare a comprehensive list of materials

µt(E, r), t = 1 . . . T against the measurement data, the most probable material can
be identified.

We have applied a basic material identification approach to the thorax phantom
case D. The LWF estimates were computed in two LSR iterations with 80 kV and
140 kV Dual Energy input data. The 80 kV input data is shown in Fig. 3.12a. The
identification process was performed on the soft-tissue components of the phantom.
In Table 3.2, this corresponds to the materials ’average soft tissue’ (I), ’liver’ (III),
’skeletal muscle’ (V) and ’blood’ (XIV). As shown in Table 3.4, the chemical compo-
sitions of these materials differ only slightly.

The results of the identification process are presented in Fig. 3.12b. All color
coded voxels were assigned to one of the reference tissues, i.e. no intermediate prob-
abilities are shown. We have average soft tissue marked in yellow, liver tissue shown
in green, skeletal muscle in blue and blood is marked in red. Overall, a good sep-
aration between the tissue types is achieved, especially considering the significant
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beam-hardening artifacts in Fig. 3.12a and the small chemical deviations of the ma-
terials. Errors are mainly present for voxels affected by partial volume effects as
these cannot be covered by this single voxel oriented approach. Some blood voxels
are erroneously identified as liver tissue due to their particular similarity in terms of
composition and density.

It should be noted clearly that these results represent a proof of concept. Practical
applications are strongly limited by the input image noise and the associated impact
on result precision as well as the overall system stability. Even in the absence of
noise, the direct material identification cannot distinguish between two a-priori chosen
attenuation functions which yield the same two measurement results.

Still, the results demonstrate that an appropriate algorithmic accuracy for de-
manding soft tissue identification tasks can be achieved. Beam-hardening is treated
quantitatively and the tissue is identified correctly over the whole image plane. The
method does not suffer from transformation non-linearities or noise correlations typ-
ically found in alternative indirect segmentation methods e.g. based on effective
atomic number and density or basis material coefficients.

Note also that the results of this simple approach are based on per voxel compar-
isons only. They do not employ any shape or connectivity information. In practical
realizations, the comparison method can be adapted to a specific task and additional
image processing might be required to ensure a desired robustness. The distance
measures can, for instance, be used as input data to a standard organ segmentation
algorithm.

(a) (b)

Figure 3.12: (a) 80 kV input image (attenuation values µ̄(r), center: 0.220mm−1,
width: 0.012mm−1); (b) Color-coded identification result. Blue: skeletal muscle,
red: blood, green: liver, yellow: average soft tissue

3.4 Conclusions

We have provided an overview on QCT algorithms and presented BMD, one of the
basic methods for most QCT algorithms. In the second part of this chapter we
introduce a novel quantitative image-based reconstruction framework for spectral CT
applications. The LSR algorithm yields two results: First, the LWF Ω(E, r) can be
determined. The LWF defines the local weighting of the object ground truth µ(E, r)
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to measured effective attenuation values µ̄(r). At the same time, estimates for the
attenuation coefficient µ(E, r) as the object’s ground truth are obtained.

The LSR process consists of two nested update loops: An initial estimate of
the LWF is chosen, for instance the SWF can be used as an initial guess. Then
a quantitative spectral CT method like the Basis Material Decomposition yields a
first estimate of the spectral attenuation coefficient µ(E, r). An updated LWF is
calculated from this and so forth.

In order to evaluate the properties of the LWF and the accuracy and precision of
the obtained spectral attenuation coefficients, we have analyzed five different practical
measurement and simulation set-ups:

In a first group of evaluations, we have considered the basic properties of the LWF.
As input data, measurement data of an upper abdomen phantom and simulations of a
40 cm water phantom were obtained. The results on the measured abdomen phantom
indicate that the basic shape of the LWF is given by the System Weighting Function.
The LWF is scaled down by object self-attenuation. Unlike the SWF, the LWF is not
normalized to one. For example, its integral value is found to be reduced by about
5% at the center of the simulated 40 cm water phantom. This is equivalent to the
reduction of the effective attenuation coefficient in standard CT images. Furthermore,
the LWF is shaped by the spectral attenuation coefficient of the local attenuator. The
findings correspond to the mathematical structure of the LWF definition.

The second group of evaluations covers energy calibration as a practical applica-
tion. For a measured 25 cm water phantom, we obtained energy-calibrated effective
80 kV and 140 kV images with no beam hardening artifacts. The remaining ground
truth deviations were found to be in the range of 2 to 3 %. This is a remarkable
accuracy considering that measurement impacts like the bow-tie filter induced beam
hardening, geometrical alignment issues and the uncertainty of SWF had to be in-
cluded successfully.

The algorithmic accuracy and precision was further evaluated by simulated data
of an anthropomorphic thorax phantom. It is based on geometrical definitions of
µ(E, r) regions of body materials. We analyzed the obtained µ(E, r) data for ground
truth accuracy and precision. Energy calibrations to [60, 80, 100, 120, 140]kV tube
acceleration voltage SWFs and mono-energetic 141 keV and 511 keV SWFs prove a
convergence to ground truth in the iterative process. The convergence is found to be
exponential. However, at the same time noise is amplified with each iteration step.
This degrades the precision of the obtained µ(E, r) parametrization.

The optimum choice of iteration steps depends on the chosen application. For
the homogenization of tissue values typically found in beam hardening and energy
calibration tasks, one iteration might be enough to yield sufficient results in many
cases. For quantitative spectral applications two iterations are probably the optimum
choice. Since the chosen phantom set-up reflects typical medical CT objects in terms
of object diameter and material components, we expect similar convergence results
for arbitrary CT slice settings.

As an example for a quantitative spectral CT application we have performed an
iodine density measurement in the heart chambers and aorta of the simulated thorax
phantom. We find relative deviations in the range of 10−3 between the ground truth
densities and the estimated iodine concentrations. Finally it was shown that the
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LWF result can be used to perform a direct material identification with appropriate
algorithmic accuracy.

In terms of computational effort, one LSR iteration step requires one Basis Ma-
terial Decomposition of the input attenuation value data, one forward projection per
each basis material coefficient image and one filtered back-projection for each input
weighting. For one to two iteration steps the total computational effort is thus easily
manageable in practical applications.

In summary we have shown that potential applications of the LSR framework like
energy calibration and image-domain quantitative spectral algorithms are feasible.
The expected algorithmic accuracy in the sub-percent range seems to be sufficient for
practical applications. Still, the precision of the obtained object parameterizations
depends on the noise transfer of the iterative algorithm. For the results of this work,
we find that an optimum trade-off exists where the ground truth is reconstructed with
only a minor precision decrease. Understanding and controlling the noise transfer
of the algorithm warrants further research. Furthermore, we have shown that beam
hardening corrections, mono-energetic attenuation coefficient images and attenuation
correction maps for SPECT/CT and PET/CT can be written in one common energy
calibration formula. It gives an analytic insight into the spectral properties of CT
reconstruction. The LSR framework enables quantitative spectral CT applications in
the image-domain. In particular, we can include the effects of object self-attenuation
as well as the physics of the measurement system and the reconstruction algorithm.



Chapter 4

Dose Reduction

CT image quality is predominantly influenced by the SNR and the image MTF. Noise
reduction techniques are an essential tool in medical CT, as image noise greatly
influences the detectability of details in a reconstructed CT volume and thus its
diagnostic value. As the most dominant noise component in CT, quantum noise,
is directly related to detected X-ray intensity, successful noise reduction leads to a
reduction of patient X-ray dose [Hilt 04].

As shown in the previous chapter, QCT applications tend to be particularly sensi-
tive to image and measurement noise. The different nature of the input data compared
to classical single-energy CT requires special means of pre-processing. This chapter
gives a roundup of general principles of noise reduction in FBP-based CT reconstruc-
tion and then introduces two novel methods for noise reduction of CT data: The first
one is a post-reconstruction technique based on intensity statistics. It is explicitly
adapted to multi-energy CT data. The second one is a novel frequency-based filter
that combines the advantages of pre- and post-reconstruction techniques to provide
an edge-preserving noise reduction that can be adapted to various diagnostic de-
mands. It is an enhanced version of the well-known bilateral filter using a structural
similarity term instead of a photometric similarity. The structural similarity takes
the CT measurement process into account.

4.1 Noise Reduction in CT

It is commonly agreed that Dual Energy scans should require about the same to-
tal X-ray dose as the corresponding single-energy scan. This calls for effective noise
reduction techniques in Dual Energy CT. In general, dose efficiency of CT acquisi-
tions is driven by several means including dynamic exposure control [Gres 00], tube
filters like the wedge filter [Mail 09] and optimized detector designs that maximize
the DQE [Rose 46, Rabb 87] as, for instance, shown in Chapter 2. For FBP-based
reconstructions [Feld 84, Kak 01], projection- or image-domain filters are applied to
reduce the required patient dose. The most common filtering strategy applied in
medical CT scanners consists in modifying the high-pass reconstruction kernel used
for FBP in a way that high frequencies are less amplified or blocked [Chew78]. For
most diagnostic tasks, the relevant information is supposed to be primarily contained
in the lower-frequency components of the image. Each CT manufacturer offers a
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broad spectrum of task-specific reconstruction kernels that block irrelevant frequency
components and consequently noise.

More advanced noise reduction techniques use adaptive filters. This type of filters
steers the filter strength according to a noise estimate and causes less smoothing in
regions where noise is low, i.e. the X-ray intensity is less attenuated. For instance, an
adaptive filter for reducing noise induced streak artifacts in very strongly attenuated
data is shown in [Hsie 98]. Kachelrieß et al. [Kach 01] have introduced an adaptive
filter that is applied in projection domain and features non-linear filtering in channel,
reading and z-direction for various types of projection data such as helical cone-beam
CT. In [Bors 08b], a method for wavelet-based denoising of projection data is intro-
duced. This approach is especially suited for dual source data [Floh 06] with similar
tube-voltage settings for two low-dose data-sets. It utilizes the noise correlations
between the two aligned data-sets to construct an adaptive wavelet-based filter.

Well-known edge preserving filters have also been investigated. Edge-preserving
anisotropic diffusion filters [Catt 92, Weic 98] can be adapted to CT data as shown
in [Wang 05]. The purpose of this filter is to smooth along but not across edges.
It relies on gradient information and noise can deteriorate the edge information and
erroneously preserve noise-induced structures. As a consequence true edges are weak-
ened or false ones are enhanced. This problem has to be avoided by carefully choosing
the smoothing parameters for the gradient estimation based on local noise estimates.
Schaap et al. [Scha 08] have developed an image-based fast denoising method based
on anisotropic diffusion. This method features an adapted diffusion filter to preserve
small structures.

Bilateral filtering [Toma 98] tries to achieve a similar goal by combining frequency-
and intensity-based smoothing. This filter type steers the smoothing locally accord-
ing to distance and similarity of neighboring intensity values. In CT, frequency-based
noise reduction filters are usually applied in the projection domain as the spectral
noise properties in the CT-image or -volume domain can hardly be derived analyt-
ically. The image noise is inhomogeneous and non-stationary and estimating local
noise properties is complex, for instance Borsdorf et al. [Bors 08a] demonstrate how to
estimate local variance and analyze noise correlations in the image domain for CT-
data reconstructed with indirect FBP. A Monte Carlo-based local NPS estimation
technique is shown in [Bald 10a].

All of these strategies have one common goal: Reducing the noise level of the
reconstructed images while maintaining a desired level of image sharpness and details.

4.2 Value-based Noise Reduction for Multi-Energy

CT

In this section we introduce a noise reduction technique that is solely based on joint
intensity statistics of the two Dual Energy datasets. Most multi-energy modalities
have an unequal noise distribution between images due to tube limitations and/or
strong absorption in low-kVp images. The individual images from a multi-energy
scan are much noisier than an image of a single energy scan, as the overall scan dose
should be in an identical range. Quantitative CT algorithms based on Dual Energy
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data are very sensitive to image noise. Basis Material Decomposition (Sec. 3.2.2), for
instance, suffers from noise amplification and artifacts in the resulting basis material
coefficient images. For image-based BMD this is caused by the ill-posedness of the
system of linear equations that defines the link between reconstructed attenuation
values and basis-material coefficients. In projection-based BMD, a system of non-
linear equations is solved numerically. Projection noise has a negative influence in
the precision of the resulting projected basis-material densities and consequently may
lead to visible artifacts in the reconstructed basis material images. For other QCT
applications, like Rho-Z projection [Heis 03] or LSR (Sec. 3.3), similar problems arise.

The proposed Dual Energy noise reduction improves images from one energy
weighting by using knowledge on the joint intensities from both datasets. As it is
purely value-based and does not utilize any frequency information, it is compatible
with the frequency-based filters explained above. Below, we explain the method and
suggest combination strategies with prevalent frequency-based filters.

4.2.1 Method

The noise-reduction method uses a low-kVp CT-volume µ̄1(r) and a high-kVp volume
µ̄2(r) as input data. The voxel coordinate is indicated by r. This method is neither
restricted in terms of the number of multi-energy input data-sets nor their dimension.
However, for practical reasons, the description focuses on Dual Energy data of two or
three spatial dimensions. Our method estimates the most likely object attenuation
values µ̃1(r) and µ̃2(r) for each measured (µ̄1(r), µ̄2(r))-pair by a gradient ascent in
the joint probability density.

Due to the attenuation characteristics described in Sec. 1.6.1 and the tube current
and dose limitations described in Sec. 1.3, a dual-energy set usually consists of a
relatively noisy low-kVp dataset which exhibits high soft-tissue contrasts and a high-
kVp dataset with lower SNR but also lower noise. The following method uses these
properties to derive noise estimates for both images from the joint statistics of the
input images or volumes.

Joint probability density estimation: The first step estimates the joint proba-
bility density P (µ̄1, µ̄2) for all (µ̄1(r), µ̄2(r))-pairs. Here, µ̄1 and µ̄2 denote the ran-
dom variables and µ̄1(r) and µ̄2(r) their measured realizations at location r. Several
methods are available for this purpose, e.g. computing histograms, data clustering
or Parzen windowing [Parz 62]. We use kernel density estimation using a bivariate,
uncorrelated Normal Distribution as kernel function. This method offers the possi-
bility to apply smoothing to the P (µ̄1, µ̄2)-estimate by adjusting the bandwidth of
the kernel:

N(σ1,σ2)(µ̄1, µ̄2) =
1

2πσ1σ2
exp

{
−1

2

(
µ̄2
1

σ2
1

+
µ̄2
2

σ2
2

)}
. (4.1)

The standard deviations σ1 and σ2 are the bandwidth parameters. Several dif-
ferent approaches have been investigated to provide optimal bandwidth parameters
for multivariate kernel functions in a sense that the joint probability density esti-
mate P (µ̄1, µ̄2) converges fastest to the true joint density [Scot 92, Jone 96]. Plug-in
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bandwidth selectors (e.g. [Enge 94]) or smoothed bootstrap methods (e.g. [Tayl 89,
Fara 90]) are among the most commonly used techniques. For our method, however,
these bandwidths are not necessarily optimal, since we want to use the smoothing
parameter in the joint densities to steer the strength of the denoising. Slightly over-
smoothed density estimates yield better noise suppression at the cost of increased
bias. The selected bandwidth parameter set is denoted (b1, b2) below. Once a set of
bandwidth parameters is selected, the density estimate Pb1,b2(µ̄1, µ̄2) can be computed
by a convolution:

Pb1,b2(µ̄1, µ̄2) = N(b1,b2)(µ̄1, µ̄2) ∗
∑

i δ(µ̄1 − µ̄1(ri), µ̄2 − µ̄2(ri))
=
∑

i N(b1,b2)(µ̄1 − µ̄1(ri), µ̄2 − µ̄2(ri))
(4.2)

The expression δ(µ̄1, µ̄2) denotes the Dirac distribution located at (µ̄1, µ̄2).

Noise estimation: The next step is to estimate true attenuation values for each
pair of measured values by analyzing Pb1,b2(µ̄1, µ̄2). In order to find the most probable
true µ̄1-value for a measured pair of values (µ̄1(r), µ̄2(r)), the µ̄2(r)-value is kept fixed
and a gradient ascent along the µ̄1-direction within the density estimate is performed.

The gradient direction is given by

G1(µ̄1, µ̄2) =

(
sgn

{
∂

∂µ̄1

(
P(b1,b2)(µ̄1, µ̄2)

)}
, 0

)
. (4.3)

Figure 4.1 shows an example for this procedure. This gradient ascent approach
does not employ any step width control. The step width is implicitly given by the
sampling of the joint histogram.

The resulting local maximum for µ̄1(r) is called µ̃1(r). It represents the most
probable µ̄1-value for the measured intensity pair with fixed µ̄1(r). The distance

d1(r) = |µ̃1(r)− µ̄1(r)| (4.4)

is an estimate for the noisiness of µ̄1(r). The process of finding the µ̃2-value
works analogously: The gradient ascent is performed in µ̄2-direction. This leads to
the estimates µ̃2(r) and d2(r). The values µ̃1(r), µ̃2(r) and d1(r), d2(r) can be used
for noise reduction using the following key principle: If d1(r) is small, the actually
measured value µ̄1(r) is very close to its next local maximum µ̃1(r). If the according
distance d2(r) is relatively large, this is an indication that µ̄2(r) is relatively noisy
compared to µ̄1(r) and should be replaced by the most likely µ̃2(r) estimated from
the measurement µ̄1(r).

Noise reduction: The quality of the estimates µ̃1(r) and µ̃2(r) is affected by noise
in the original intensity pairs (µ̄1(r), µ̄2(r)): High noise in µ̄1(r) and µ̄2(r) generally
worsens both estimates, low noise in the µ̄1(r)-value increases the quality of the
estimate µ̃2(r) and vice versa. The noise-reduction process should use a measure
that takes these properties into account and adjusts the strength of the correction
process accordingly. The following measure offers these properties and allows to
govern the strength of the filter by a single parameter:
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µ̂1(r) = α(r) · µ̄1(r) + (1− α(r)) · µ̃1(r) (4.5)

The correction strength is defined by a parameter α, the final noise-reduced image
value is called µ̂1(r); α is computed from the noisiness estimates Eq. (4.4) as follows:

α(r) =

(
d1(r)

dt(r)

)o

with dt(r) =
√
d1(r)2 + d2(r)2 (4.6)

The parameter o determines the correction strength, values of o = [0, 1] generally
favor the µ̃1(r)- resp. µ̃2(r)-estimates whereas o =]1,+∞[ directs the filter to use the
estimates only when the image noise estimate is close to the overall noise estimate
dt(r). In our experiments, we used o = 5.
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Figure 4.1: Examples for the gradient ascent procedure with µ̄1(r) = 0.0187mm−1

and µ̄2(r) = 0.0232mm−1. Arrows indicate the gradient direction, the start point is
located at the base of the arrows.

Parameter selection: The strength of the intensity smoothing is governed by the
two bandwidth parameters. Good values for these parameters depend on image noise
and desired tissue contrast. Noise in CT images is non-stationary and depends on
dose settings, object attenuation and image location, thus the optimal parameters
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vary with the location r and the measured attenuation values (µ̄1(r), µ̄2(r)). The
bandwidth parameter b1 would read b1(r, µ̄1) and b2 would read b2(r, µ̄2) in this
case. These degrees of freedom have to be limited since concise knowledge on all
noise properties is not available and its application is not feasible due to restrictions
in computation time. We aim to apply only a simple model for the bandwidth
parameters that relies on few rough estimates but still meets the following criteria:

1. As little free parameters as possible.

2. Good adaption of bandwidth parameters to all input images.

3. Lowest achievable bias for soft-tissue intensities to maintain soft tissue contrast.

4. Appropriate noise-reduction across the whole intensity range.

We can drop the spatial dependency of the bandwidth parameter as the spatial
variance of noise properties usually varies little within the important center region
of CT slice images. We choose b1 as the only free parameter. It is selected for the
reference intensity of µ̄r = 0HU (CT-value for water) in the µ̄1-image. Automatically
computing an appropriate b2 value for the µ̄2-image has to take the relative contrast
and noise of the second image into account. We generate a set

R = {ri|µ̄1,s1 < µ̄1(ri) < µ̄1,s2} (4.7)

containing all soft tissue voxels of image 1. The boundaries for soft-tissue intensi-
ties are usually known for a specific tube acceleration voltage. Next we estimate the
standard deviation σ1,s on µ̄1(ri) ∀ ri ∈ R:

σ2
1,s =

1

|R|
∑

ri∈R

(µ̄1(ri)−m1,s)
2. (4.8)

The average value over all soft-tissue values in image 1 is denoted m1,s. Anal-
ogously σ2,s is computed on µ̄2(ri) ∀ ri ∈ R. The value σ2,s can differ from σ1,s for
two reasons: A different noise level and/or a different tissue contrast in the second
image. A lower noise level or less contrast require a smaller bandwidth whereas a
higher noise level or more contrast call for a higher bandwidth. Consequently we set

b2 = b1 ·
σ2,s

σ1,s

. (4.9)

For the example of a second image with a higher tube acceleration voltage at the
same tube current, a lower noise level and reduced tissue contrast is observed. This
case leads to a reduced bandwidth b2. If the tube current is adjusted appropriately
so that the noise level is kept similar in both images, the reduced tissue contrast
prohibits strong noise reduction on the high-kVp image and the according bandwidth
parameter will be reduced.
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Combination with Frequency Domain Filters

This noise reduction technique can be used together with frequency domain filters
by consecutively applying the value-based filter and the frequency domain filter. In
this case, two issues should be taken into account: The order in which the filters
are applied influences the result and the filter parameters of both filters have to be
adjusted. The optimal parameters for applying one of the filters exclusively are not
necessarily optimal for the concatenated application of both filter types.

We propose an alternative way for enhancing frequency domain filters which use
side-information computed from the image data: The side information can be com-
puted on the noise reduced image whereas the frequency domain filter itself is applied
to the original image. This way, the noise influence on the side information is weak-
ened whereas the filter properties are mostly unaffected. For bilateral filters, the
intensity differences with respect to the filtered point may be computed on the value-
filtered image. For non-linear, anisotropic diffusion filters, the gradient information
can be computed on the processed image whereas the diffusion takes place on the
original image or – in case several iterations are needed – both images. Another
example for this approach is Guided Image Filtering [He 10]. Here, the noise reduced
image can be used as guide image whereas the filtering takes place on the original
image.

This type of application allows to make use of advantages from both filters: Com-
pared to standard diffusion filters, the gradient information is more reliable and re-
quires less smoothing on the data used for gradient estimation. Compared to ex-
clusively applying value-based noise reduction, it is guaranteed not to introduce any
systematic value shifts in the filtering result.

Discrete sample space: As the input data for this algorithm is discrete, it has to
deal with discrete estimate P [µ̄1, µ̄2] of the joint probabilities. This can be achieved
by integrating the multivariate Normal Distribution within the bins defined by a
desired sampling grid. The choice of the grid size is an important issue, since per-
forming gradient ascents on the estimated P [µ̄1, µ̄2]-function requires interpolation.
As P [µ̄1, µ̄2] is not smooth, interpolation methods like Natural B-Splines or frequency
domain methods cause overshoots which lead to erroneous local extrema. Initially
estimating P [µ̄1, µ̄2] on a fine grid and using nearest neighbor interpolation during
the gradient ascent procedures is a valid approach. A high grid resolution is necessary
as it defines the maximum precision of the estimates in this case. For common 12-bit
CT data a 4096×4096 grid exhibits the maximum precision. The gradient ascent is
then simply carried out by ascending along the directions where the sample values
increase.

4.2.2 Evaluation and Results

In order to evaluate the theoretical limits of the proposed denoising method against
ground truth data, we conducted several simulations and a radiological evaluation.

1. Contrast-to-noise ratio: Evaluation of the achievable CNR-gain for various con-
trasts and dose-levels.
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2. Quantitative accuracy and precision: Noise reduction and quantitative accuracy
for energy calibration application using Basis Material Decomposition.

3. Radiological evaluation: Perceived and measured noise reduction while main-
taining visibility of important image details.

The simulations involve an analytic forward projection of a geometrically defined
thorax phantom and a standard filtered back-projection (see Fig. 4.2). The tissue
compositions were taken from the ICRU Report 46 [ICRU92] and the elemental mass
attenuation coefficients from [Berg 98]. In order to avoid beam hardening artifacts, we
created Dual Energy data-sets with mono-chromatic radiation at 54 keV and 73 keV
which corresponds to the effective energy of 80 kVp and 140 kVp scans. The possible
improvement in contrast-to-noise ratio of the data was evaluated by placing various
small lesions inside the liver (see Fig. 4.2b). The contrast of lesion to healthy liver
tissue was varied between scans by varying the density of the cirrhotic liver tissue.
The CNR changes are evaluated with respect to varying noise / dose levels, varying
tissue contrasts and varying bandwidth settings.

A second synthetic test aims at evaluating the quantitative accuracy and precision
when value-based denoising is used as a processing technique for QCT algorithms. It
was carried out on the same phantom. We perform a basis material decomposition
on the Dual Energy data and investigate the changes in basis material coefficients
between ground truth, original data and processed data. This application requires
a high accuracy of the CT values. Any shift of these values might deteriorate the
quantitative performance of the BMD. On the other hand, the precision of the BMD
suffers very much from noise in the input data. The processing should improve the
precision of BMD whereas the accuracy may not be affected severely.

(a) (b) (c)

Figure 4.2: (a) Thorax phantom (with a small water cylinder at the top-left corner
used for water scaling); (b) Low contrast lesions for CNR evaluation. (c) Lesion
example at 80 kVp with 14HU contrast and 70000 primary photons (intensity window
center: 45HU, width: 35HU).

Additionally we investigated seven cases of real measurements of patient data.
The input images were all Dual-Source images acquired with a Siemens Definition
or a Siemens Definition Flash CT-scanner (Siemens AG, Forchheim, Germany). The
Siemens Definition device uses 80 kVp and 140 kVp tube voltages, whereas the Defi-
nition Flash also uses 100 kVp and 140 kVp with an additional tin-filter for the high-
energy spectrum that improves spectral separation. These cases are subjectively
evaluated by three radiologists.
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Contrast-to-Noise Ratio

The possible improvement in contrast-to-noise ratio of the data was evaluated by
placing various small lesions inside the liver (see Fig. 4.2b). Four different contrasts
were evaluated at five noise levels. The liver and cirrhotic liver tissue composition was
chosen according to the ICRU report 46 with a density of 1.060 g

cm3 for the healthy
liver tissue. The liver lesion densities were set to 1.040, 1.045, 1.050 and 1.055 g

cm3 .
The resulting contrasts are 29, 24, 19 and 14HU for the effective 80 kVp spectrum
and 23, 18, 13 and 8HU for the 140 kVp spectrum. The ratio of quanta in the low
and high energy spectra was kept fix at 3 to 1. Six different bandwidths were selected
for the parameter b1: 0.5, 1.0, 2.0, 4.0, 7.0 and 11.0HU. The according b2-values were
determined automatically according to Eq. (4.9). Figure 4.3 shows an excerpt of the
resulting CNR-values. The results show an improvement in all cases as long as an
appropriate bandwidth parameter is chosen. The choice of a too large bandwidth
can, however, decrease the resulting CNR for very low contrasts. The possible dose
reduction can be deduced by comparing the number of primary photons needed to
get a CNR value similar to the original one. In the evaluated cases, 70% to 40% of
the original photon numbers yield similar CNR values.

Quantitative Accuracy and Precision

For this evaluation we performed a two-material BMD with the basis materials water
and femur bone on the thorax phantom introduced above. The liver lesions were
removed and the medium noise case with 1.4 · 105 primary photons for the effective
80 kVp spectrum was selected. Here we use BMD to estimate the spectral attenuation
coefficients µ(E, r) at every voxel position r. These coefficients are then weighted with
an effective 120 kVp spectrum w120 kVp(E) to create a virtual 120 kVp image from the
input images by computing

µ̄120kVp(r) =

∫
∞

0

w120 kVp(E)µ(E, r)dE. (4.10)

The resulting image is compared with the analytically computed ground truth
data in terms of mean-shift and standard deviation. The value-based noise reduction
may cause a minor shift of the mean attenuation values along with noise reduction.
This evaluation is meant to quantify the trade-off between noise reduction and de-
crease in quantitative accuracy caused by the mean shift.

Table 4.1 shows the results at different bandwidths for the tissues average soft tis-
sue (large area), liver (medium area) and red marrow (small area). Noise suppression
is achieved for all tissues at a tolerable mean shift. At lower bandwidths the mean
shift is negligible compared to the overall system accuracy. At very high bandwidths
the noise standard deviation can get worse in some cases since the gradient ascent
tends to the wrong direction for some voxels.

HU Shifts and Noise Reduction on Measured Patient Data

Figure 4.4 shows a dual energy head scan at 80 kVp and 140 kVp tube voltage. The
acquisition was made with a Siemens Definition CT using a D20f reconstruction
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Figure 4.3: CNR test results for different contrasts at 80 kVp and 140 kVp tube voltage
and selected noise reduction parameters. Contrasts and bandwidths given in mm−1

(integrated attenuation values).
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Bandwidth Average soft tissue Healthy liver Red Marrow

Ground Truth 2.072e-2 2.156e-2 2.050e-2
Original 2.060e-2 (1.605e-4) 2.140e-2 (1.655e-4) 2.039e-2 (3.711e-4)
1.08e-5 2.060e-2 (1.583e-4) 2.140e-2 (1.647e-4) 2.040e-2 (3.714e-4)
2.16e-5 2.060e-2 (1.567e-4) 2.140e-2 (1.639e-4) 2.040e-2 (3.708e-4)
4.33e-5 2.059e-2 (1.286e-4) 2.140e-2 (1.526e-4) 2.044e-2 (3.643e-4)
8.66e-5 2.058e-2 (0.859e-4) 2.139e-2 (1.001e-4) 2.051e-2 (3.204e-4)
1.52e-4 2.059e-2 (1.002e-4) 2.138e-2 (1.094e-4) 2.054e-2 (2.665e-4)
2.38e-4 2.059e-2 (0.960e-4) 2.137e-2 (1.145e-4) 2.054e-2 (2.067e-4)

Table 4.1: Ground truth and calculated mean (standard deviation) of attenuation
values for virtual 120 kVp image from original and processed images. All quantities
given in mm−1. Minor shifts in the mean values of 1% or less can be observed,
the standard deviation resp. noise is reduced with increasing bandwidth except for
very large bandwidths. The noise increase at large bandwith is caused caused by
occasional gradient ascents into the wrong direction.

kernel. The image field of view (FOV) is set to 253mm. We evaluated mean and
standard deviation in a homogeneous region within the brain: In the 140 kVp example
the mean value was shifted by 0.4HU and the standard deviation dropped from 7.0
to 5.4HU. In the 80 kVp image the mean shift caused by the filter was 1.9HU and
the standard deviation was reduced from 11.5 to 5.8HU.

Figures 4.4(a) and (b) show a dual energy foot scan made with the same CT
scanner. The FOV is 240mm and a D50s reconstruction kernel was used. Here
we get a mean shift of 2.1HU (140 kVp) and 2.8HU (80 kVp) whereas the standard
deviation drops from 13.2HU to 11.2HU (140 kVp) and from 17.1 HU to 11.5HU
(80 kVp) with the identical filter parameters.

(a) (b) (c) (d)

Figure 4.4: Filter input and result for head image example. (a) Original 80 kVp
image, (b) processed 80 kVp image, original 140 kVp image, filtered 140 kVp image.
Original images are a courtesy of Prof. Dr. Andreas H. Mahnken, RWTH Aachen.



96 Chapter 4. Dose Reduction

(a) (b)

(c) (d)

Figure 4.5: Filter input and result for foot image example (from left to right): Top
row: Original 80 kVp image including evaluated region of interest, processed 80 kVp
image (80 kVp, HU-window: center -12; width 108). Bottom row: original 140 kVp
image, processed 140 kVp image (140 kVp, HU-window: center 1; width 131). The
black outline in Figs. (c) and (d) marks the homogeneous region in which the noise
estimate was computed. Original images are a courtesy of Prof. Dr. Andreas H.
Mahnken, RWTH Aachen.

Dataset Head Foot∗ Liver Lung
Noise Reduction −27%/ − 25% −33%∗ −29%/− 25% −29%/− 25%

Dataset Abdomen Lower Abdomen Pelvis
Noise Reduction −20%/ − 32% −24%/− 18% −22%/− 22%

Table 4.2: Average noise reduction for several different test scenarios with optimal
bandwidth setting. First number corresponds to low-kVp image, second to high-kVp.
Image noise was determined by evaluating the standard deviation in homogeneous
image regions. (∗) only 80 kVp image was evaluated for the Foot dataset.
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Radiological Evaluation

Images from seven different Dual Energy scans were presented to three radiologists in
a clinical environment. We selected data from typical examinations of different body
regions with and without contrast agents and varying scan parameters. The input
images were all Dual Source images acquired with a Siemens Definition or a Siemens
Definition Flash CT-scanner (Siemens AG, Forchheim, Germany). The Siemens Defi-
nition device uses 80 kVp and 140 kVp tube voltages, whereas the Definition Flash uses
100 kVp and 140 kVp with an additional tin filter for the high-energy spectrum that
improves spectral separation. The images were presented in randomly ordered pairs
of original and denoised images with different bandwidth settings. The radiologists
were asked to compare the image-pairs in terms of perceived noise level and visibility
of important details. We evaluate to which extent the perceived and measured noise
level can be reduced without important structures being visibly weakened compared
to the original images. The corresponding bandwidth parameter for each dataset is
called optimal bandwidth subsequently. Table 4.2 lists the average measured noise
reduction for the optimal bandwidth on all datasets. All radiologists agreed that us-
ing the optimal bandwidth, a noise reduction could be perceived in all Dual Energy
datasets.
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4.3 Ray Contribution Masks for Iterative Structural

Sinogram Filtering

As mentioned in Sec. 4.1, a variety of different filtering strategies for CT data ex-
ists. In this section, we give a short overview of the properties of pre- and post-
reconstruction frequency-based filters and introduce a novel iterative frequency filter
for CT data that combines the advantages of pre- and post-reconstruction filters.

CT noise-reduction filters can be divided into two main categories: Pre- and
post-reconstruction filters. Pre-reconstruction filters like [Bors 08b, Hsie 98, Kach 01,
Wang 05] are applied to the projection data. The FBP filter-kernel described in
[Kak 01] is usually used as a simple pre-reconstruction kernel to steer the trade-off
between noise suppression and image sharpness. The advantage of filtering in this
domain is the simplicity of the noise characteristics: In the projection-space, the
noise is almost white, only minor noise correlations are introduced by the detection
process, for instance due to the optical crosstalk of scintillators described in Sec. 2.2.
These effects have minor influence and usually can be neglected when designing noise-
reduction filters. Additionally, the magnitude of the noise can easily be estimated
from the measured attenuation values which enables noise adaption of the filter. Edge-
preserving pre-reconstruction filters are, however, limited by the inferior contrast-
to-noise ratio in sinogram space. Low-contrast structures in the imaged object can
hardly be identified in projection space due to the noise in CT projections at standard
dose levels. Additionally the contrast and CNR level even of homogeneous structures
varies throughout the projections. Non-linear edge-preserving filters may not be
able to preserve those structures throughout the whole sinogram which generally
leads to a loss in sharpness. This may also cause inconsistencies in the projection
data which results in streak-artifacts in the reconstructed image. Consequently, pre-
reconstruction filters may deal with noise properties well, but have a weakness in
recognizing the structure of the signal.

Post-reconstruction filters such as [Schi 06, Lu 03, Kese 92, Scha 08] operate on
reconstructed images and thus cannot produce or intensify reconstruction artifacts.
However, the noise properties are much more complicated in the reconstructed image
as most reconstruction steps introduce noise correlations by filtering and interpola-
tion [Bors 08a]. Furthermore, the structure and the local magnitude of the noise is
dependent on the whole object instead of merely the local attenuation. As a conse-
quence, edge-preserving frequency-based post-reconstruction filters need to model the
quantum and detector noise and the noise propagation of the whole reconstruction
process.

We introduce an Iterative Structural Sinogram (ISS) filter that operates in the
projection domain and uses a projection model to recover local structures in the
projection space from a pre-reconstructed image. It yields an individual local filter
kernel for each measurement value. This local kernel adapts its smoothing directions
to the local structures, thus the projection noise level can be strongly reduced while
the sharpness of low-contrast structures can be preserved. It basically uses two pa-
rameters which allow steering its filter strength and smoothing properties so it can
be adapted to the demands of specific diagnostic tasks. The filter is an extension
of the bilateral filter [Toma 98]. It replaces the photometric similarity measure with
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a more robust, CT-specific structural similarity term. It incorporates the measure-
ment process by using a point-based projector and a pre-reconstructed image. The
filter itself is not noise adaptive, but can be combined with projection-domain noise
adaption techniques which steer the filter accordingly.

4.3.1 Theory of Structure Aware Filtering

The ISS filter uses a point-based forward projector to generate a local structure repre-
sentation called Ray Contribution Mask (RCM). The similarities between neighboring
RCMs are used to compute an individual, non-linear filter kernel for each projection
value. Additionally, a RCM-driven range adaption is applied to avoid inconsistencies
which may cause reconstruction artifacts.
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Figure 4.6: Illustration of the working principle of the projection operator PP(r, µ̄(r)).
Figure (a) shows a Normally distributed tube-profile, (b) illustrates the schematics
of projection process and (c) is the according sampled projected tube-profile µ̄L(c, r1)
for fixed reading r1. A complete result of PP(r, µ̄(r)) is displayed in Fig. 4.7.

Point-Based Analytic Projection

In practice, CT projections deviate from the ideal line-projection model. This is for
instance caused by sampling and discretization effects, finite focal spot sizes and de-
tector cross-talk. We use a flexible model of the projection process called point-based
analytic projection which can take into account these effects. We denote this single
detector row variant µ̄L,r(c, r) = PP (r, µ̄(r)). This operator yields the contribution of
a delta impulse at position r with a local attenuation of µ̄(r) to the measured values
at discrete channel indices c ∈ Z and readings r ∈ Z. It may include effects like
the focus beam profile and size and detector channel characteristics. The readings r
correspond to the sampled gantry angles ν. In a CT system, this sampling process
features a temporal integration of the projections during the reading time. The func-
tion PP(r, µ̄(r)) yields the information where the contributions from a single point in
the object space appear in the sinogram.

Figure 4.6 illustrates an exemplary output of the projection operator PP(r, µ̄(r))
for a single gantry angle without temporal smearing of the projected tube profile. It
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Figure 4.7: Result of point-based projection operator for all channels and readings
µ̄L,r(c, r) at a fixed location r (scale: arbitrary units). For visualization purposes, an
extremely large X-ray focus of 9mm FWHM was used.

features a normally distributed tube profile model (Fig. 4.6a), a geometric projection
model (Fig. 4.6b) and a detection model (Fig. 4.6c). The latter may include detector
pixel geometry, sampling properties like active pixel areas and detector cross talk.
PP (r, µ̄(r)) can be viewed as a transform that takes the function of local attenuation
values in object space µ̄(r) as an input and yields for every location r the function of
all contributions of µ̄(r) in sinogram space µ̄L,r(c, r). Figure 4.7 depicts µ̄L,r(c, r) for
a specific r.

The simplest variant featuring ideal integration, no cross-talk and ideal temporal
sampling reads:

PP(r, µ̄(r)) = µ̄(r) ·
+∞∑

c′=−∞

u
(
β − c′∆β

∆β

)
∗ N (βr,ν ,σ2

r,ν)
r (β), (4.11)

where ∗ denotes the convolution. N (βr,ν ,σ2
r,ν)

r (β) is the normally distributed tube
profile projected onto the detector for reading r. Its mean value βr,ν is the detector
channel angle corresponding to the location r and the gantry angle ν and its standard
deviation σr,ν is the standard deviation of the tube profile σT times a stretch factor
determined by the pinhole projection model indicated in Fig. 4.6b. ∆β is the fan
angle between two channels, u(β) is the rectangle function of width 1, centered at
β = 0. The fan beam geometry is illustrated in Fig. 1.16a.
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For a source position sν ∈ R2 and a source-detector distance of dSD we get the
projected point location:

rD,ν = sν + dSD · (r− sν)

‖(r− sν)‖2
. (4.12)

From this we can compute the corresponding channel angle βr,ν with the rotated
channel location r

′

D,ν:

r
′

D,ν = R−νrD,ν + (dSD, 0)
T (4.13)

βr,ν = arctan2(r
′

D,ν,y, r
′

D,ν,x) (4.14)

with
r
′

D,ν = (r′D,ν,x, r
′

D,ν,y)
T (4.15)

The function arctan2 is the well-known variation of the arctangent function for
polar coordinate transforms and R−ν is the rotation matrix that rotates a point by
−ν.

The standard deviation σr,ν,r can be computed as follows:

σr,ν =
‖rD,ν − r‖2
‖sν − r‖2

· σT (4.16)

Ray Contribution Masks

We use the point-based projection operator PP(r, µ̄(r)) to calculate the contribution
of a local measured value to its neighbors by sampling the projection ray that cor-
responds to the measured attenuation at ĉ, r̂. A single point in the projection space
approximately corresponds to a line in object space (̂lν,β(α) in Fig. 1.16a). See Figs.
4.8a – 4.8c for examples on a simple phantom. We sample this line at distinct loca-
tions and use PP(r, µ̄(r)) to quantify contributions of the projection line at ĉ, r̂ to
neighboring sinogram channels. The result of this operation is the RCM. We call the
sampled locations r̂ĉ,r̂,k with k indexing the line samples.

Using these definitions we compute the RCM Rĉ,r̂(c, r) as

Rĉ,r̂(c, r) =
∑

k

PP (r̂ĉ,r̂,k, µ̄(r̂ĉ,r̂,k)) (4.17)

In order to reduce the RCM to the most dominant structures, we neglect all ray
samples for which µ̄(r) falls below a given fraction pS of the maximum attenuation
value along the sampled ray, so r̂ĉ,r̂,k includes only the samples above the scaled
maximum value. This percentage is an important filter parameter which is called
Structure Preservation Parameter ps consecutively. In practice, values in the range
of ps = 0.75 to ps = 0.95 lead to best results.

The RCM drops very fast with respect to distance from the center position (ĉ, r̂)
so in practice, it can be limited to a neighborhood of 5 to 11 readings. We call this
parameter ∆rmax. The size limitation in terms of channels can be determined by
computing the outmost non-zero points of the integrated projections.
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(a) Example sinogram (box indi-
cates the magnified excerpt of Fig.
(b)).

(b) Excerpt with marked sample measurements.

(c) Reconstructed slice with corresponding measurement lines. (d) RCMs.

Figure 4.8: Example for correspondences between projection and object space: (a)
shows a sinogram of a simple phantom (Intensity window center (c): 5.25, width
(w): 10.5, no unit), (b) shows a magnified excerpt with markers at sample locations,
(c) shows the reconstructed slice (c: −250HU, w: 1500HU) with the ray lines in
corresponding colors to the markers of Fig. (b) and Fig. (d) shows the RCMs for the
measurement lines (Roman numerals indicate the correspondences).
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Figure 4.8d shows an example of some RCMs for different rays and different local
structures. Example I contains no specific dominant structures, the contributions of
the water background are spread evenly on an hour-glass shape. Example II contains
the small circle, which appears as a dominant structure, therefore the RCM consists
mostly of the trajectory of this structure in the sinogram. The third example III
contains two dominant structures at very different image locations. These appear as
two trajectories in the RCM.

Structural Similarity

The RCM shape can be interpreted as follows: The value of Rĉ,r̂(c, r) contains the
information on how much of the total attenuation measured at (ĉ, r̂) appears in the
value measured at (c, r). Due to this property, the neighboring RCMs are very similar
in regions where the dominant structures are very similar, so it can be used as a basis
for the ISS filter kernel. For locations where local structures differ, the similarity
between RCMs decreases and major contributions from other dominant structures
may prevent strong smoothing in these directions. The averaging between these
values has to be blocked. As the RCM is a measure for the local structure, it is
perfectly suited to detect those structural changes. We can determine the structural
similarity sĉ,r̂(ĉ

′, r̂′) between neighboring measurement values at (ĉ, r̂) and (ĉ′, r̂′) by
comparison of the RCMs at both locations.

The structural similarity sĉ,r̂(ĉ
′, r̂′) can be calculated from the RCMs in various

ways by employing any similarity or correlation measure on pairs of RCMs. The fol-
lowing variant describes a very simple approach using the sum of absolute differences
as a dissimilarity measure:

ŝĉ,r̂(ĉ
′, r̂′) =

∑

ĉ′′

∑

r̂′′

{|Rĉ,r̂(ĉ
′′, r̂′′)−Rĉ′,r̂′(ĉ

′′ − ĉ′, r̂′′ − r̂′)|} (4.18)

The expression ŝĉ,r̂(ĉ
′, r̂′) actually yields a non-normalized dissimilarity by com-

puting the shifted difference of the two RCMs. We normalize this measure and convert
it to a similarity measure by computing:

sĉ,r̂(ĉ
′, r̂′) = 1− ŝĉ,r̂(ĉ

′, r̂′)∑
ĉ′

∑
r̂′ ŝĉ,r̂(ĉ

′, r̂′)
(4.19)

with sĉ,r̂(ĉ
′, r̂′) ∈ [0, 1], pairs of measurement values with a totally similar RCM-

structure get an sĉ,r̂(ĉ
′, r̂′)-value of 1.

ISS Filter Calculation

With the similarities sĉ,r̂(ĉ
′, r̂′) we can compute the final local filter fĉ,r̂(ĉ

′, r̂′) by
constructing a bilateral filter-type kernel using a spatial neighborhood filtering com-
ponent and the structural neighborhood component of Eq. (4.19).

Note that it is theoretically possible to construct filter kernels with a range of
more than one reading. However, this can make the filter prone to produce artifacts
at high contrast objects since filtering over reading borders tends to cause minor
inconsistencies in the projection data. Therefore we provide a kernel which performs
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filtering only within one reading. It is a univariate Normal distribution with extends
in channel direction:

N (σ2)
ĉ,r̂ (ĉ′, r̂′) =

1√
2πσ

· exp
{
(ĉ′ − ĉ)2

σ2

}
(4.20)

Its mean value is placed at the center position of the filter ĉ, r̂ and σ should
be linked to ∆rmax so that contributions beyond this range are negligible. Thus,
only ∆rmax steers the overall filter strength. The resulting local filter kernel is the
normalized product of the spatial and structural similarity term

f̃ĉ,r̂(ĉ
′, r̂′) = sĉ,r̂(ĉ

′, r̂′) · N (σ2)
ĉ,r̂ (ĉ′, r̂′). (4.21)

fĉ,r̂(ĉ
′, r̂′) =

f̃ĉ,r̂(ĉ
′, r̂′)

||f̃ĉ,r̂(ĉ′, r̂′)||2
(4.22)

This approach fulfills the requirement stated above: Maximal smoothing be-
tween values with similar local structures according to their common attenuation
and smoothing over values with different local structures is blocked. The structures
are not estimated in the projection domain but from a projection model.

The normalized similarity masks fĉ,r̂(ĉ′, r̂′) for the sample locations shown in Fig.
4.8b are depicted in Fig. 4.9. These images demonstrate the basic properties of
the filter: In homogeneous regions, the shape of the RCMs is similar and a high
structural similarity causes strong smoothing into these directions. At borders with
changing the local structure, no smoothing takes place and edges are preserved. This
ensures strong noise reduction by an automatically steered averaging according to
the similarity of the measured values.

(a) I (b) II (c) III

Figure 4.9: Normalized RCM similarity masks for the examples given in Fig. 4.8.
The Roman numerals indicate the correspondence with the markers in Fig. 4.8b and
the lines in Fig. 4.8c. The center line corresponds to the shape of the filter kernels
with a range of one reading.

Adaptive Filter Range

The RCM-similarity can also be used to perform a dynamic, homogeneity-driven
range adaption. This measure is used to reduce the overall filter influence in regions
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with large structural inhomogeneity or transitions between different dominating local
structures. In practice, it has a positive influence on the overall image quality of the
RCM filter results. We choose a very simple homogeneity adaption which incorpo-
rates the required properties. It scales the standard deviation σ of the spatial filter
component defined in Eq. (4.20) with a homogeneity term. For the filter kernel of
Eqs. (4.21) and (4.22) with a filter range of one reading and ∆rmax channels, the
scaling factor is defined as follows:

hĉ,r̂ =

ĉ+∆rmax/2∑

ĉ′=ĉ−∆rmax/2

sĉ,r̂(ĉ
′, r̂′)/∆rmax. (4.23)

i. e. σ is replaced with σ · hĉ,r̂ . In case of total structural homogeneity in the
neighborhood of (ĉ, r̂), hĉ,r̂ = 1 and no size adaption is performed. With increasing
inhomogeneity, hĉ,r̂ decreases and thus the filter range is decreased which reduces the
overall filter strength. This can be combined with a noise model-driven filter range
adaption.

4.3.2 Materials and Methods

Implementation Details

Our implementation of PP(r, µ̄(r)) features a pin-hole projection model and a nu-
merical temporal integration for the sampling of the projection angles. The beam
profile was assumed to follow a Normal distribution. The FWHM of the Normal
distribution at the tube focus point was set to 0.9mm in all evaluations. The used
detector sizes were 678 or 736 channels and 1152 readings per rotation were acquired.
In the measured data a detector quarter channel offset and an indirect fan-beam
reconstruction was used. In simulations, no quarter offset was assumed and a di-
rect fan-beam reconstruction was used. In most experiments, the pre-reconstruction
and the final reconstruction both were performed with a Ram-Lak or a Shepp-Logan
reconstruction kernel. Other kernel combinations are explicitly mentioned.

Optimization

Some essential optimizations have to be performed for a practical implementation
of the algorithm. A naive realization of the formulas presented above would require
a huge amount of computations. The resulting computation time would render the
filtering impractical. Fortunately, the computation can be reformulated to exploit
symmetries and enable a pre-computation of intermediate results that only depend
on the system geometry and not on the imaged object. These computations have to
be performed only once for a fixed scanner set-up and may be reused for each scan.
They may include measurement effects like the temporal integration of projections
during one reading.

The pre-computation makes use of the fact that the shape of all point-based for-
ward projections does not depend on the absolute reading angle. The point-based
analytic projections can be very expensive operations, so we want to ensure that as
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little projections as possible are computed and that no projections have to be com-
puted during the filtering phases. It is sufficient to compute all forward projections
for a single reading. These forward projections can be stored and re-used for further
filter computations as only the scale of the projections depends on the actual data
whereas the shape is fully dependent on the scanner geometry. So the first step of
the optimized algorithm is the pre-computation phase, where all sample locations on
all rays of the X-ray fan for a fixed reading angle are determined. For each sam-
ple, the point-based forward projections Eq. (4.11) are computed for a neutral local
attenuation value µ̄(r) of one.

The filtering itself involves the following steps: First of all, a pre-reconstruction
with a hard filter kernel has to be performed. It is used for the RCM computation
of Eq. (4.17): One RCM corresponds to one sampled ray path. The ray path has to
be rotated according to the reading angle, then the pre-reconstructed slice is inter-
polated at the according sample locations, the main contributions are identified and
a weighted addition of the according pre-computed projection masks is performed.
The interpolated values of µ̄(r) are used as weights. The result of this operation is
one RCM for each channel and reading which are held in memory for the next step.

The filter computation step of Eq. (4.21) can be carried out in a straight-forward
fashion. The required similarity measures of Eqs. (4.18) and (4.19) can be computed
on demand from the RCMs from the previous steps. A re-usage of similarity val-
ues computed earlier in the filter computation phase is unlikely to bring significant
advantages as due to the storage and organization overhead.

The application of the filter is the final step. The filter changes for every sino-
gram location. This property leaves little room for high-level optimization, but the
computational costs of these steps are negligible.

The overall complexity is dominated by the RCM computation. It scales linearly
with the product channels × readings × samples per ray.

Phantoms and Experiments

Three different phantom set-ups were used for the performance evaluations (Tab.
4.3): The first one consists of a CT-scan of a high resolution phantom of aluminum
insets in PMMA (Catphan HR1). It was used to assess noise and sharpness of filtered
and standard reconstructions.

The second set-up involves in vivo CT-scans of live patients. In order to visually
assess the influence of this filter on image data, we use three patient data sets acquired
with a Siemens SOMATOM Definition (Siemens AG, Forchheim, Germany). All
scans were conducted at 140 kVp tube voltage, 1.2mm slice width, no flying focal
spot. The integration time was set to 433µs at a rotation time of 0.5 s. The selected
tube currents were in the range of 55mA to 80mA.

Between the individual experiments the filter parameters were varied in order
to assess their influence on noise suppression and sharpness compared to standard
reconstructions. Homogeneity adaption was turned on in all cases. In some exper-
iments, a Shepp-Logan kernel was used for pre- or final reconstruction instead of a

1Catphan 500, http://www.phantomlab.com/catphan.html, The Phantom Laboratory, Salem, NY,
USA
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Object Type Evaluated quantities

Catphan HR phantom measured MTF, noise, artifacts
Patient data measured Noise, image quality (visual)
Low contrast inset in water simulated MTF, noise

Table 4.3: Overview of conducted experiments.

Ram-Lak kernel. Here, the reconstruction quality for realistic application scenarios
and the visual influence of filter parameters was inspected. The RCM filter results are
compared to standard reconstructions using softened cosine kernels which lead to an
approximately similar overall noise amplitude. The kernel used for these comparisons
are special variants of the Cosine kernel and are defined in Eq. (1.9).

The third scenario uses simulated data. A scan of a cylindrical water phantom
with a circular inset of varying densities was simulated with an analytic forward
projector for four different contrasts between inset and water. For each contrast, 250
to 1000 scans were simulated and the filter was applied (the lowest contrasts required
500 resp. 1000 scans due to the low CNR). The edge between inset and water was
used for an MTF estimation [Judy 76].

(a) Measured Catphan HR phantom. (b) Contrast insets in cylindrical water
phantom.

Figure 4.10: Phantoms used for evaluation. Figure (a) shows the Catphan High
Resolution phantom with aluminum insets in PMMA (c: 346HU, w: 2751HU). The
distances between insets ranges from 1 lp/cm to 21 lp/cm. Figure (b) shows the
four different contrast insets in a water phantom used for edge MTF evaluation
(c: -387HU, w: 1655HU). The noise standard deviation is approx. 43HU and the
contrasts are 55HU, 109HU, 213HU and 315HU.
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4.3.3 Evaluation and Results

High Resolution Phantom

Figure 4.11 shows the MTF estimates for the standard reconstruction and a filtered
version. We can see only marginal changes in terms of relative contrast throughout
the whole frequency range. This is due to the fact that the introduced filter clearly
identifies the high-contrast structures throughout the whole sinogram and adapts
the filters appropriately. No averaging takes place between components containing
structure and background. In this case, the image sharpness is not affected and no
additional reconstruction artifacts can be detected. The ISS filter manages to achieve
a noise reduction of about 13.6% from a standard deviation 10.3HU without filter
to 8.9HU with filter. Due to its many small high-contrast inlays this phantom can
be considered as a benchmark for robustness against reconstruction artifacts.
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Figure 4.11: Relative contrast of a standard reconstruction between insets and back-
ground for various line resolutions. Cos80 indicates a cosine reconstruction kernel
with a cut-off frequency at 80% of the detector Nyquist frequency.

Patient Data

Figures 4.12 and 4.13 show comparisons between standard reconstructions and RCM-
filtered reconstructions of patient scans. Although the estimated noise amplitudes are
approximately similar in Figs. 4.12b and 4.12c resp. 4.13a and 4.13b, the ISS filter
causes visibly less blurring, especially at edges with higher CNR and high frequency
components, for instance, the organ tissue textures are preserved better. At very
high CNR edges, like the transition between air and tissue, the ISS filter can cause
a minor amplification of the edge strength. The noise shaping characteristics are
also very different: The cosine kernel attenuates high frequency noise components
very strongly whereas low frequency noise passes the filter, consequently the noise
grains are rather big and smooth. The noise in the ISS filter result (Fig. 4.12c) has
a different frequency distribution which resembles the original noise structure more
closely. The noise reduction is more homogeneous throughout the whole frequency
range.
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The noise shaping characteristics can be influenced by altering the filter parame-
ters. In general, the noise shaping characteristics of ISS filtering are less intuitively
linked to the filter parameters than for standard reconstruction kernels. However,
a desired specific noise shaping characteristic can be achieved by adapting the filter
kernel of the final reconstruction of the ISS filter result. For instance, a smoother
post-reconstruction kernel leads to stronger smoothing of the ISS filter result. A
smoother pre-reconstruction filter also influences the ISS filter. This property is vi-
sualized in Fig. 4.13d. Here we investigate the influence of the pre-reconstruction
kernel. We used a Shepp-Logan kernel instead of a Ram-Lak kernel for the pre-
reconstruction. This leads to a visible decrease in sharpness and noise. The amount
of noise reduction of approx. 13% corresponds to a standard reconstruction with a
Cos525 kernel (Fig. 4.13c). This indicates that the pre-reconstruction kernel has a
clearly visible influence on the ISS filtering result and can be used to influence the
filter properties of the RCM filter.

Noise Reduction and MTF

This evaluation addresses the frequency transfer behavior of the filter. This is done by
measuring the image MTF of a standard Ram-Lak filtered FBP reconstruction and a
ISS filtered reconstruction on an edge phantom. This evaluation requires a very huge
number of repetitions to eliminate the influence of noise on the MTF measurement.
We chose 250 to 1000 repetitions depending on the examined CNR level.

Figure 4.14 shows the resulting azimuthal edge MTFs for four different contrasts.
The noise standard deviations in the Ram-Lak filtered original and the processed
versions are given in Tab. 4.4. For the 55HU low contrast case we can observe a slight
reduction of the MTF in the mid-frequency range, in the 109HU case, the MTFs are
very similar between original and filtered case. The two higher contrast cases show
a slightly edge enhancing property of the filter at higher frequencies whereas low
frequencies are attenuated slightly. This reveals the frequency transmission behavior
of the projection filter when it is fully adapted to the edge shape in the sinogram.
This causes the edge to be visibly enhanced in the filtered sinogram. The total
noise reduction achieved for these examples is also shown in Tab. 4.4. It shows the
standard deviation of the noise for a Ram-Lak reconstruction and the RCM filtered
reconstruction. In this simplified scenario a very strong noise reduction of over 80%
can be achieved. More dominant structures slightly reduce the total noise reduction.
This can be seen in the standard deviations of the 109HU to 315HU cases. In
the 55HU case, we used a cosine reconstruction kernel for the pre-reconstruction,
therefore the noise in the original images is already slightly lower. However, the
relative noise reduction agrees with the other cases.

Complexity, Run-Time and Performance

All computations were carried out on a standard desktop computer equipped with an
Intel Core i7 860 CPU at 2.8 GHz and 8 GB of DDR3 RAM. The filter computation
consists of three phases: The initialization of the forward projections, the RCM
computation and the filter generation and application. All these steps depend on the
desired filter size in readings which was kept constant at 5 throughout all experiments.
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(a) Reconstructed slice. (b) Cos625 reconstruction.

(c) RCM result.

Figure 4.12: Filter results: (a) Reconstructed slice of the data-set, (b) magnified
excerpt (Cos63 kernel) and (c) result of the RCM filter (9 × 9 RCM size, 0.225
smoothing, structure preservation 0.9, homogeneity adaption on). The water scaling
was omitted in these tests, so no intensity windows are given. Original images are a
courtesy of Prof. Dr. Andreas H. Mahnken, RWTH Aachen, Germany.

Contrast Std. dev. original Std. dev. filtered Noise Reduction

55HU 27.7HU 3.87HU 86.0%
109HU 33.2HU 5.75HU 82.7%
213HU 33.2HU 6.40HU 80.7%
315HU 33.2HU 6.54HU 80.3%

Table 4.4: Estimated noise reduction for various contrasts.
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(a) Cos575 reconstruction. (b) RCM result.

(c) Cos525 reconstruction. (d) RCM with Shepp-Logan pre-reconstruction.

Figure 4.13: Filter results for third example: (a) Magnified excerpt (Cos575 kernel),
and (b) result of the RCM filter (9 × 9 RCM size, 0.5 smoothing, structure preser-
vation 0.8, homogeneity adaption on), (c) Cos625 kernel result and (d) result with
Shepp-Logan filtered pre-reconstruction. Original images are a courtesy of Prof. Dr.
Andreas H. Mahnken, RWTH Aachen, Germany.
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Figure 4.14: MTF comparisons for varying contrast strengths of insets. For the 55HU
example, 1000 realizations were simulated and the MTF estimate from a noise-free
unfiltered realization is also shown. For the 109HU case 500 realizations and for the
other examples 250 realizations each were simulated. The estimates from the noise-
free realization are omitted for the last three cases as there is only a minor influence
of the noise for this number of realizations.
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The time for the pre-computation of the forward projections depends on the number
of detector channels, the ray sampling distance and the complexity of the point-based
forward projector model. Unlike the following two phases it can be pre-computed for
a given geometry as it does not depend on the imaged object. So the computation
time of this phase does not add to the filter time. Our reference implementation with
736 detector channels and at sample distance of exactly one pixel width took about
one minute for a ∆rmax-value of 9. The RCM computation depends on the number of
channels, readings, ray sampling distance and ∆rmax. This phase took our reference
implementation between 20 seconds to 1 minute, whereas the filter generation and
application phase depends only on the number of channels and readings and required
about two to three seconds on average. This leads to a filter times of approx. 1 minute
per slice. Additionally the pre-reconstruction and the reconstruction of the have to
be carried out. The computation time from sinogram to reconstructed and filtered
slice totals to about 2 minutes per slice. The memory consumption is dominated by
the size of the pre-computed point-based projection table and the RCM table. Not
all tables have to reside in memory completely. Since the sizes are usually not critical
on current hardware, we did no optimizations regarding this issue. It our set-up the
pre-computed table size is approx. 100MB, the peak memory consumption is about
4 to 8 GB for eight parallel threads.

4.4 Conclusions

The introduced noise-reduction technique for Dual Energy CT data showed the poten-
tial of reducing image noise by about 20 to 30% in subjective tests on real CT-images
of various body regions. The quantitative accuracy was evaluated in an energy cali-
bration application on phantom data. It revealed a tolerable accuracy loss of approx.
1 to 2% which is in the range of the overall accuracy of a CT system. The noise
standard deviation could be reduced by approx. 30% for this quantitative CT appli-
cation. A CNR test for small, low-contrast leasions yielded a CNR-gain ranging from
10% to over 100% depending on noise level, tube voltage setting and tissue contrast.
The CNR values of the original image could be reproduced with 30% up to 70% less
primary photons needed. This is directly related to an accordingly reduced radiation
dose. These results demonstrate the possibility to perform a DECT scan at the same
dose level as a standard CT scan. This is an important step in the clinical relevance
of DECT applications.

The RCM-based ISS filter presented in the second part of the chapter is a novel
approach to structure-preserving spatial filtering in projection data. We showed that
this approach can detect and preserve structures in the projection domain while
making use of the good contrast in the reconstructed data. The filter properties
were assessed on measured and simulated phantom data as well as measured patient
data. The patient data tests showed that image sharpness is superior to a standard
reconstruction with the same total noise. The image MTF and high-frequency tex-
ture is well preserved even for low contrasts. The noise reduction in a simple edge
phantom case exceeded 80%, in scenarios with complex structure, a noise reduction
of approx. 15% is estimated for similarly sharp results. We also demonstrated that
the filter can deal with structures that are prone to cause reconstruction artifacts.
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The modulation transfer behavior of the filter was evaluated on simulated phantom
data. The filter MTF is contrast dependent. For small contrasts around 50HU, a
reduction of the mid-frequencies can be observed, for higher contrasts it follows the
original MTF closely and tends to enhance higher frequencies and attenuate low- and
mid-frequencies in the reconstructed image.



Chapter 5

Summary and Outlook

The contributions presented in this work cover the full spectrum of Quantitative CT
areas and can be divided into three main topics: Simulation tools for spectral signal
acquisition were introduced in Chapter 2, Chapter 3 was dedicated to algorithms that
compute quantitative measures from spectral CT data and signal enhancement was
discussed in Chapter 4. In this chapter, we sum up all the findings and results of this
work and give an outlook into possible further research directions for each part.

The first part focused on data acquisition methods for Quantitative CT called
spectral detection. New look-up table-based simulation approaches were introduced
that support very efficient simulations of full CT scans. The key contribution here
is the possibility of simulating the full CT measurement process on a standard work-
station within hours. The level of detail of a full-scale Monte Carlo simulation was
reached and simulation results were verified by comparison with measured data from
prototype detector systems, measuring stations and real-life CT systems. Simulation
concepts for two different systems were presented: Integrating scintillation detectors
and counting semiconductor detectors. The basic principle of both concepts is the
identification of basic logical or physical steps in the detection process and defining
appropriate interfaces between these steps. Then, each step is either modeled an-
alytically or a huge number of possible random events occurring within the step is
pre-computed and stored in a look-up table. The simulation cascades these steps
by processing each step for all occurring events and processes the result data of an
individual step so that it matches the defined interface between the process steps.

For integrating scintillators these steps are particle interaction in the scintillator
crystal, light transport and electronics modeling. A deviation of 3.68% was deter-
mined in a comparision between simulated and measured image MTF with a slice
image of a high resolution test phantom. The 2-D detector NPS of a flat field image
deviated by 3.06% on average between a full scale MC simulation and the look-up
table based approach. For full scan simulations, the computation time of the look-up
table-based approach was found to be approximately 200 times faster than a classical
MC approach. A comparison with the detector NPS in phi-direction acquired in a
measuring station and a standard CT gantry showed an average deviation of 5.23%.

For counting semiconductors, particle interaction in the semiconductor, pulse
generation, photon counts extraction and A/D conversion were simulated. A full
single-slice scan of a 40 cm water phantom takes approximately 8 h on a workstation
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equipped with 4 × 2 AMD 885 Opteron cores at 2.6MHz and 16GB of RAM for a
detector with 2475 detector pixels, 1600 readings at a reading time of 1ms using a
sampling time of 2 ns. Comparisons with measured MTFs and DQEs generally show a
good agreement with a slight tendency of underestimating the measurement noise and
sharpness. The non-linear detector response of such a system could be reproduced for
different energy thresholds and flux levels. Additionally, several characteristics were
simulated that could not be measured directly, including electrode signal excerpts for
various input signals, the energy transfer probability map for a given detector lay-
out or linearity measures for different comparators. The linearity and signal analysis
clearly shows the need for sophisticated discriminators and linearity corrections in
order to deal with the full range of X-ray flux seen in medical CT scans. The results
for both simulation approaches demonstrate that the real system behavior is modeled
with a similar accuracy delivered by a full-scale Monte Carlo simulation. The higher
efficiency makes a detailed optimization of design parameters possible.

Chapter 2 also gave a short overview on recent publications on counting semi-
conductor detectors. First prototype systems for medical detectors of the type are
introduced and first evaluations of the designs are given. This is a clear indication that
this topic is under investigation by several research groups and companies. However,
several design problems and material issues are currently unsolved, so commercial
systems are not yet available for medical CT and up to now, no precise prognosis can
be made, whether this might change in the near future.

In terms of possible future research directions of simulation concepts, our look-
up table-based simulation approach may, for instance, be extended to other spectral
detection technologies. As mentioned in Sec. 2.2.1, the design of an optical count-
ing detector using avalanche photodiodes can be evaluated with a hybrid simulation
approach of the optical integrating and counting semiconductor simulations with few
additional simulation stages. With several adaptions, this simulation concept can as
well be used for the evaluation of other X-ray detection concepts apart from medical
CT. An overview on the possible future directions of CT system design is for instance
given in [Wang 08].

Chapter 3 aims at the processing of spectral data. Basic principles of QCT algo-
rithms and Basis Material Composition as a standard QCT tool were explained. Then
a novel, unified framework for QCT applications was introduced: the Local Spectral
Weighting Function and Local Spectral Reconstruction. The LWF establishes the
link between the spectral attenuation coefficient of a material and the effective at-
tenuation value measured by a CT system. We have expressed the CT measurement
and reconstruction process in terms of the LWF and introduced an algorithm for
its computation. It is called Local Spectral Reconstruction algorithm, an iterative
reconstruction scheme which uses forward and backward projectors, system energy
weightings and BMD. It yields the LWF and the spatial distribution of spectral at-
tenuation coefficients. Its application to several QCT topics was demonstrated: A
quantitative beam-hardening correction was performed on scans of a cylindrical water
phantom and a simulated thorax phantom. The thorax phantom was also used to
demonstrate energy calibration. The suggested LSR iteration scheme uses LWF sup-
ported image-based BMD, so estimates of basis material coefficients can be directly
extracted from the LSR iterations. Finally, a proof-of-concept for a method called
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direct material identification was shown. This application allows to identify given
materials or tissues directly in the CT data.

The precision and accuracy of the LSR algorithm were evaluated on simulated
ground truth data. This evaluation showed a fast convergence with one to two it-
erations leading to a sufficient accuracy in most applications. For more iterations,
however, a decrease in precision was found with increasing number of iterations, so
no additional iterations should be performed when the desired level of accuracy is
reached.

The next step in establishing LSR requires a clinical evaluation of a selected
number of the proposed applications. The LSR concept is very fundamental as it
offers a basic description of spectral detection and reconstruction. According to this
property it is possible to formulate and evaluate other QCT applications in terms of
the LSR framework that we did not cover in this work.

Chapter 4 introduced two algorithms for improving dose efficiency of multi-spectral
CT. The first one is a value-based post-reconstruction method for improving multi-
energy data. It uses a gradient ascent procedure on a joint probability estimates from
two or more reconstructed multi-energy data sets to derive noise-reduced values. This
method may be combined with frequency-based noise reduction techniques. We have
demonstrated that only 30% to 70% of primary photons were required to achieve
similar CNR values depending on the system settings and detection scenario. This
number quantifies the dose reduction potential in Dual Energy scans, as the number
of primary photons is directly linked to patient dose.

The capability of dose reduction for QCT applications was demonstrated on an
energy calibration scenario. Here, a 30% reduction of the noise level in the en-
ergy calibrated image was possible while the accuracy deviations stayed below the
approximate system precision of 1%. A subjective evaluation revealed a noise reduc-
tion potential of 20% to 30% without an impairment of the visibility of diagnostically
relevant stuctures.

A further research direction for this topic was already indicated in Sect. 4.2:
Here, we have outlined some possible strategies to efficiently combine this technique
with adaptive frequency-based image filters. The combination of these methods is
a promising approach to exploit the full dose saving potential for low-dose QCT
applications. Consequently the next step is the evaluation of the combined approach
for various QCT applications in order to find suited applications for low-dose QCT.

In the second part of Chapter 4 we presented a new concept for spatial filtering
in the projection domain. It is called Iterative Structural Sinogram filtering using
Ray Contribution Masks. This filter uses a pre-reconstructed image for deriving
structural information in the projection domain. It merges the benefits of image-based
filters (high contrast) and projection-based filters (simple noise properties). The
local structural information is gathered by computing the so called Ray Contribution
Mask. These masks offer many possibilities to construct projection-domain filter
kernels that incorporate various desired properties like range- or noise adaption. We
demonstrated this potential with an adapted version of the well-known concept of
bilateral filtering. We replaced the photometric similarity term of traditional bilateral
filters with an RCM-driven structural similarity term. The properties of this new filter
type were thoroughly evaluated on simulated and measured phantom and patient data
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in terms of noise reduction potential, MTF properties, artifacts and visual image
quality. We observed a very different noise transfer behavior compared to traditional
reconstruction-kernel based filtering. We demonstrated that this filter type can deal
well with image artifacts and has noise reduction potential of at least 15% on real
patient scans. The filter MTF is contrast dependent and shows a tendency to amplify
high frequencies whereas the MTF in the low- and mid-frequency range is slightly
attenuated.

In summary, we expect that Quantitative CT will be a major research topic in
the following years. Commercial clinical applications are not yet widespread but ac-
cording to recent publications, all major CT manufacturers pursue solutions to cover
this market. This applies to multi-spectral detection technologies and algorithmic
QCT solutions in equal measure. In this work, we offered novel methods to enhance
hardware concepts, reconstruct spectral data and improve diagnostic quality of QCT
applications. We showed promising new applications and put existing ones in a com-
mon unified framework called Local Spectral Reconstruction. Although the basic
ideas of QCT are almost as old as CT itself, its clinical relevance has just started to
become important with the availability of suited CT scanners. Medical CT scanners
capable of Dual Source spectral measurements have been available for approximately
five years. With an increasing variety of spectrally resolving systems, the demand of
new clinical QCT applications is likely to grow. With the LSR framework we provide
a fundament on which new QCT applications may be developed and existing ones
can be improved.
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