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Abstract. In this article, we study laughter found in child-robot inter-
action where it had not been prompted intentionally. Different types of
laughter and speech-laugh are annotated and processed. In a descriptive
part, we report on the position of laughter and speech-laugh in syntax
and dialogue structure, and on communicative functions. In a second
part, we report on automatic classification performance and on acoustic
characteristics, based on extensive feature selection procedures.

1 Introduction

Until the mid nineties, automatic speech recognition (ASR) concentrated on
word recognition and subsequently, on processing of higher linguistic information
such as dialogue acts, semantic saliency, recognition of accents and boundaries,
etc. Paralinguistic information was normally not accounted for and treated the
same way as non-linguistic events such as technical noise. Paralinguistic infor-
mation is either modulated onto the speech chain as, e. g. voice quality such as
laryngealisations [1], or it is interspersed between the words, such as filled pauses
or laughter. More generally, laughter belongs to the group of the so-called af-
fect bursts [2] which are partly words – including specific semantics – partly
non-linguistic events.

Normally, laughter is conceived of as a non-linguistic or paralinguistic event.
As one possibility to express emotions (especially joy), it has been dealt with
already by Darwin [3]; studies on its acoustics, however, as well as its position
in linguistic context – in the literal meaning of the word (where it can be found
in the word chain, cf. [4]), and in the figurative sense (status and function) –
started more or less at the same time as ASR started to deal with paralinguistic
phenomena. The acoustics of laughter are for example described in [5, 6] and
in further studies referred to in these articles. In [7] an overview of phenomena
and terminology is given. The context of laughter is addressed in [8, 9] (different
types of laughter and their function, different addressees in communication),
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and in [10] (distribution of laughter within multi-party conversations). As for
the automatic classification of laughter, cf. [11–13] and further studies referred
to in these articles.

The scenario of the present study is child-robot interaction. Laughter is not
elicited intentionally; the children had to accomplish different tasks by giving
the robot – Sony’s dog-like pet-robot Aibo – commands. As far as we can see,
this specific combination ‘children + pet-robot’ has not yet been addressed in
studies on laughter so far.

2 Overview

In this article, we deal with laughter as an event on the time axis which can
be delimited (segmented) the same way as words can, and with speech-laugh,
i. e. laughter modulated onto speech, which is co-extensive with the word it
‘belongs to’. Throughout, we will use small capitals (speech-laugh, laughter)
– but italics (SL vs. L) if abbreviated – when referring to the phenomena that
have been annotated and processed. When we refer to the generic term, we
simply use the regular font (‘laughter’). After the presentation of the database
in Section 3, we describe the annotation of emotional user states, of the different
types of laughter established, and of syntactic boundaries in Section 4. Section
5 reports on empirical findings: the duration of laughter, its syntactic position,
its communicative function, and its position in the dialogue. Our interest in
automatic processing, which is dealt with in Section 6, is twofold: of course,
we are interested in classification performance. Moreover, we want to use the
feature selection method employed to find out which acoustic characteristics can
be found for laughter in general, and for the different subtypes of speech-laugh
and laughter in particular.

3 The Database

The database used is a German corpus of children communicating with Sony’s
pet robot Aibo, the FAU Aibo Emotion Corpus, cf. [14–16]. It can be consid-
ered as a corpus of spontaneous speech, because the children were not told to
use specific instructions but to talk to the Aibo as they would talk to a friend.
Emotional, affective states conveyed in this speech are not elicited explicitly
(prompted) but produced by the children in the course of their interaction with
the Aibo; thus they are fully naturalistic. The children were led to believe that
the Aibo was responding to their commands, whereas the robot was actually
controlled by a human operator (Wizard-of-Oz, WoZ) using the ‘Aibo Naviga-
tor’ software over a wireless LAN (the existing Aibo speech recognition module
was not used). The WoZ caused the Aibo to perform a fixed, predetermined
sequence of actions; sometimes the Aibo behaved disobediently, thus provoking
emotional reactions. The data were collected at two different schools from 51
children (age 10–13, 21 male, 30 female). Speech was transmitted via a wireless
head set (UT 14/20 TP SHURE UHF-series with microphone WH20TQG) and
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recorded with a DAT-recorder (sampling rate 48 kHz, quantisation 16 bit, down-
sampled to 16 kHz). Each recording session took some 30 minutes. Because of
the experimental setup, these recordings contain a huge amount of silence (reac-
tion time of the Aibo), which caused a noticeable reduction of recorded speech
after raw segmentation; eventually we obtained almost nine hours of speech. The
audio-stream was segmented automatically with a pause threshold of 1 sec. into
so-called turns.

In planning the sequence of Aibo’s actions, we tried to find a good compro-
mise between obedient and disobedient behaviour: we wanted to provoke the
children in order to elicit emotional behaviour, but of course we did not want to
run the risk that they break off the experiment. The children believed that the
Aibo was reacting to their orders – albeit often not immediately. In reality, the
scenario was the opposite: the Aibo always strictly followed the same screen-plot,
and the children had to align their orders to its actions. By these means, it was
possible to examine different children’s reactions to the very same sequence of
Aibo’s actions. In the so-called ‘parcours’ task, the children had to direct the
Aibo from START to GOAL; on the way, the Aibo had to fulfil some tasks and
had to sit down in front of three cups. This constituted the longest sub-task. In
each of the other five tasks of the experiment, the children were instructed to
direct the Aibo towards one of several cups standing on the carpet. One of these
cups was ‘poisoned’ and had to be avoided. The children applied different strate-
gies to direct the Aibo. Again, all actions of Aibo were pre-determined. In the
first task, Aibo was ‘obedient’ in order to make the children believe that it would
understand their commands. In the other tasks, Aibo was ‘disobedient’. In some
tasks Aibo went directly towards the ‘poisoned’ cup in order to evoke emotional
speech from the children. No child broke off the experiment, although it could be
clearly seen towards the end that some of them were bored and wanted to put an
end to the experiment – a reaction that we wanted to provoke. Interestingly, in
a post-experimental questionnaire, all children reported that they had much fun
and liked it very much; thus we can expect at least some instances of laughter
indicating joy. At least two different conceptualisations could be observed: in the
first, the Aibo was treated as a sort of remote-control toy (commands like “turn
left”, “straight on”, “to the right”); in the second, the Aibo was addressed the
same way as a pet dog (commands like “Little Aibo doggy, now please turn left
– well done, great!” or “Get up, you stupid tin box!”), cf. [14].

Detailed information on the database is given in [15].3

4 Annotation

4.1 Emotion

Five labellers (advanced students of linguistics, 4 females, 1 male) listened to the
speech files in sequential order and annotated independently from each other each
3 The book can be downloaded from the web: http://www5.informatik.uni-

erlangen.de/Forschung/Publikationen/2009/Steidl09-ACO.pdf.
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word as neutral (default) or as belonging to one of ten other classes, which were
obtained by inspection of the data. This procedure was iterative and supervised
by an expert. The sequential order of labelling does not distort the linguistic
and paralinguistic message. Needless to say, we do not claim that these classes
represent children’s emotions (emotion-related user states) in general, only that
they are adequate for the modelling of these children’s behaviour in this specific
scenario. We resort to majority voting (henceforth MV): if three or more labellers
agree, the label is attributed to the word; if four or five labellers agree, we assume
some sort of prototypes. The following raw labels were used; in parentheses, the
number of cases with MV is given: joyful (101), surprised (0), emphatic (2528),
helpless (3), touchy, i. e., irritated (225), angry (84), motherese (1260), bored
(11), reprimanding (310), rest, i. e. non-neutral, but not belonging to the other
categories (3), neutral (39169); 4707 words had no MV; all in all, there were
48401 words. joyful and angry belong to the ‘big’, basic emotions [17], the other
ones rather to ‘emotion-related/emotion-prone’ user states but have been listed
in more extensive catalogues of emotion/emotion-related terms, e. g. ‘reproach’
(i. e. reprimanding), bored, or surprised in [18]. The state emphatic has been in-
troduced because it can be seen as a possible indication of some (starting) trouble
in communication and by that, as a sort of ‘pre-emotional’, negative state [19,
15]. This is corroborated by one- or two-dimensional Nonmetrical Multidimen-
sional Scaling (NMDS) solutions, cf. [14], where emphatic is located between
neutral and the negative states on the valence dimension. Note that all these
states, especially emphatic, have only been annotated when they differed from
the (initial) neutral baseline of the speaker.

4.2 Speech laugh and laughter

laughter has been annotated, together with other non-/paralinguistic events
such as (filled) pauses, breathing, or (technical) noise, in the orthographic translit-
eration (several passes, cross-checked by one supervisor). speech-laugh has
been annotated, together with other (prosodic) peculiarities such as unusual syl-
lable lengthening, or hyper-correct articulation, in a separate annotation pass by
one experienced labeller; details are given in [15]. It turned out, however, that
is was necessary to re-do and correct the annotation of laughter and speech-
laugh for the whole database; this was done by the first author.4 We decided
not to annotate speech smile; we could only find a few somehow pronounced
instances.

The following types of laughter are annotated:

– speech-laugh, weak (SLw): speech-laugh which is not very pronounced
– speech-laugh, strong (SLs): speech-laugh, pronounced

4 Due to this re-labelling, the frequencies reported in this paper and in [15] differ. Note
that in the standard orthographic transliteration, only turns containing at least one
word had been taken into account. By that, all isolated instances of laughter had
been disregarded which are now included.
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– laughter, unvoiced (Lu): laughter, unvoiced throughout
– laughter, voiced-unvoiced (Lvu): laughter with both marked voiced and

unvoiced sections; order and number of voiced and unvoiced sections are not
defined

– laughter, voiced (Lv): laughter, voiced throughout

The acoustic characteristics of our laughter instances can be described along
the terminology of, e.g. [5, 7]: bouts, i. e. entire laugh episodes, consisting of one
or several calls (segments, syllables), i. e. events that clearly can be delimited.
The default segmental structure of laughter is, as expected, [h@h@] (SAMPA
notation); speech-laugh is often characterized by some tremolo which is struc-
turally equivalent to the repetitive events in laughter. Apart from other, more
‘normal’ types, in a few cases, ‘exotic’ forms such as ingressive phonation could
be observed.

237 turns contain 276 instances of laughter, 100 speech-laugh and 176
laughter; thus each of these turns contains on average 1.16 laughter instances.
Adjacent instances of laughter and speech-laugh count as two separate in-
stances. As there are some 13.6 k turns and some 48.4 k words, turns with laugh-
ter instances amount to 1.7 % of all turns; 0.6 % of all tokens that are either
words or laughter instances is either speech-laugh or laughter. The approx-
imate overall duration of the speech events in the database amounts to some 8.9
hours, the overall duration of all laughter instances to some 145 sec., i. e. 0. 4%.

To compare these frequencies with some reported in the literature: [13] use
seven sessions from the AMI Meeting corpus, where subjects were recruited for
the task, and pre-select those 40 laughter segments that do not co-occur with
speech and are “clearly audible” (total duration 58.4 seconds). [20] report “1926
ground truth laughter events” found in 29 meetings (about 25 hours), the so-
called Bmr subset of the ICSI Meeting Recorder Corpus, divided into 26 train
and 3 test meetings. [21] report for the same partition 14.94 % “proportion of
vocalization time spent in laughter” for train, and 10.91 % for test; another
subset of the ICSI meeting data (the so-called Bro subset) contains only 5.94 %
of laughter. This is due to different types of interaction and participants, which
were more or less familiar with each other. On the other hand, only few laughter
instances were found in “transcript data of jury deliberations from both the
guilt-or-innocence and penalty phases of [... a] trial” [22]: “51 laughter sequences
across 414 transcript pages”.

All these differences clearly demonstrate a strong dependency on the sce-
nario: on the one hand, a high percentage of laughter in scenarios where people,
knowing each other quite well, ‘play’ meetings, having some fun, and on the
other hand, children in a somehow ‘formal’ setting, not knowing the supervisor,
and trying to fulfil some tasks, or members of a jury discussing a death penalty
decision.

4.3 Syntactic boundaries

In our scenario, there is no real dialogue between the two partners; only the
child is speaking, and the Aibo is only acting. (Note, however, that there is a
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sort of second, marginal dialogue partner, namely the supervisor who was present
throughout the whole interaction with the Aibo. The supervisor was sometimes
addressed in a sort of meta-speech, especially between the different sub-tasks,
cf. below.) The speaking style is rather special: there are not many ‘well-formed’
utterances but a mixture of some long and many short sentences/chunks and one-
or two-word utterances, which are often commands. Note that we have to rely on
syntactic knowledge for segmenting longer stretches of speech into meaningful
units. Our segmentation into turns based on a speech pause detection algorithm
works sufficiently well for ASR processing; however, this procedure can result
in rather long turns, up to more than 50 words; these units are therefore not
suitable for any fine-grained syntactic analysis. For the experiments presented in
this study, the following syntactic positions have been labelled by the first author;
this is a sub-set of the inventory described fully in [15], enriched with further
‘laughter-specific’ positions. The inventory is based on an elaborate, shallow
account of syntactic units in [23]. Examples are given in parentheses for speech-
laugh instances (typewriter font, whereas the rest of the utterances – if any –
is given in italic). Analogously, positions of laughter are exemplified; English
translations in italics without indication of laughter position:

– isolated: the turn consists only of one instance of laughter

– vocative: speech-laugh on the vocative “Aibo”
– begin of unit: most of the time, at the begin of the turn, but can be at the

begin of a syntactic unit (free phrase, clause) within a turn as well (examples:
geh nach rechts – go to the right ; laughter Aibo geh mal nach links – Aibo
go to the left)

– end of phrase: at the end of a free phrase, i. e. a stand-alone syntactic
unit but not well-formed syntactically, i. e. without a verb (examples: in die
andere Richtung – into the other direction; und jetzt laughter– and now)

– end of clause: at the end of a main clause or a sub-ordinate clause which
is syntactically well-formed (examples: was soll man da jetzt machen – what
can I do now ; so jetzt gibst a Ruh laughter – now keep quiet)

– left-adjacent: at second position in a unit; in the first position, additionally
either laughter or speech-laugh are found (examples: muss ich ihn da
durch die Strassen lenken – do I have to guide it through the streets; no
instance of laughter)

– right-adjacent: at pen-ultima (second last) position in a unit; in the ultima
(last) position, additionally either laughter or speech-laugh are found
(examples: du musst nach links abbiegen – you have to turn right ; no
instance of laughter)

– covering: the whole unit consists of speech-laugh with or without laugh-
ter (examples: ein bisschen nach vorne – a little bit forwards; laugh-
ter komm her laughter – come here )

– internal: adjacent to the left and to the right of this label within a unit,
only words without speech-laugh and no laughter are found (examples:
lauf nach rechts – go to the right ; no instance of laughter)
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Note that for some syntactic positions, alternative laughter positions could
be annotated: we labelled one word clauses such as “aufstehen!” (Engl. “get up!”
with end of clause and not with covering. With covering, all words belonging to
a unit were annotated even if of course, one of them is at the beginning and one
in ultima position. These decisions are somehow arbitrary; in no case, however,
the interpretation in Sec. 5.3 would change if the one or the other decision had
been taken.

5 Results

Our data are not Gaussian-distributed, and several outliers such as speaker-
specific frequencies or extreme duration values can be observed. Thus we decided
in favour of non-parametric statistic procedures such as Spearman’s rank co-
efficient, Chi-Square, and Mann-Whitney U-test; p-values reported are always
for the two-tailed test. Note that ‘significant’ p-values should rather be taken as
indicating ‘large enough differences’ in the sense of [24, 25], and not in the strict
sense of inferential statistics. We therefore refrain from using adjusted levels
of significance. (For our results, using them would simply mean only to treat
p-values below 0.01 as ‘significant’.)

5.1 Speaker- and gender-specific use of laughter

Figure 1 displays the speaker-specific frequencies of laughter and speech-
laugh, sorted by frequency of laughter per speaker; 16 speakers, i. e. almost
one third, are omitted because they produced neither laughter nor speech-
laugh. The Spearman rank co-efficient between laughter and speech-laugh
is 0.61 if all speakers, even those that did not produce laughter or speech-
laugh, are taken into account, and 0.43 if only speakers that produced at least
one instance of laughter or speech-laugh are processed. Thus, some ten-
dency can be observed to display either no laughter or both types of laughter.
We can assume that the decision between ‘to laugh or not to laugh’ is grounded
in some basic attitude towards the task and towards the situation as a whole,
which in turn might be caused by differences in the character of the children
[14]. In a Mann-Whitney test, there is no significant gender difference as for
absolute frequencies of laughter and speech-laugh, their different sub-types
specified below, or their frequencies relative to absolute word frequencies per
speaker. With other words: at least in this setting, girls and boys seem not to
differ in their use of laughter, cf. below Section 5.3 as well.

5.2 Duration of laughter

Table 1 displays some statistical key figures for the five types of laughter sepa-
rately, and for the two main types speech-laugh (SLtot) and laughter (Ltot).
All these distributions are skewed right (row ‘skewness’) which could be ex-
pected, as it is duration data. SL-types, i. e. words, are less skewed than L-types,
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Fig. 1. Distribution of laughter and speech-laugh amongst speakers, sorted by
frequency of laughter per speaker

Table 1. Duration of types of laughter in # frames (10 msec.)

statistics SLs SLw SLtot Lv Lvu Lu Ltot
# tokens 44 54 98 32 69 75 176
Mean 54.84 45.10 49.49 53.00 63.79 46.13 54.30
Median 55 44 49.50 44 47 39 42.50
Std. Deviation 20.14 22.37 21.84 37.02 58.61 49.74 51.85
Skewness .31 .57 .37 1.93 3.32 5.78 4.16
Minimum 21 6 6 19 5 9 5
Maximum 100 113 113 173 328 414 414

and amongst these latter ones, those containing unvoiced parts are skewed most.
This is due to a few outliers, i. e. very long laughter instances: the median is
more uniform across the types than the mean (and by that, standard deviation
and maximum values). In a Mann-Whitney test, the durations of SLs vs. SLw
differ with (p = 0.024). This can of course be due to differences in word length
but most likely, to SLs being more pronounced and by that, longer, than SLw.
Three pair-wise Mann-Whitney tests resulted in one of the differences, namely
Lvu vs. Lu, being significant with (p = 0.001). This might be due to two fac-
tors: Lu tends to be weaker and by that, shorter, and for Lvu, the alternation
of voiced and unvoiced might automatically ‘result’ in some longer duration.
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Fig. 2. Distribution of types of laughter for syntactic positions

5.3 Syntactic position of laughter

Figure 2 displays the frequencies of speech-laugh and laughter for all dif-
ferent syntactic positions. These are absolute figures; note that there are 21
male and 30 female children in our database. A Mann-Whitney test resulted
in no significant differences (α = 0.5 %) between the genders, separately for
each syntactic position or for the totals of speech-laugh, laughter, or both
taken together. Thus it seems save to conclude that both girls and boys employ
laughter the same way.

In Figure 2, it is trivial that in isolated position, only laughter occurs
because one-word turns constitute by definition either a clause or a free phrase.
The same way, it is trivial that vocatives only constitute speech-laugh. There is
not much difference between speech-laugh and laughter as for begin of unit,
end of phrase, and end of clause. However, if we map these instances onto a main
class edge position, then the difference between 57 instances of speech-laugh
and 84 instances of laughter is significant in a chi-square test (p = 0.023).
For the complement, i. e. adjacent/covering/internal positions, the difference
between 33 instances of speech-laugh and 4 instances of laughter – which
are all in ultima position, cf. below – is more marked, with (p = 0.000).

left/right-adjacent means an internal second or pen-ultima position but only
when the first or ultima position is laughter or speech-laugh: there is none
for laughter and only one and seven, respectively, for speech-laugh. cover-
ing means that throughout a syntactic constituent, there is laughter and/or
speech-laugh; note that all four instances of laughter in covering occur in
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first or ultima position. Thus there is no laughter in internal position, only
speech-laugh. These distributions mean that laughter can only be observed
isolated, i. e. marked-off from speech, or at the beginning/end of syntactic con-
stituents, and that speech-laugh is either – and most of the time – at the fringe
(mostly at the end) of syntactic constituents, or coherent left/right-adjacent or
covering but very seldom stand-alone internally in a syntactic constituent.

In [4] it is claimed that laughter sort of punctuates speech, i. e. it is almost
always found at those positions where we punctuate in written language. This
turns out to hold true for our data as well: laughter is never internal. In
contrast, we see that speech-laugh can occur in internal position, but very
seldom. In the overwhelming majority of the cases, speech-laugh is found at
the edges of linguistic units – but these can be found within turns, i. e. longer
stretches of speech, as well.

To our knowledge, there are not many studies on the relationship between hu-
man speech/linguistic processing and paralinguistic processing – such as laugh-
ter. We know, however, that phonetic/psycholinguistic studies on the localisation
of non-verbal signals within speech showed that listeners tend to structure the
perception of these phenomena along the perception and comprehension of lin-
guistic phenomena (sentence processing), cf. [26].5 Our findings suggest a some-
how close relationship between both phenomena – otherwise, there would be no
reason why we should not observe laughter in internal position. Thus, it might
be that linguistics and paralinguistics are not just two independent streams but
more intertwined, cf. [27], p. 892: “A view of laughter as merely a supraseg-
mental overlay on the segmental organization of speech is clearly an inadequate
view of speech-laugh patterns. Unlike stress or intonation, laughter can stand
independently as a meaningful communicative response.” But, we have to add,
it is embedded in syntactic structure as well.

5.4 Communicative function of laughter

276 laughter instances (speech-laugh and laughter) are found in 237 turns,
i. e. 1.16 on average per turn. 88 are isolated laughter instances, constituting
a turn; 40 are ‘meta-statements’, not directed towards the Aibo but being either
private speech (directed to one-self) or directed towards the supervisor; these
meta-statements can be conceived as constituting ‘off-talk’ [28]. Sometimes, it
is not easy to tell these different types apart: the exclamation “süß!” (Engl.
“sweet!”) could be both, “passt das so?” (Engl. “is that ok?”) is clearly di-
rected towards the supervisor. Thus, some 46 % of the turns containing laughter
instances constitute interactions (mostly the illocution ‘command’) directed to-
wards the Aibo, some 54 % of these turns do not belong to any interaction with
5 In [4], only laughter and not speech-laugh is addressed. A weak point of this

study might be that the data were annotated online by ‘observers’ of anonymous
subjects in public places. Thus the localisation of laughter could not be checked
later on. It might be that these observers displayed the same tendency to localise
such events at syntactic boundaries, even if they are not. However, our findings point
towards the same direction.
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the Aibo. In both constellations, laughter can – but need not be – an indication
of emotion (emotional user-state); obvious would be the indication of joyful.

Table 2. Cross-tabulation of word based emotion labels with speech-laugh

emotion label SLs SLw sum
mixed 8 8 16
angry 1 1 2
joyful 25 24 49
neutral 10 21 31
total 44 54 98

Table 2 displays the word-based co-occurrence of speech-laugh and emo-
tion label. Indeed, in 50 % of the cases, speech-laugh obviously contributes
to the indication of joyful ; these 49 cases amount to 49 % of all 101 joyful in-
stances. 32 % of the words are neutral, 16 % belong to a mixed rest class,6 2 % to
angry, and no case to motherese. At first sight, this could not be expected, when
we consider the literature: [27] showed that in mother-child interaction, moth-
ers produced some 50 % speech-laugh. This child-directed speech has different
names such as motherese, parentese, or register of intimacy, with somehow dif-
ferent connotations but having a great deal in common with our motherese cases,
cf. [29, 30], such as lower harmonics-to-noise ratio, lower energy, and at the same
time, more variation in energy and F0. Obviously, laughter is no common trait:
in a mother-child (i. e. mother-baby) interaction, the eliciting of social (mutual)
laughter serves as reinforcement of a good parent-child attachment, and as con-
firmation of the child’s well-being. In our scenario, laughter is not social in this
sense, and is not used to establish specific relationships with the Aibo. In fact,
any attempt to elicit laughter would be in vain because the Aibo is simply not
programmed that way.

Similar results are obtained when we compare the speaker-specific frequen-
cies of motherese, angry, all words, speech-laugh and laughter in Table 3:
there are significant – albeit not very high – positive correlations between moth-
erese, angry, and all words. This means that subjects show some variability but
do not have any bias towards a positive or negative attitude. The same way,
there is a significant correlation between the frequencies of speech-laugh and
laughter: subjects seem not to prefer strongly the one or the other type of
laughter. There are, however, very low correlations between any type of laughter
and any type of emotion – apart from joyful. This might show that this child-
robot relationship is peculiar, and really half-way between ‘close and intimate’
and ‘distant and not intimate’. This can be traced back to the distance (the child

6 mixed means that in these cases, no majority label could be given; this is different
from the rest class in Section 4.1.
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is some 1.5 m away from the robot), to the robot being a robot, to the robot
being a ‘tin-box’ and not a sweet furry baby seal, etc. – we do not know yet.
Anyway, the assumption of [27], p. 892 that “... speech-laughs are only common
in particular social contexts, such as maternal infant-directed speech during play
or in the laughter of close relationships” has to be specified: speech-laughs can be
observed in other settings; however, they might be not as frequent. The ‘normal’,
default function of the laughter instances found in our database really seems to
be an indication of amusement or joy. Some other functions are detailed in the
next section.

Table 3. Correlations (Spearman) for speaker-specific frequencies; 51 speakers;
correlations with ‘*’ are significant at α = 0.001

type motherese angry words speech-laugh
motherese –
angry .53* –
words .51* .53* –
speech-laugh .10 -.23 -.05 –
laughter .14 -.15 .20 .60*

5.5 Temporal position of laughter in the dialogue

In Sec. 5.3 we have seen that laughter is very often found at a syntactic edge
position, i. e. either at the begin or at the end of syntactic units. We now want
to have a look at the position of laughter in the whole dialogue: the children had
to complete five tasks, three short ones, one longer, and again, two short ones,
cf. Sec. 3. It is likely that a child exhibits the same linguistic behaviour through-
out the whole communication: they are either talkative or not. Remember that
Aibo’s actions were predefined and did not depend on the children’s commands.
We therefore computed for each laughter instance its relative position in the
dialogue by dividing the turn number the laughter belongs to with the maxi-
mal number (number of the last turn in the dialogue.) To get a somehow clear
picture without outliers, we truncated the resulting figures, aiming at a quan-
tisation into 10 percentile slides, cf. Figure 3. Thus the positions given in the
figure denote approximately the temporal position in whole interaction, i. e. in
the task structure. We can see a first maximum at the beginning of the dialogue,
then a descending slope and later on, a second weak maximum between 60 %
and 80 % of the dialogue. Note that in a few cases, there are some ‘artifacts’
because not the whole communication was recorded due to technical problems.
Moreover, some children do not produce any laughter, and a few other ones quite
a lot. Thus we have to interpret this outcome with due care: the first maximum
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Fig. 3. Frequencies (y-axis) of relative position of laughter in the time course of the
dialogue, smoothed by quantisation into 10 percentile slides (x-axis)

at the beginning of the whole interaction can be interpreted as ‘phatic’ laughter
– most of the time, isolated laughter, most likely denoting something like joy-
ful expectation, mixed with tension. Then, the descending slope might indicate
some focusing on the task. Later on, when the children are more familiar with
the tasks and the supervisor, laughter can often be found at the transition of one
task to the following task; here, some children made meta-statements, including
laughter, such as “ ... sometimes, it doesn’t want to listen at all laughter”.
We might suppose that laughter is influenced by antagonistic tension and relief;
it occurs more often at the beginning as well as at the end of tasks than in the
‘normal’ course of the tasks. A ‘punctuation’ function can thus be observed at
the lower level of syntactic structure as well as – in a less restricted way – at the
higher level of dialogue structure.

6 Automatic classification of laughter

For the automatic classification of laughter, state-of-the art audio signal pro-
cessing and classification methods are used. A large set of acoustic features is
extracted from segments (complete turns, or single word units) of the audio
recording. In total the feature set considered contains 5 967 acoustic features,
which are extracted using the openEAR framework [31]. Thereby, for each input
segment of variable length, a static feature vector is extracted by applying various
functionals to low-level feature contours. The latter include low-level descriptors



14 Anton Batliner et al.

(LLD) such as signal energy, Mel-frequency cepstral coefficients (MFCC), fun-
damental frequency, probability of voicing, zero-crossing rate (ZCR), etc., and
their respective first and second order regression coefficients. The 39 low-level
descriptors are summarised in Tab. 4. A list of the 51 functionals can be found in
Tab. 5. These and similar features have been applied successfully to various audio
classification tasks, e.g. musical genre recognition [32], emotion recognition [33,
34], and classification of non-linguistic vocalisations [35].

LLD Group Description

Time Domain Zero-crossing rate (ZCR), max./min. sample value, signal offset
Energy Root mean-square (RMS) & logarithmic
Voice Fundamental frequency F0 via autocorrelation function (ACF)

Probability of voicing (ACF(T0)
ACF(0)

)

F0 quality (ZCR(ACF)
F0

)

Harmonics-to-noise ratio (HNR)
Spectral Energy in bands 0 - 250 Hz, 0 - 650 Hz, 250 - 650 Hz, 1 - 4 kHz

10 %, 25 %, 50 %, 75 %, and 90 % roll-off points, centroid, flux, and
relative position of spectral maximum and minimum

Cepstral MFCC 0-15

Table 4. 39 acoustic low-level descriptors (LLD) for generation of a large acoustic
feature set.

In order to find a set of features highly relevant for laughter classification, an
automatic data-driven feature selection method called correlation-based feature-
subset selection (CFS) [36] is used. This method evaluates the relative impor-
tance of features based on their correlation to the class. The method is indepen-
dent of the type of classifier that will be used to do the actual recognition work.
This is both an advantage and disadvantage of CFS. Due to not including the
classification method into the feature selection procedure, the obtained feature
sub-set is very likely to be suboptimal for the chosen classification method. How-
ever, this approach leads to a more general feature set when we try to interpret
the selected features as characteristic acoustic traits of laughter. Two differ-
ent levels of input segmentation are investigated, which correspond to different
practical applications: turn-based laughter detection, and word-based laughter
classification.7

For turn-based laughter detection, a single acoustic feature vector is extracted
from the full length input turn. A two-class decision is performed, i. e. whether
the turn contains laughing (of any type) or not. The classes L and W are assigned
to the turns respectively. This scenario is of a highly practical relevance, since in
7 This is a somehow sloppy word usage of ‘detection’ in order to tell apart these two

different tasks: we ‘detect’ that laughter occurs somewhere in the turn but we do
not localise it; in ‘classification’, localisation is given and we decide whether an item
belongs to the one or the other class(es).
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Type #

Max. / min. value and respective relative position 4
Range (max. - min.), max. / min. value - arithmetic mean 3
Arithmetic and quadratic mean 2
Arithmetic mean of absolute and non-zero values 2
Percentage of non-zero values in contour 1
Quartiles, inter-quartile ranges, 95 % and 98 % percentiles 8
Standard deviation, variance, kurtosis, skewness 4
Centroid of feature contour 1
Zero-crossing and mean-crossing rate 2
25 % down-level time, 75% up-level time 2
Rise-time, fall-time 2
Number of peaks, mean distance between peaks 2
Mean of peaks, mean of peaks - arithmetic mean 2
Number of segments based on ∆-thresholding 1

Linear regression coeff. and corresponding approximation error 4
Quadratic regression coeff. and corresponding approximation error 5

Discrete cosine transformation (DCT) coefficients 0-5 6

Table 5. 51 functionals (statistical, polynomial regression, and transformations) ap-
plied to low-level descriptor contours.

most cases, systems need to know whether a person is laughing or not, while the
exact position of the laughter within the utterance is irrelevant. Furthermore, a
three-class decision is analysed where we discriminate between turns containing
no laughing at all (W ), speech-laugh only (SL), and laughter (L) (possibly
mixed with speech-laugh).

For word-based laughter classification, the turns were manually segmented
into word units. A word unit thereby spans exactly one word or a non-linguistic
vocalisation, such as isolated laughter. Features are extracted per word unit
segment. Each word unit is assigned one of the six classes, word (W ), weak
speech-laugh (SLw), strong speech-laugh (SLs), voiced laughter (Lv),
mixed voiced and unvoiced laughter (Lvu), and unvoiced laughter (Lu).
Since some of these six classes might not be clearly distinguishable, they have
been combined for additional experiments. This results in two sets of labellings,
one containing two labels (word W, and laughter L), and the other containing
three labels (word W, speech-laugh SL, and laughter L). Even though word-
unit based laughter classification requires a segmentation into word-units, which
cannot be done perfectly automatically, it is interesting from a research point
of view. A comprehensive study of relevant acoustic properties of speech vs.
laughter can be conducted by automatically analysing acoustic features relevant
for automatic classification.

In order to obtain speaker independent classification results on the whole
FAU Aibo corpus, leave-one-speaker-out cross-validation is performed. Thereby,
evaluation is performed in 51 folds, corresponding to the 51 speakers in the
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corpus. In each fold the data from one speaker is used as a test set, while the
data from the remaining 50 speakers is used for training and feature selection.

Since significantly more word-units and turns without laughter are found in
the FAU Aibo corpus, the data set is highly unbalanced between the speech class
on the one hand and the laughter and speech-laugh classes on the other
hand. Therefore, for training robust classification models which do not show a
bias towards the speech class, it is necessary to create a balanced training set for
the training phase. We therefore limit the number of training instances in the
speech class for word-unit based experiments to 100 (6-class problem) and to 300
(for the 2-class and the 3-class problem), and for turn based experiments to 237
(2-class problem) and to 150 (3-class problem) by random sub-sampling of speech
class instances. Note that for the turn-based three class problem, the number of
speech-laugh instances was also limited to 150 by random sub-sampling.

Feature selection using CFS is performed independently for each fold on
the respective training set only. Thus, we ensure that the respective test set
is completely unknown to the system with respect to both feature selection
and model; this would not be the case if we performed the feature selection on
the whole corpus. However, the proposed method results in 51 different feature
sets, each containing approximately 100–200 selected features, specific to the
respective training partition. In order to find overall relevant features, we create
a new feature set by including only those features which have been selected in
all 51 folds. This method yields even smaller sets of features (approx. 20–30
features). Better classification is obtained with these feature sets than with the
individual per-fold feature sets. In some cases the performance is even superior
to using the full feature set. This indicates the high relevance of these selected
features, as will be discussed later.

As classifier we use Support-Vector Machines (SVMs) as described in [36].
SVMs have shown excellent performance for related tasks, e.g. classification of
non-linguistic vocalisations (e. g. [35]), and emotion recognition (e. g. [37]).

6.1 Classification performance

A summary of all results obtained for automatic laughter detection and clas-
sification is shown in Tab. 6. We see that generally, turn-based classification
outperforms word-based classification. This might be at least partly due to the
fact that there is on average 1.16 instances of laughter and by that, more than
one ‘island of markedness’ per turn. Of course, the more detailed 3-class and
the 6-class problem result in lower classification performance. Both for weighted
average recall (WA) and unweighted average recall (UA)8, classification perfor-
mance is better if using all features (FSn) than if using features selected in all
51 folds (FSc), and both procedures are better than if using features selected
via CFS on the respective full set, i. e. data from all 51 folds combined (FSf );

8 WA is the overall recognition rate or recall (number of correctly classified cases
divided by total number of cases); UA is the ‘class-wise’ computed recognition rate,
i. e. the mean along the diagonal of the confusion matrix in percent.
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cf. our remarks above on the advantages and disadvantages of CFS. There are
two exceptions if we look at UA for FSc vs. FSf for the 3-class and the 6-class
word based problem: obviously, the more detailed the task, the more features
have to be employed for modelling and classifying the classes.

Table 6. Overview of all results for turn and word based segmentation with differ-
ent number of classes: Ncl = 2, 3, and 6 classes. 51-fold leave-one-speaker-out cross-
validation. Dummy : Correctly classified instances by always choosing the most likely
class as seen in the training set distribution. Classification using all features (FSn),
features that have been selected in all 51 folds (FSc), and features selected via CFS on
the respective full set, i. e. data from all 51 folds combined (FSf ). Number of features
that was selected in all 51 folds (Nft

c ), and number of features selected on the full FAU
Aibo set (Nft

f ). Training on near balanced set (see text), evaluation on full set (highly
unbalanced). Weighted average recall (WA) and, in parentheses, unweighted average
recall (UA).

[ % WA (UA)] Ncl Dummy FSn FSc Nft
c FSf Nft

f

Turn
2 50.0 (50.0) 84.7 (85.0) 82.0 (83.0) 30 80.9 (82.2) 156
3 41.1 (33.3) 81.8 (89.5) 77.5 (64.5) 20 71.9 (60.9) 121

Word
2 52.3 (50.0) 77.9 (78.5) 76.6 (77.5) 25 74.8 (76.0) 176
3 52.3 (33.3) 77.6 (69.8) 73.7 (64.3) 34 67.4 (71.2) 183
6 26.7 (16.7) 58.3 (49.8) 54.6 (41.3) 13 52.2 (50.1) 161

Tab. 7 shows the confusion matrix for the 6 class word-unit based classifi-
cation problem using a set of only 13 features constituting the intersection of
selected features in all 51 folds, cf. Tab. 6, last row. It shows confusions that
are expected from a phonetic viewpoint: confusions within the classes laugh-
ter and speech-laugh are more frequent than confusions between laughter
and speech-laugh. Moreover, words are often misclassified as speech-laugh,
where weak speech-laugh is more frequent than strong speech-laugh, which
is to be expected. There is some misclassifications of words as laughter, espe-
cially Lv. The confusions with Lu can be explained by the fact that especially
shorter words can either be unvoiced or the feature extraction might not have
given reliable results.

Tab. 8 shows the confusion matrix for the 3 class word-unit based classifica-
tion problem using a set of 34 features determined by automatic feature selection
of commonly selected features in all 51 folds. This table shows a good recogni-
tion performance for the classes word and laughter. speech-laugh, however,
is often confused with words, which shows the challenge of detecting laughter
in speech.9 More speech-laugh word-units are classified incorrectly as words

9 Note that out of the 100 instances of speech-laugh, 2 cases could not be processed
because they were too short to extract meaningful features based on functionals.
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Table 7. Word-based classification with 51-fold leave-one-speaker-out cross-validation;
with 13 features selected; 54.6 % correct; 6-class problem

class. as W SLw SLs Lu Lvu Lv # % corr.

W 412 117 76 25 24 51 705 58.4

SLw 23 5 16 5 3 2 54 9.3
SLs 7 15 15 2 3 2 44 34.1

Lv 10 4 2 2 12 2 32 6.3
Lvu 2 4 3 0 44 16 69 63.8
Lu 2 0 2 2 12 57 75 76.0

Table 8. Word-based classification with 51-fold leave-one-speaker-out cross-validation;
with 34 features selected; 73.7 % correct; 3-class problem

class. as W SL L # % corr.

W 552 77 76 705 78.3

SL 44 40 14 98 40.8
L 25 21 130 176 73.9

than are classified correctly. Looking once more at the result in Tab. 7, where we
can see that weak speech-laugh and words are likely to be confused, we can
assume that those weak speech-laugh word-units, which are now combined
with the strong speech-laugh instances, lead to the poor performance for the
overall speech-laugh class.

Tab. 9 shows the confusion matrix for the 3-class turn based detection prob-
lem using a set of 20 features determined by automatic feature selection of com-
monly selected features in all 51 folds. Tab. 10 shows the confusion matrix for
the 2-class turn based detection problem using a set of 30 features determined by
automatic feature selection of commonly selected features in all 51 folds. 3-class
turn-based laughter detection shows similar results to the 3-class word-based
laughter classification, where performance for the speech-laugh class is weak.
Restricting the problem to a binary speech/laughter decision improves the total
number of W instances classified correctly as W and at the same time increases
the number of L instances correctly recognised from 163 (when combining cor-
rectly recognised speech-laugh and laughter) to 199.

Table 9. Turn-based detection with 51-fold leave-one-speaker-out cross-validation;
with 20 features selected; 77 % correct; 3-class problem

class. as W SL L # % corr.

W 10475 1486 1533 13494 77.6

SL 23 22 20 65 33.8
L 15 16 141 172 82.0
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Table 10. Turn-based detection with 51-fold leave-one-speaker-out cross-validation;
with 30 features selected; 82 % correct; 2-class problem

class. as W L # % corr.

W 11054 2440 13494 81.9
L 38 199 237 84.0

6.2 Feature interpretation

The common features selected in all 51 folds for at least two experiments of turn
or word-unit based detection/classification with 2, 3, and 6 classes for word-
unit based classification (W2, W3, W6), and 2 and 3 classes for turn based
detection (T2, T3) are shown in Tab. 11. The check marks show for which of
the experiments the features were selected in all 51 folds. It is notable that the
features selected for turn based and word-unit based detection/classification are
almost completely disjoint. Only two features were selected for at least one turn-
and word-unit based detection/classification experiment: the zero-crossing rate
of ∆ MFCC2 and the inter-quartile range 3-1 of the spectral flux.

It is not easy to interpret the single features chosen in Tab. 11; moreover, it
might be that a feature has been preferred by the CFS to another related one
due to some spurious factors given in the rather small sample. A better way
of representing the results is the summary given in Tab. 12 where an overview
of predominant acoustic low-level descriptor categories and corresponding func-
tional categories in the sets are given. Acoustic low-level descriptor categories
are used as in Tab. 4: time signal features, energy, voice, spectral, and cepstral.
The functionals from Tab. 5 are combined into four categories corresponding to
certain physical signal properties: functionals primarily describing the low-level
feature contour Modulation (DCT (Discrete Cosine Transform) coefficients, zero-
/mean-crossing rates, kurtosis, number of peaks, regression error etc.), value
distribution (max. and min. ranges, means, percentiles, etc.), relative position
within the word/turn (relative position of peaks, min. value, max. value, cen-
troid, etc.), and regression features describing the overall shape of the low-level
feature contour.

The relevant feature groups in Tab. 12 can be roughly put into three cate-
gories: the first category containing features that are highly relevant for word-
unit based as well as turn-based laughter classification/detection, the second
category containing features only relevant for word-unit based laughter classifi-
cation, and the third containing features only relevant for turn-based laughter
detection. Features in the first category are mostly modulation and value distri-
bution statistics of the fourth Mel-frequency cepstral coefficient, the probability
of voicing, and parameters describing the distribution of the signal energy among
spectral bands (i. e. spectral roll-off points, energies in selected frequency bands,
and the centroid of the local spectrum). The fact that functionals describing
signal modulation are selected often reveals that laughter is characterised by
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modulation in certain features of the speech signal, which is expected, since
laughter has periodically re-occurring elements [8]. The distribution of signal
values also describes the quality of the signal modulation. For signals with nar-
row peaks the mean value will be closer to the minimum value than to the max-
imum value, whereas for signals with broader peaks the mean value will move
up closer towards the maximum value. The associated low-level descriptors in
conjunction with the functionals describing modulation reveal that modulation
of the spectral distribution and voicing probability can characterise laughter.
Generally speaking, these features are describing a pattern of repeating change
between voiced and unvoiced segments and associated changes in speech spectra.
However, since both the probability of voicing and the spectral distribution are
relevant, we can conclude that the spectral distribution might be used to dis-
criminate voiced laughter segments from voiced speech segments due to different
pitch and formant characteristics. For word-based classification only (second
category), next to distribution and modulation functionals, position functionals
(i. e. the relative positions of minima or maxima within the word-unit) play an
important role. Considering that mostly energy and amplitude related low-level
descriptors are associated with these position features, this might be linked to
word prosody. A word has prominence on one specific syllable – at least this is
the case for German word accent position – while laughter has multiple, period-
ically occurring segments which are ’emphasised’. For turn-based detection only
(third category), the modulation of the spectral flux (i. e. change in the spectrum
over time) is shown to be important. This indicates – considering the turn-level
detection task – that as soon as laughter is present in the analysed turn, the
overall modulation of spectral change seems to significantly differ from regular
speech.

7 Concluding Remarks

Notable is the relatively small number of laughter instances in our relatively large
database: only 0.4 %. This is some disadvantage because of sparse data – espe-
cially considering the fact that speakers employ laughter in different ways. On
the other hand, we can consider it an advantage as well being able to investigate
realistic data where laughter neither was elicited nor facilitated via selection of
speakers or tasks. The distribution of the types of laughter we have found indi-
cates a highly developed system with specific functions and positions of laughter.
We found strong tendencies, e. g. for speech-laugh not to occur internally in-
side syntactic units; the same tendency had no exception for laughter – we can
call it a rule, probably with no exceptions. The ‘punctuation’ function is weaker
but still visible in the dialogue (task) structure. The feature groups surviving our
correlation-based feature-subset selection (CFS) procedure give a clear picture
of the acoustic characteristics of laughter. Classifying laughter automatically is
a difficult task; this holds especially for telling apart different types belonging
to the same main class. On the other hand, detecting some laughter in a turn
seems to be promising for foreseeable applications, especially if we do not aim



Laughter in Child-Robot Interaction 21

at single instance detection but at a summarizing estimation of a general degree
of ‘laughter proneness’ in an interaction.

Our results show that children – at least at the age of 10–13 years – fully
master the interplay of non-verbal/paralinguistic events such as laughter with
syntactic structure and dialogue structure. Also the communicative functions of
laughter seem not to be different from the use of laughter known so far from
studies with adult human-human interactions.
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Table 11. Common features selected in all 51 folds of at least two experiments for turn
and word-unit based detection/classification. 2, 3, and 6 classes for word-unit based
classification (W2, W3, W6), and 2 and 3 classes for turn based detection (T2, T3).

Feature description W2 W3 W6 T2 T3

95 % percentile of 10 % spectral roll-off point X X
Mean-crossing rate of 10 % spectral roll-off point X X
3rd quartile of spectral centroid X X
Mean of non-zero values of the spectral flux X X
1st quartile of the spectral flux X X
Inter-quartile range 3-1 of the spectral flux X X

3rd quadratic regression coefficient (offset c) of ∆ F0 X X
Skewness of ∆∆ F0 X X
Zero-crossing rate of prob. of voicing X X
Quadratic error of linear regression of ∆ prob. of voicing X X

(Minimum - mean) of ∆ logarithmic energy X X

Number of peaks of MFCC2 X X
Zero-crossing rate of ∆ MFCC2 X X
Inter-quartile range 3-2 of ∆ MFCC2 X X
DCT0 of ∆∆ MFCC2 X X
Slope (m) of lin. approx. of MFCC4 X X X
1st quadratic regression coefficient (a) of MFCC4 X X X
95 % percentile of ∆ MFCC4 X X
Percentage of falling ∆ MFCC5 X X
Number of peaks of MFCC6 X X
Percentage of rising MFCC8 X X
DCT0 of ∆∆ MFCC8 X X
Minimum of MFCC9 X X X
(Minimum - mean) of ∆ MFCC10 X X
Zero-crossing rate of ∆∆ MFCC11 X X

Position of maximum of minimal raw sample value X X X
Mean-crossing rate of maximum raw sample value X X
Position of maximum of ∆ zero-crossing rate X X
3rd quartile of zero-crossing rate X X



Laughter in Child-Robot Interaction 25

Table 12. Common features by low-level descriptor and functional group selected in all
51 folds of at least one experiment for turn and word-unit based detection/classification.
2, 3, and 6 classes for word-unit based classification (W2, W3, W6), and 2 and 3 classes
for turn based detection (T2, T3).

Feature description W2 W3 W6 T2 T3

Feature Group Details Functionals

Time Max.Min. sample val. modulation X X
position X X X

Zero-crossing rate position X X
distribution X X

Energy Change of energy distribution X X
modulation X

Energy modulation X
position X

Pitch Change of Change of F0 distribution X
Change of F0 shape, distribution X
F0 shape, position X
Voicing Probability modulation X X X

shape X
distribution X

Spectral Energy in voice F0 band modulation X
Frequency distribution distribution X X X X
Frequency distribution modulation X X X
Flux distribution X X
Flux modulation X X

Cepstral MFCC 2 distribution, modulation X X
MFCC 3 shape, modulation X
MFCC 4 distribution X X X X

modulation X X X
shape X X X X

MFCC 6 distribution, modulation X
MFCC 8 distribution, modulation X X
MFCC 9 distribution X X X


