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Abstract

In radiation therapy, prior to each treatment fraction, the
patient must be aligned to computed tomography (CT) data.
Patient setup verification systems based on range imaging
(RI) can accurately verify the patient position and adjust
the treatment table at a fine scale, but require an initial
manual setup using lasers and skin markers. We propose
a novel markerless solution that enables a fully-automatic
initial coarse patient setup. The table transformation that
brings template and reference data in congruence is esti-
mated from point correspondences based on matching local
surface descriptors. Inherently, this point-based registra-
tion approach is capable of coping with gross initial mis-
alignments and partial matching. Facing the challenge of
multi-modal surface registration (RI/CT), we have adapted
state-of-the-art descriptors to achieve invariance to mesh
resolution and robustness to variations in topology. In a
case study on real data from a low-cost RI device (Mi-
crosoft Kinect), the performance of different descriptors is
evaluated on anthropomorphic phantoms. Furthermore, we
have investigated the system’s resilience to deformations for
mono-modal RI/RI registration of data from healthy volun-
teers. Under gross initial misalignments, our method re-
sulted in an average angular error of 1.5◦ and an aver-
age translational error of 13.4 mm in RI/CT registration.
This coarse patient setup provides a feasible initialization
for subsequent refinement with verification systems.

1. Introduction

Patient setup reproducibility is one of the major chal-
lenges in fractionated radiation therapy (RT) planning and
treatment. Precise alignment is a mandatory prerequisite

for the success of RT, improving the balance between com-
plications and treatment and providing the fundamental ba-
sis for high-dose and small-margin irradiation application.
Prior to each fraction, the patient must be accurately aligned
w.r.t. the target isocenter that has been localized in planning
CT data. For setup verification and correction, radiographic
portal imaging, cone-beam CT and CT-on-rails may be ap-
plied. However, this involves additional radiation exposure
to the patient. Non-radiographic techniques that locate elec-
tromagnetic fiducials [15] are an accurate alternative, but
require the patient to be eligible for the invasive procedure
of marker implantation.

Over the past few years, due to advances in sensor
technology, several devices for non-radiographic and non-

Figure 1. Schematic illustration of the proposed automatic initial
patient setup: The patient’s intra-fractional surface is acquired
with an RI device and registered to planning CT data (depicted
in gray). The estimated transformation (blue) that brings template
and reference in congruence is then applied to the treatment table.



invasive patient setup and monitoring based on range imag-
ing (RI) have been introduced in clinical practice [4, 8, 12,
18, 20].

Regardless of the particular RI technology, the systems
provide a complete, metric and precise 3-D surface model
of the patient. They also estimate the table transformation
that brings a pre-defined region of the intra-fractional pa-
tient surface in congruence with a reference at a fine scale.
A number of studies have shown that these techniques ob-
tain a high degree of precision for patient setup for tho-
racic and abdominal tumor locations [2, 8, 12, 14, 20].
In addition, most RI systems are able to capture dense
3-D surface data in real-time, allowing for continuous pa-
tient monitoring during the course of a treatment session.
However, existing solutions are designed with a focus on
setup verification and require an initial patient alignment
with conventional techniques using lasers and skin markers
[2, 8, 12, 14]. This manual initial coarse setup is both a
time-consuming and tedious procedure.

In this paper, we propose an RI-based approach that
enables a markerless and automatic initial coarse RT pa-
tient setup, superseding the need for lasers and skin mark-
ers. Without spending extra time, the initial patient setup
is performed in an unlabored manner. Since this is only
an initial alignment to be followed by position refinement
[1, 4, 8, 20], the accuracy requirements are rather low
(isocenter position within ± 50 mm) [8]. The proposed
method can be applied to reference surfaces either acquired
by the RI device prior to the first fraction, or extracted from
planning CT data. It estimates the optimal table transfor-
mation from point correspondences between local features.
We have extended state-of-the-art descriptors to handle dis-
tinct mesh resolutions and topological variations that oc-
cur due to the low signal-to-noise ratio (SNR) of RI sen-
sors. By design, the approach can handle gross initial mis-
alignments and cope with partial matching [5, 10, 11], see
Fig. 1. This is a fundamental prerequisite for both the
mono-modal (RI/RI) and multi-modal (RI/CT) case, where
the intra-fractionally covered template surface region may
differ severely from the reference. Typically, the field of
view of the RI device is considerably larger than the CT
scan volume.

2. Related Work
Matching local invariant feature descriptors is a key

component of a variety of computer vision tasks in the
2-D and 3-D domain such as registration, object recogni-
tion, scene reconstruction or similarity search in databases.
3-D surface registration is more relevant to the topic of this
paper. Thus, we will focus our discussion on this subfield.
In this context, a popular method for solving the alignment
problem of two or more sets of points or surfaces is the itera-
tive closest point (ICP) algorithm [3]. However, in the pres-

ence of gross misalignments, the algorithm depends on a
proper initialization in order to prevent the iterative transfor-
mation estimation from being stalled by local minima [19].
Furthermore, ICP is not designed to handle partial overlap
in case of occlusions, clutter and viewpoint changes.

In partial 3-D surface matching, the trend is towards
methods that establish point correspondences from match-
ing local feature descriptors. Typically, the descriptors en-
code the surface geometry of the underlying data in a lim-
ited support region around an interest point [6, 9, 13, 23,
25]. The correspondences can then be used to find the trans-
formation that maximizes the alignment. For a comprehen-
sive survey of 3-D surface descriptors see the work of Bus-
tos et al. [5]. Among the first descriptors in the field were
point signatures [6] and spin images [13]; the latter remains
one of the most popular methods for 3-D surface descrip-
tion to date. Frome et al. extended the concept of shape
contexts to the 3-D domain [9]. Recent approaches focused
on hybrid models at the intersection between signatures and
histograms to balance descriptiveness and robustness [23].
In the planar domain, the majority of successful descrip-
tors such as HOG [7], SIFT [16], and RIFF [22] rely on
histogram representations. In the context of local descrip-
tors, histograms trade-off descriptive power and positional
precision for robustness and repeatability by compressing
geometry into bins [23], thus being an appropriate choice
for noisy data. Based on an orthographic depth represen-
tation of the local 3-D surface topology in a planar patch,
2-D descriptors can be applied to surface data in a straight-
forward manner. Furthermore, concepts from 2-D feature
description can be extended to the 3-D domain. For in-
stance, inspired by the performance of HOG, Zaharescu et
al. extended the descriptor to scalar fields defined on 2-D
manifolds (MeshHOG) [25].

We propose extensions to state-of-the-art descriptors that
enable its application for robust multi-modal surface regis-
tration. First, we have modified the MeshHOG descriptor
to achieve invariance to mesh resolution and robustness to
topological variations due to noise and quantization effects.
Second, we introduce a scheme that extends the 2-D RIFF
descriptor to the domain of 3-D surfaces. Our method is
based on a correspondence search engine that enables par-
tial matching, and that is resilient w.r.t. minor deformations
that occur in practice due to body distortion and respiratory
motion. To our knowledge, the automation of initial coarse
setup in RT has not been addressed yet.

3. Methods
The proposed framework is composed of three stages

(see Fig. 3). First, the local topology of the template (RI)
and reference surface (RI/CT) is encoded by our modified
descriptors that are specifically designed to handle surface
data from distinct modalities. Second, point correspon-



dences are established by descriptor matching and pruned
by incorporating a geometric consistency analysis. Third
and last, the optimal rigid-body transformation is estimated
w.r.t. the coordinate system of the treatment table. The ini-
tial patient setup can then be performed by adjusting the
table based on the estimated transformation.

3.1. Surface Registration Framework

Our surface registration framework relies on feature de-
scriptors that encode the local geometric topology in a
translation- and rotation-invariant manner. However, the de-
scriptors are not invariant to scale on purpose, as we incor-
porate the metric scale of the anatomical surface topology as
an important characteristic. Placing great importance on ro-
bustness and repeatability, we have extended two alternative
descriptors (MeshHOG, RIFF) for multi-modal application.
Both rely on histograms of oriented gradients (HOG) [7]
which have shown to be leading edge in terms of classi-
fication performance for the 2-D case. As a baseline, we
compare these HOG-like descriptors to the well-established
technique of spin images [13]. Below, we outline the de-
scriptors’ functional principles and inevitable adaptations
for the problems at hand.

MeshHOG. In developing features for this particular
multi-modal scenario, one has to focus on two attributes:
robustness to topology variations and invariance to mesh
resolution. Hence, the traditional MeshHOG approach had
to be adapted accordingly. The descriptor may be consid-
ered as a generalization of the concept of HOG from pla-
nar image domains to non-planar 2-D manifolds. It en-
codes the local spatial distribution of a gradient vector field
F = {∇f(x)} derived from a scalar function f(x). Given
a surface point xi and a support region Ni, the gradients
∇f(xj) ∈ R3, xj ∈ Ni are projected onto the orthogonal
planes of a unique and invariant local reference frame. Sub-
sequently, an orientation histogram binning is performed

Figure 3. Flowchart of the feature-based registration framework.
Data propagates from left to right. The shading indicates the parts
of the workflow that are performed prior to the first fraction.

w.r.t. circular segments (Fig. 3a). In this work, the scalar
function f(x) characterizes the local surface geometry. In
particular, in order to cope with the low SNR of RI data,
we propose the signed distance of a point to the best fit-
ting plane of its local neighborhood instead of second or-
der derivatives such as curvature measures [25]. The in-
corporation of additional photometric information [25] is
unfeasible for applications involving untextured CT data.
Zaharescu et al. computed the gradient vectors using a dis-
crete operator that relies on adjacent vertices, restricting the
approach to uniformly sampled triangular meshes. To be
able to cope with arbitrary mesh representations and reso-
lutions in a multi-modal surface registration setup, we have
replaced the original operator by a circular uniform surface
sampling technique similar to [17].

RIFF. By definition, the conventional rotation-invariant
fast features (RIFF) operate in the 2-D image domain [22].
We have developed a scheme that extends the RIFF concept
to the domain of 3-D surfaces. As an initial step, we en-
code the 3-D surface topology in the neighborhood of xi

as a local orthographic depth representation w.r.t. the tan-
gent plane defined by the normal ni. For this 2-D patch,
we then compute the RIFF descriptor [22] (Fig. 3b). First,
rotation invariance is achieved by performing a radial gradi-
ent transform. Second, the patch is subdivided into annular

(a) (b) (c)

Figure 2. Functional principle of the surface descriptors: The MeshHOG descriptor (a) projects a gradient vector field onto circular
segments of the orthogonal planes of a local coordinate system. For the RIFF descriptor (b), the surface topology is expressed as a 2-D
depth representation where rotation-invariant gradients are binned for different annuli. Spin images (c) encode cylindrical coordinates
(α, β) in a 2-D histogram.



spatial bins. Third, given the rotation-invariant gradients,
an orientation histogram binning (HOG) is performed. The
feature descriptor represents a concatenation of histograms
from different annuli.

Spin Images. For comparison purposes we also used spin
images. Introduced more than a decade ago [13], spin im-
ages enjoy great popularity for surface matching. Given an
oriented surface point xi ∈ R3 with its associated normal
ni, its spin image is generated as follows: The entirety
of points xj within a cylindrical support region Ni cen-
tered around xi are expressed in 2-D cylindrical coordinates
(α, β), where α is the nonnegative perpendicular radial dis-
tance to ni and β denotes the signed elevation component
w.r.t. the surface tangent plane defined by xi and ni, see
Fig. 3c. The descriptor is then established as a 2-D his-
togram over the (α, β) space of Ni. In the original formu-
lation [13], the histogram bin width is derived from the me-
dian edge length of the surface mesh. However, this is not
feasible for multi-modal surface registration entailing dif-
ferent mesh resolutions. Instead, we use a fixed metric bin
width.

3.2. Correspondence Search Strategy

Our datasets (template data T and reference data R) are
represented as two sets of pairs of surface coordinates x and
their associated feature descriptors f :

T =
{(

xTi ,f
T
i

)}
, R =

{(
xRj ,f

R
j

)}
, (1)

where f ∈ RD denotes a feature vector of dimension-
ality D. Given a template point xTi , the correspond-
ing reference point xRj∗ is then determined by searching
for the best match between the feature descriptors using
a cross validation strategy with an appropriate similarity
metric S (see Sec. 4.2):

j∗ = arg min
j

S
(
fTi ,f

R
j

)
. (2)

For the purpose of eliminating false correspondences, the
set of correspondences is pruned by applying a geometric
consistency check [10]. Based on an iterative scheme, we
successively penalize and remove matches that exhibit in-
consistent surface normals and locations. The set of re-
maining correspondences C =

{(
xTi ,x

R
j∗
)}

is then used
to estimate the rigid body transformation (R∗, t∗):

(R∗, t∗) = arg min
R,t

1

|C|
∑

(xTi ,xR
j∗) ∈ C

‖(RxTi + t)− xRj∗‖22

where R ∈ R3×3 denotes a rotation matrix and t ∈ R3 a
translation vector. In this work, R is restricted to the rota-
tion about the table’s vertical isocenter axis, since standard

RT treatment tables are limited to four degrees of freedom
(translation and rotation about one axis). The optimization
problem is solved using a least-squares estimator.

4. Experiments
For quantitative evaluation of the proposed framework,

we have benchmarked the performance of the descriptors
on real data from a low-cost RI device (Microsoft Kinect).
Indeed, the method is generic in a sense that it can be ap-
plied with various RI technologies. First, in an experi-
mental study on anthropomorphic phantoms, we investigate
the method’s potential for multi-modal RI/CT registration.
Thereby, we underline the benefits of the proposed method
for partial matching. Second, we study the performance of
the algorithm on data from healthy volunteers (RI/RI regis-
tration), where deformations may occur due to variations in
patient body distortion and respiratory motion.

4.1. Methods and Materials

Benchmark Dataset. We have generated a database1 of
Kinect RI data (640×480 pixels) for two anthropomorphic
phantoms (male/female) and three healthy volunteers. Data
were acquired in a clinical radiation therapy environment
(Siemens ARTISTE). For each phantom (volunteer), we
have captured RI data for N = 20 (4) different initial mis-
alignments of the treatment table, including large deviations
of up to 200 mm and 45◦. The set of poses for the phan-
tom benchmark is composed of all possible permutations of
the transformation parameter sets ϕ = {0, 5, 10, 25, 45}◦,
tSI = {0, 200} mm, and tML = {0, 200} mm, where the
angle ϕ describes the table rotation about the isocenter axis
and tSI, tML denote the table translation in superior-inferior
(SI) and medio-lateral (ML) direction. The translation in
anterior-posterior (AP) direction was set to tAP = −600
mm, representing the initial height for the patient to get on
the table and recline. For the volunteer study, the space of
transformations was ϕ = {0, 10}◦ and tSI = {0, 200}. The
table positioning control (accuracy: ± 1.0 mm,± 0.5◦) was
used to set up the respective ground truth transformation
(RGT, tGT). The RI sensor was mounted 200 cm above
the floor, at a distance of 240 cm to the LINAC isocenter
and a viewing angle of 55◦. CT data of the phantoms were
acquired on a Siemens SOMATOM scanner.

Data Preprocessing. The patient surface is extracted
from CT data using a thresholding based region growing
segmentation and a marching cubes algorithm on the result-
ing binary segmentation mask followed by Laplacian mesh
smoothing. Subsequently, the mesh was decimated in or-
der to reduce the computational complexity. Let us remark

1CT/RI data and corresponding ground truth table transformations are
available from the authors for noncommercial research purposes, serving
as a baseline for benchmarks with future competing approaches.



Descriptor SR Error (m) (f) (m) & (f) ϕGT ≤ 10◦ 25◦ ≤ ϕGT

MeshHOG 0.98
∆ϕ[◦] 1.0± 0.6 2.0± 1.6 1.5 ± 1.3 1.4± 1.0 1.7± 1.9

∆t[mm] 13.7± 7.0 13.1± 5.4 13.4 ± 6.2 12.6± 3.9 14.6± 6.9

RIFF 0.95
∆ϕ[◦] 1.4± 1.2 2.0± 1.6 1.7 ± 1.4 1.3± 1.2 2.3± 1.8

∆t[mm] 11.0± 4.1 12.8± 6.0 11.8 ± 5.1 12.2± 5.7 11.3± 3.7

Spin images 0.95
∆ϕ[◦] 0.7± 0.6 0.6± 0.5 0.7 ± 0.6 0.7± 0.5 0.7± 0.4

∆t[mm] 13.3± 6.0 12.1± 4.8 12.7 ± 5.4 11.8± 3.2 14.0± 5.8

Table 1. Mean rotational and translational errors for multi-modal RI/CT surface registration on male (m) and female (f) anthropometric
phantoms. SR quotes the percentage of successful registrations, classified with heuristic thresholds (∆ϕ < 10◦, ∆t < 40 mm). The two
columns on the right oppose the combined results of the male and female phantom on small and large rotations.

that CT preprocessing can be performed offline prior to the
first fraction. In order to improve the SNR of the RI mea-
surements, we combine temporal averaging (over 150 ms)
with edge-preserving filtering, invalid range measurements
are restored using normalized convolution [24]. The patient
surface can be segmented from the background by incor-
porating prior information about the treatment table plane.
The preprocessed RI (CT) meshes consist of ∼15k (20k)
vertices. Note that CT data typically covers only a portion
of the RI scene.

4.2. Results and Discussion

In order to assess the accuracy of the method, we have
registered the RI dataset of N = 20 phantom poses (see
Sec. 4.1) to the phantom’s CT surface. The CT data was
previously aligned to an RI reference at isocenter position
(ϕ = 0◦, tSI = 0 mm, tML = 0 mm, tAP = −150 mm) using
landmarks. We then compare the estimated table transfor-
mation (R∗, t∗) to the ground truth table setup (RGT, tGT)
by computing the mean rotational and mean translational
errors over the set of N poses:

∆ϕ =
1

N

N∑
i=1

|ϕ∗i − ϕi,GT|, ∆t =
1

N

N∑
i=1

‖t∗i − ti,GT‖2

where ϕ∗ (ϕGT) denotes the estimated and ground truth ro-
tation angle about the table axis, t∗ (tGT) the translation. For
this case study, the descriptor parameters were set to typical
values [13, 22, 25]. To achieve good repeatability despite
of noise and quantization effects in the RI data, the sup-
port region radius was set to rN = 100 mm. For the sim-
ilarity metric S, we used a correlation distance metric for
spin images and the L1-norm for MeshHOG and RIFF, re-
spectively, neglecting classical measures for comparison of
density distributions (e.g. Kullback-Leibler divergence) to
limit the computational effort. Prior to matching, the Mesh-
HOG and RIFF descriptors were L2-normalized in order to

cope with different mesh resolutions. A qualitative illus-
tration of the extracted set of correspondences is shown in
Fig. 4. Quantitative results for multi-modal RI/CT registra-
tion are depicted in Table 4.1. For all three descriptors, the
registration framework was able to estimate the table trans-
formation for the vast majority of initial misalignments. For
the application in RT patient setup, what is most impor-
tant is a high percentage of successful registrations (SR).
Extreme accuracy is not essential for this initial alignment.
Having achieved the highest percentage of successful regis-
trations (97.5%), let us refer to the results of the MeshHOG
descriptor as an overall performance indicator yielding a
mean rotational and translational error of ∆ϕ = 1.5± 1.3◦

and ∆t = 13.4 ± 6.2 mm (RI/CT), respectively. The
achieved level of accuracy is consistent with manual setup
using lasers and skin markers that is clinical practice to-
day. Please note that spin images slightly outperformed the
other descriptors in terms of accuracy (∆ϕ = 0.7 ± 0.6◦,
∆t = 12.7± 5.4 mm), but the low SR rate makes them less
appropriate for this task. Let us remark that the scope of
this paper is restricted to a coarse initial patient setup. Setup
verification in terms of accurate positioning refinement is a
mandatory second step but not addressed here.

Resilience to Deformations In a volunteer study, we
have investigated the resilience of the proposed method
w.r.t. variations in surface topology. Here, we have cap-
tured RI data from three volunteers at arbitrary states within
the respiration cycle for the reduced set of 4 benchmark
poses. These data are registered (mono-modal) to an RI
reference at isocenter position (ϕ = 0◦, tSI = 0 mm,
tML = 0 mm, tAP = −150 mm) and quantitatively eval-
uated. All four poses were successfully registered. The
results of ∆ϕ = 1.3 ± 0.9◦ and ∆t = 15.0 ± 1.0 mm
(MeshHOG) indicate that the modified surface descriptors
and our correspondence search engine are capable of coping
with minor deformations due to body distortion and respi-



ratory motion. Let us note that respiratory motion typically
evokes a thoracic AP movement in the scale of∼10 mm for
regular breathing [21].

5. Conclusions
We have presented a novel markerless solution for the

automation of the initial coarse patient setup in RT. Based
on a multi-modal registration of RI and CT data, the ap-
proach renders the conventional initialization using lasers

(a)

(b)

(c)

Figure 4. (a), (b): Spatial distribution of point correspondences
for a multi-modal RI/CT registration (male and female phantoms).
Note the partial matching issue and the concentration of corre-
spondences in regions with salient surface topology. (c): Point
correspondences for a mono-modal RI/RI registration (volunteer
data). For convenience, only a subset of the found correspon-
dences is shown. Triangulation issues in the upper thoracic region
result from the flat viewing angle of the RI sensor.

and skin markers redundant. On real data from Microsoft
Kinect, we achieved an accuracy of ∆ϕ = ±1.5◦ and
∆t = ±13.4 mm at an SR rate of 97.5% for anthropo-
metric phantoms, providing a reliable initialization for sub-
sequent refinement with verification systems. Our modified
MeshHOG descriptor makes the method more robust, out-
performing the two other proposed descriptors regarding the
percentage of successful registrations. Experiments on vol-
unteer data have substantiated the framework’s capability of
coping with deformations that occur due to body distortion
and respiratory motion. Further investigations concerning
multi-scale descriptor representations and a setup with mul-
tiple RI cameras, providing an increased coverage of the
patient surface, will be subject of our upcoming research.
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