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Chair of Pattern Recognition, University of Erlangen-Nuremberg
tb@speech.informatik.uni-erlangen.de

Abstract
This paper focuses on the automatic detection of a person’s
blood level alcohol based on automatic speech processing ap-
proaches. We compare 5 different feature types with different
ways of modeling. Experiments are based on the ALC corpus
of IS2011 Speaker State Challenge. The classification task is
restricted to the detection of a blood alcohol level above 0.5 ‰.
Three feature sets are based on spectral observations: MFCCs,
PLPs, TRAPS. These are modeled by GMMs. Classification
is either done by a Gaussian classifier or by SVMs. In the
later case classification is based on GMM-based supervectors,
i.e. concatenation of GMM mean vectors. A prosodic system
extracts a 292-dimensional feature vector based on a voiced-
unvoiced decision. A transcription-based system makes use
of text transcriptions related to phoneme durations and textual
structure. We compare the stand-alone performances of these
systems and combine them on score level by logistic regres-
sion. The best stand-alone performance is the transcription-
based system which outperforms the baseline by 4.8 % on the
development set. A Combination on score level gave a huge
boost when the spectral-based systems were added (73.6 %).
This is a relative improvement of 12.7 % to the baseline. On
the test-set we achieved an UA of 68.6 % which is a significant
improvement of 4.1 % to the baseline system.
Index Terms: GMM, alcohol intoxication, system fusion

1. Introduction
Besides linguistic information spoken language contains also
non-verbal information about speaker related characteristics.
Examples of such characteristics contained in spoken language
can be divided into two groups: characteristics that vary never
or slowly (like identity of a speaker, gender, age) or characteris-
tics which can change abruptly or within a short time. Examples
for the latter are fatigue [1] and sleepiness [2], stress [3], emo-
tion [4] or alcohol intoxication [5].

This work addresses the automatic detection of alcohol in-
toxication in speech. This has been a topic at the INTER-
SPEECH 2011 Speaker State Challenge (IS2011-SS) [6] where
the Alcohol Language Corpus (ALC) is provided. The task
of this challenge is to detect whether a speaker is alcoholized
(blood alcohol concentration (BAC)> 0.5‰) or not alcoholized
(BAC ≤ 0.5‰).

The question became quite popular in the late 80ies dur-
ing the Exxon Valdez oil spill where the captain of an oil tank
ship was suspected of being intoxicated. As part of the inves-
tigation the captain’s speech from marine radio communication
was examined for alcohol-related effects [7]. Different studies
investigated acoustic [8], prosodic [9] and word-based cues [10]
and revealed that there are measurable acoustic, prosodic and

lexical differences in alcoholized speech. However, the studies
dealt with read speech, which is quite different from the ALC
corpus that contains read speech, isolated words, and sponta-
neous speech.

We pick up some of the mentioned ideas and come up
with different automatic systems for the detection of alcohol
intoxication. The goal is to compare their difference and to re-
veal if a combination of these systems could achieve a signifi-
cant improvement. The first set of systems is of purely acous-
tic nature and models utterances by Gaussian Mixture Models
(GMMs) of spectral features. The classification is either per-
formed by Gaussian classifiers or by Support Vector Machines
(SVMs). The second kind of system models each utterance by a
prosodic feature vector based on a voiced-unvoiced (VUV) de-
cision. These systems have been applied (and combined) suc-
cessfully to the task of age or gender recognition ([11, 12]). The
third kind of system focuses on the exploitation of the avail-
able (word and phoneme) transcriptions of the ALC corpus. We
are following the impression, that durations of phones might be
different when speakers are alcoholized and that textual cues
like rate of speech, irregularities, word abortions or hesitations
are useful features for our task. Finally, we used the provided
openSMILE features as additional system. Note that this sys-
tem uses features similar to our acoustic and prosodic systems
but with a different way of modeling.

In Sec. 2 we will present the 6 different acoustic systems
with 3 different kinds of features, the prosodic system, and the
different transcription-based systems. Their stand-alone results
on the development set are described in Sec. 3.1. Combination
results on development and test set are presented in Sec. 3.2.
The paper will be finished by a conclusion and outlook (Sec. 4).

2. System Description
2.1. Acoustic Systems

The subsystems in this section model acoustic features by Gaus-
sian Mixture Models (GMMs). Two features use short-time
spectral analysis, namely Mel Frequency Cepstrum Coefficients
(MFCCs) and Perceptual Linear Prediction (PLPs). The third
system is based on TempoRAl Patterns (TRAPS), which ob-
serve the speech signal within a longer temporal context. These
features are either modeled by a standard GMM with Univer-
sal Background Model (GMM-UBM) [13] or by GMM-Support
Vector Machine (GMM-SVM) modeling [11].

2.1.1. Mel Frequency Cepstrum Coefficients

A Hamming window with a size of 25 ms and a time shift of
10 ms is applied to the speech signal. Afterwards the Mel-
spectrum with 26 triangular filters is calculated and processed
by Discrete Cosine Transform (DCT). We take the first 13 Mel-
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Figure 1: Adapted feature extraction for Temporal Patterns

frequency cepstral coefficients including C0. Cepstral mean
subtraction (CMS) is applied and first- and second order deriva-
tives of these features are calculated over a context of 5 and 9
consecutive frames. In the end a 39-dimensional feature vector
is created. Non-speech frames are discarded within each ut-
terance, so that only speech frames are considered for further
modeling. The speech/non-speech detection is based on BUT’s
Hungarian phoneme recognizer [14].

2.1.2. Perceptual Linear Prediction

The second set of short-time spectral features are Perceptual
Linear Prediction (PLP) features [15]. Parameter settings are
similar to our MFFCs. The differences lie in the use of a Bark
filter bank and the use of linear prediction (LP) before Cepstrum
computation. PLPs are said to be more robust in noisy condi-
tions. Non-speech frames are also discarded for this feature set.

2.1.3. Temporal Patterns

Our TempoRAl PatternS (TRAPS) in this work are quite similar
to the original approach of Hermansky [16]. The main differ-
ence of our approach is the different processing within the time
trajectories. A detailed explanation can be found in [17].
Figure 1 illustrates the processing step of our TRAPS: The time
trajectories consider a long temporal context of 31 coefficient
(310 ms) in 18 bands. These bands are generated by a Mel
filter bank. Each trajectory is smoothed by a Hamming win-
dow and transformed into frequency domain In a fusion step
we concatenate the 31 coefficients of each band together to a
high-dimensional feature vector (D = 558). This vector is then
transformed by a Linear Discriminant Analysis (LDA) to a 24-
dimensional vector. The LDA is trained on a 578-speaker subset
of the German Verbmobil database [18]. 46 German phonetic
classes serve as labels for this transformation.

2.1.4. GMM-UBM modeling

After extraction of the spectral features an UBM, i.e., a class-
independent GMM with 256 Gaussians, is trained on the
whole training set by Expectation-Maximization (EM) algo-
rithm. Note that we use full covariance matrices for this way
of modeling. Weights, means and variances of the UBM are
adapted by relevance Maximum A Posteriori (MAP) adaptation
in order to get two different class GMMs (not alcoholized and
alcoholized). Scoring is based on the arithmetic mean of frame-
wise likelihood calculation.

2.1.5. GMM-SVM modeling

In GMM-SVM modeling GMMs are created for each utterance
in the same manner as described in Sec. 2.1.4. Instead of us-
ing 256 fully-equipped Gaussians, we use 512 Gaussians and
only adapt the means in the adaptation process. Finally, for

each utterance a single GMM is trained. The mean vectors of
each Gaussian are extracted and concatenated to a big vector
(D ∗ 512), where D is the dimension of the acoustic features
(39 for MFCC and PLP, 24 for TRAPS). For each utterance
(for both the training and the test set) one of these so-called
GMM-supervectors is created and then used for classification
with Support Vector Machines (SVM). This approach is com-
mon in the field of speaker identification and has been applied
to age recognition in [11]. The C-values and kernel method
have been optimized on the development set and resulted in
C = 0.01 using the linear kernel. Since training examples for
the two classes are not balanced, we applied a random resam-
pling technique in order to bias the class distribution toward a
uniform distribution. The resampling technique was used for all
systems that use SVMs as classifier.

2.2. Prosodic System

The prosodic system is not based on any speech recognition out-
put or forced time alignments. The prosodic features are calcu-
lated whenever a voiced speech segment is found. The voiced-
unvoiced (VUV) decision is based on the zero crossing rate, the
normalized energy of the signal and the maximum energy.
Prosodic base features are calculated on the whole utterance.
These are fundamental frequency (F0), energy, VUV segments
and pitch periods. Structured prosodic features are calculated
on the voiced segments. Segments which are shorter than 50 ms
are deleted, i.e., the neighboring segments are merged. the cor-
responding F0 contour is interpolated to make the segmenta-
tion more robust. Context segments, that merge two adjacent
segments together, are used additionally. All in all, 73 features
are calculated for each segment modeling F0, energy, duration,
pauses, jitter and shimmer. A detailed description of the whole
feature set is given in [19]. Finally, we compute mean, mini-
mum, maximum and standard deviation of these 73 segments
features. This forms our 292-dimensional prosodic feature vec-
tor. Classification is performed by SVM with a resampling of
the training instances as mentioned in Sec. 2.1.5, with C = 1
for the linear kernel (optimal on development set).

2.3. openSMILE System

Additionally, we used the openSMILE feature set of the base-
line system described in the challenge paper [20]. We also used
SVM classification with C = 0.01 and a linear kernel. We
used a different resampling technique (see Sec. 2.1.5) in order
to achieve a balanced number of training instances for the two
classes.

2.4. Transcription-based Systems

The transcription-based features are motivated by the impres-
sion, that durations of phones might be different when speakers
are alcoholized and that textual cues like rate of speech, irregu-
larities, word abortions or hesitations are useful features for our
task. Similar ideas are mentioned in [10] and [5].

2.4.1. Phoneme Duration System

From the phoneme alignments, we extracted duration statis-
tics for pauses (excluding initial and final), schwas, vowels and
diphthongs. Mean and standard deviation were computed both
for the individual phones as well as their group (open, mid, ...)
to obtain better statistics.
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2.4.2. Textual System

Following the general impression that intoxicated people usu-
ally tend to speak differently, we computed the following tex-
tual features from the rich transcriptions.

• duration of the turn (in milliseconds)

• number of false, dialectical, unintelligible words

• number of restarts, interrupts, irregularities, hesitations,
words

• approximate rate of speech (characters / duration)

Furthermore, we extracted a lexicality feature motivated by the
fact that an ideal (sober) utterance is free of repetitions, and an
intoxicated speaker repeats words or sequences more often.

lexobs = −
X
w

p(w) · log p(w) (1)

where p(w) = count(w)/N , N is number of words. The
Kullback-Leibler divergence between ideal (i.e. q(w) = 1/N )
and observed lexicality can be computed as

lexdiv =
X
w

p(w) · log
p(w)

q(w)
=

X
w

p(w) · log(Np(w)) (2)

2.5. System Fusion

Fusion of the different systems is performed on score level and
is either based on linear logistic regression (LLR) as it is imple-
mented in the FoCal toolkit [21] or on a simple majority voting.
In the former case, the system combination is achieved by a
(calibrated) weighted sum αi, i = 1, ..,K of the K different
system scores with an accounting for a possible class offset ~β.
αi and ~β are optimized in a training step where ~β can remain
zero. The weights αi can also be selected equally. This allows
4 different ways of combination:

• logistic regression with optimized αi and ~β

• logistic regression with optimized αi and ~β = ~0

• logistic regression with equal weights αi

• majority voting

Note that αi and/or ~β are optimized on the development set,
which leads to optimal combination results on the development
set.

3. Experiments and Results
We first show the results of our stand-alone systems introduced
in Section 2 achieved on the development set. After that we
summarize our results achieved on the development set with the
different fusion approaches. This section also contains the re-
sults of the five possible submissions on the test set.

3.1. Experiments on stand-alone systems

The results on the development set achieved by the different
stand-alone systems is summarized in Table 1. Unless stated
otherwise, the discussion of the results always refers to un-
weighted accuracy (UA). The best stand-alone result is achieved
by a combination of the two transcription-based systems: text-
based and phoneme-based. Combination in this case refers to
a simple combination of the features. This system achieves an
improvement compared to the baseline of 4.8 %. The short-time
spectral GMM-SVM systems achieved the best performances

system % UA % WA % NAL % AL
baseline (cf. [20]) 65.3 69.2 – –

MFCC-SVM 66.8 69.1 72.4 61.1
PLP-SVM 66.5 68.5 71.4 61.5

TRAPS-SVM 61.4 62.7 64.6 58.3
MFCC-UBM 62.6 63.7 65.3 59.8

PLP-UBM 64.5 65.1 65.9 63.1
TRAPS-UBM 62.3 67.8 75.7 49.0
PROSODIC 58.8 59.3 59.9 57.7

text 59.1 57.1 62.0 72.2
phoneme 67.6 64.5 60.0 75.2

text+phoneme 68.4 66.9 64.6 72.2
openSMILE (OS) 65.5 65.9 66.5 64.4

Table 1: Stand-alone results of the different systems achieved
on the development set. The first line contains the baseline re-
sults provided in [20]. The results on the two classes are un-
known for this system since we did not reproduce the baseline
results.

among the acoustic system with an UA of 66.77 % which
is an improvement of about 2.3 % compared to the baseline.
The acoustic and prosodic systems tend to recognize the non-
alcoholized (NAL) trials in higher proportions, transcription-
based systems tend to achieve better results on alcoholized (AL)
trials. This might be an issue, if miss-classification should not
be equally penalized.

Since we use a different resampling than the challenge base-
line system, we tried our resampling approach on their features.
UA results of the different resampling techniques are quite sim-
ilar, but seem to be more balanced when comparing UA and
weighted accuracy (WA).

The prosodic system achieved the lowest stand-alone recog-
nition result of 58.79 %. We are expecting this system to add
complementary information for system combination.

3.2. Experiments on System Combination

Combination results with all possible combinations of all dif-
ferent systems with the different fusion mechanisms mentioned
in 2.5 have been tried out (~700 combination). A first find-
ing is that the combinations with the best results all contain at
least one short-time spectral system, the transcription based sys-
tem (text+phoneme) and either the prosodic system and/or the
openSMILE system. This finding suggest the assumption, that
due to the different motivations of the mentioned systems, com-
plementary information is added when these systems are com-
bined. The differences in performances of the top 5 systems are
not significant. Nevertheless, we wanted to evaluate how much
(complementary) information is added by the different systems.

Table 2 contains combination results for the most interest-
ing system combinations with different ways of combination.
α+ ~β refers to LLR combinations with optimized weights and
offset, α refers to optimized weights. The column equal con-
tains LLR combination results with equal system weighting,
maj. vot. refers to majority voting results.

A combination of the three GMM-SVM, PROSODIC (PR),
text+phoneme (TP), and openSMILE (OS) systems achieved
the most promising results on development set. Whenever a
text+phoneme system is accounted in a weighted combination,
the weight of this system in general is 2 times higher than the
other systems.

Based on these findings we started scoring on the test set.
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systems α+ ~β α equal maj. vot.
SVM 68.5 68.3 68.3 67.4

SVM+OS+PR 69.2 68.9 68.4 68.1
SVM+UBM+OS+PR 70.9 69.2 69.0 66.4

SVM+OS+PR+TP 73.6 72.8 71.6 71.1

Table 2: Combination results (% UA) on the development set
with different combination measures

submission % UA % WA % NAL % AL
sub1 67.0 66.8 64.1 69.9
sub2 64.5 63.6 53.8 75.1
sub3 67.2 67.4 69.9 64.6
sub4 68.6 68.5 66.5 70.7

baseline 65.9 66.4 – –

Table 3: Combination results (% UA) on test set of the different
submissions

All system are retrained on the training and development data.
Table 3 contains the results achieved by the five different sub-
missions. Submission 1 (sub1) is an LLR combination of
the GMM-SVM, PROSODIC, text+phoneme, and openSMILE
systems with equal system weighting. Unfortunately, we did
not achieve an improvement as on the development set with this
submission. Nevertheless, an improvement of 2.6 % compared
to the baseline was achieved. sub2 contained the same systems
as sub1, but here we optimized αi and ~β on development set.
This combination actually was worse compared to the baseline.
Since the weights contained a high proportion for text+phoneme
system, we assumed this system to be unsuitable for the test set.
We therefore submitted sub3 which is an LLR combination of
SVM+PROSODIC+openSmile features with equal weights αi.
Since this submission achieved slightly higher results than sub1
(2,9 % improvement) we did not use the text+phoneme system
for further submissions. sub4 contains all systems, except the
text+phoneme system. αi have been optimized on development
set for this submission. This system achieved the best results
so far and achieves an improvement of 5.1 % compared to the
baseline.

4. Conclusion and Outlook
This work focused on the automatic detection of alcohol in-
toxication based on automatic speech processing systems. Dif-
ferent systems which employ different feature types have been
tested: acoustic, prosodic, and transcription-based. Combina-
tion experiments on the development set revealed, that a combi-
nation of systems with all types of features leads to a significant
improvement over the best stand-alone result. When confirm-
ing this on the test set we discovered a problem regarding the
transcription-based system. This system lead to lower submis-
sion results on the test set. After excluding this system, we
achieved a significant improvement of over 5 % compared to
the baseline system of IS2011-SS.
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