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Abstract. Fluoroscopic overlay images rendered from pre-operative vol-
umetric data can provide additional guidance for physicians during catheter
ablation procedures for treatment of atrial fibrillation (AFib). As these
overlay images are compromised by cardiac and respiratory motion, mo-
tion compensation methods have been proposed. The approaches so far
either require simultaneous biplane imaging for 3-D motion compensa-
tion or, in case of mono-plane X-ray imaging, provide only a limited 2-D
functionality. To overcome the downsides of the previously suggested
methods, we propose a new approach that facilitates full 3-D motion
compensation even if only mono-plane X-ray views are available. To this
end, we use constrained model-based 2-D/3-D registration to track a
circumferential mapping catheter which is commonly used during AFib
catheter ablation procedures. Our approach yields an average 2-D track-
ing error of 0.6 mm and an average 3-D tracking error of 2.1 mm.

1 Introduction

Atrial fibrillation (AFib), which is the most common arrhythmia, leads to an
increased risk of stroke for the patient [1]. After the first treatment approaches
using radio-frequency ablations by Häıssaguerre et al. [2], this method has now
become an accepted treatment option [3]. Catheter ablation procedures are per-
formed in electrophysiology (EP) labs usually equipped with modern C-arm
X-ray systems. These devices often provide 3-D imaging of the heart [4] to over-
come the issue that soft-tissue of the heard is difficult to see in X-ray images.
Electro-anatomic mapping systems have been proposed in the past to show the
catheter position in 3-D within a registered pre-operative data set [5,6,7,8]. While
they promise to save X-ray dose, they add effort and cost to the procedure. In
addition, mapping systems are virtual reality systems. They do not allow to
instantly confirm catheter positions under X-ray with respect to detailed 3-D
cardiac anatomy. In some instances, they may even be off with respect to the
underlying anatomy [9]. Augmented fluoroscopy, using either CT, MRI or C-arm
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CT, overlaying a pre-operative data set onto live fluoroscopic images can facili-
tate more precise catheter navigation and also reduce fluoroscopy time [10,11,12].
Unfortunately, catheter navigation under augmented fluoroscopy is compromised
by cardiac and respiratory motion. A first approach to overcome this problem by
providing a motion compensated overlay has been proposed in [13]. It involved
tracking of commonly used circumferential mapping catheters. As atrial fibril-
lation (Afib) therapy takes place in the vicinity of the circumferential mapping
catheter, catheter tracking can be assumed to capture the motion of the relevant
treatment region correctly if the device has been firmly positioned. Fortunately,
we can count on the physicians to provide us with a stable wall contact, as it
is in their best interest. Otherwise complete isolation of the pulmonary veins
(PVs) may fail due to undetected residual PV-atrial electrical connections. The
intial proposed method generates a 3-D model of the catheter and applies an
unconstrained 2-D/3-D registration to register the catheter model to biplane
fluoroscopy images. In the first approach, a filter-based technique using a vessel
enhancement filtering was used. The method was later extended by integrating a
learning-based catheter segmentation [14]. However, this technique still required
simultaneous biplane imaging. An approach for monoplane fluoroscopic imaging
was introduced in [15] considering only a 2-D catheter and moving the overlay.
That is, the projection of the pre-operative 3-D data set is shifted on the live
fluoroscopic images in sync with the cardiac and respiratory motion. The last
method might be the approach of choice if only a monoplane C-arm system
is available. In EP labs equipped with biplane C-arm systems, often only one
imaging plane is used at a time to reduce the dose to the patient. In this case,
the methods suggested in [13,14] are not applicable. The 2-D method described
in [15] is not ideal either, as it requires re-initialization of the catheter model as
soon as the C-arm view direction changes. To improve the mono-plane situation,
we propose a constrained 2-D/3-D registration to perform motion compensation
using a 3-D catheter model. The generation of a 3-D catheter model requires only
a single biplane shot. This way, the increase of X-ray radiation to the patient is
kept to a minimum.

2 Three-Dimensional Catheter Model

In the first step of our method, a 3-D model of the circumferential mapping
catheter is generated, as proposed in [13,16,14]. A single biplane frame is re-
quired to manually initialize the model generation step. Therefore, 2-D points
pA, pB ∈ R

2 are selected on the elliptically shaped part of the catheter in each
imaging plane. The imaging planes are denoted by A and B. Two-dimensional
ellipses CA, CB ∈ R

3×3 are then fitted to these points. These matrices fulfill the
following equations

pT
ACApA = 0 (1)

pT
BCBpB = 0. (2)
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Two 3-D cones QA, QB ∈ R
4×4 are then computed by using the projection

matrices P A, P B ∈ R
3×4

QA = P T
ACAP A (3)

QB = P T
BCBP B. (4)

These two 3-D cones are defined by the position of the X-ray tube relative
to the projection of the elliptical catheter onto the imaging plane. The 3-D
catheter model is computed by intersecting the two elliptical cones QA and QB

corresponding to plane A and plane B of a biplane system respectively [17]. The
solution is found by calculating η such that the quadric

Q(η) = QA + ηQB (5)

is of rank 2 [17]. As pointed out in [13], there are two possible solutions. Prior
knowledge about the pseudo-circular shape of the mapping catheter is used and
the result that is more circular is chosen. The simulation results in [16] verify this
assumption. The 3-D model is denoted as mi ∈ R4 in homogeneous coordinates
as mi = (mi,x, mi,y, mi,z, 1)T ∈ R

4 with i ∈ [1, N ] and N the number of model
points. This step is performed only once.

3 Catheter Segmentation

In the second step of our method, we segment the catheter in the fluoroscopic
images. To this end, we first crop the image around the region of interest which
is a 400 × 400 pixels region around the projected center of the catheter model.
In the first frame, the position is know from the initialization step, in all subse-
quent frames, the tracking result from the previous frame is used. The next step
is catheter segmentation, which will be explained shortly. After segmentation,
the resulting image is thinned [18]. To obtain a smooth image for registration,
the distance transform for the skeletonized image is calculated [19]. The image
processing steps are summarized in Fig. 1.

The catheter segmentation method has to fulfill two requirements. First,
it has to be reliable. Second, it has to be fast. Speed is necessary to ensure
that the catheter can be tracked in real-time at the frame rate required by
the physician. In our case, a combination of Haar-like features and a cascade
of boosted classifiers can meet both demands. Haar-like features [20] calculate
various patterns of intensity differences. Some features detect edges, whereas
others focus on line-like structures which are useful for detecting the catheter,
as it is a thin object. Several feature prototypes are listed in Fig. 2(a). Actual
features are obtained by shifting and scaling the prototypes within a predefined
window. Thereby, contextual information around the center pixel is considered,
which is important to differentiate between catheter and background structures.
These features can be calculated efficiently through integral images.

Even for moderate window sizes, the resulting number of features is large
and easily amounts to several hundreds of thousands. In order to achieve reli-
able and fast segmentation, the most suitable features for discriminating between
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(a) (b) (c)

(d) (e)

Fig. 1. (a) The original fluoroscopic input image. (b) Cropped image around the region-
of-interest. (c) Segmentation using a boosted classifier cascade. (d) Skeletonized image.
(e) Distance transformed image IDT to get a smooth image for registration.

catheter and background have to be chosen and integrated into a classifier in a
suitable manner. This is carried out by the AdaBoost algorithm [21]. The idea
is to combine several weak classifiers, which only have to be sligthly better than
chance, to form a strong classifier. In the simplest case, a weak classifier amounts
to a single feature and threshold. Weak classifiers are repeatedly evaluated on
samples of a training set where the catheter has been annotated. The classifier
minimizing the classification error is added to a linear combination of weak clas-
sifiers until the overall error is below the desired threshold. After each iteration,
the importance of individual samples is re-weighted to put more emphasis on
mis-classifications for the next evaluation.

Instead of single features and intensity thresholds, we use classification and
regression trees (CARTs) [22] as weak classifiers. A CART is a small tree of
fixed size. At each node, a threshold is associated with a feature partitioning the
feature space. An example of a CART is shown in Fig. 2(b). Through this decom-
position, flexibility is increased and objects with complex feature distributions
can be handled.

Weighted combinations of CARTs are organized into a cascade, which is
illustrated in Fig. 2(c). At each stage, a sample is either rejected or passed on to
the next stage. Only if the sample is accepted at the final stage, it is assumed to
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(a) Feature Types (b) Classification and Regression Tree
(CART)

(c) Cascade

Fig. 2. Features types and classifier structure for catheter segmentation: (a) several
(lowpass) Haar filter examples used for feature extraction; (b) example of classification
and regression tree (CART) with five feature nodes θ1, . . . , θ5 and six leaves α1, . . . , α6;
(c) classifier cascade consisting of N stages with strong classifiers ξ1, . . . ξN . Each strong
classifier ξi consists of a linear combination of weak classifiers, here CARTs.

belong to the object. Thus, during training, the focus is on maintaining a high
true positive rate while successively reducing the false positive rate, either by
adding more weak classifiers to a stage or by adding an entirely new stage. For
training, a gold-standard segmentation of the catheter was used.

4 Constrained Model-Based 2-D/3-D Registration

In the third step of our method, the actual motion compensation is performed
by a constrained model-based 2-D/3-D registration. The catheter model is man-
ually initialized in the first pair of frames of a biplane sequence and afterwards
tracked throughout the remainder of one monoplane sequence. Tracking itself is
performed by rigid 2-D/3-D registration. The constraint used for registration is
that the search range is restricted to all directions parallel to the imaging plane.
No search is performed perpendicular to the optical plane, i.e., along the opti-
cal axis. This is not a major issue, because shifts along the optical axis merely
result in size changes of the motion-compensated fluoroscopic overlay. A motion
analysis of the LA, performed by Ector et al. [23], revealed that the dominant
motion is in anterior-posterior and superior-inferior direction. They found that
the degree of rotation is much less, and they contributed it to the deformation of
the left atrium. The mismatch in depth between the 3-D overlay and the live flu-
oroscopic images mainly results in small changes of the LA size which we found
negligible for augmented fluoroscopy applications in clinical practice. Therefore,
we focused on the remaining dominant motion directions in superior-inferior and
lateral directions. To carry out this constrained 2-D/3-D registration, the view-
ing direction n ∈ R

3 with ||n||2 = 1 is obtained from the projection matrix
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P ∈ R
3×4. The viewing direction is perpendicular to all vectors that are paral-

lel to the imaging plane. To calculate two spanning vectors of such a plane, an
arbitrary vector w ∈ R3 with ||w||2 = 1 and nT w �= 0 is chosen. The spanning
vectors u, v ∈ R

3 of the search plane are then computed by

u = n × w (6)
v = n × u (7)

with ||u||2 = 1 and ||v||2 = 1. Depending on the choice of w, the vectors u and
v are different, but since these vectors span the same plane, any point on that
plane can be represented by a linear combination of these two vectors. Moving
a point q ∈ R

3 parallel to the imaging plane is achieved by

q� = q + λu + µv (8)

with the translated point q� ∈ R3 and the amount of translation defined by
λ, µ ∈ R.

We compute a transformation matrix T (λ, µ) ∈ R4×4 as

T (λ, µ) =

⎛
⎜⎜⎝

1 0 0 λux + µvx

0 1 0 λuy + µvy

0 0 1 λuz + µvz

0 0 0 1

⎞
⎟⎟⎠ (9)

with u = (ux, uy, uz)T and v = (vx, vy, vz)T . The objective function for the con-
strained registration is then defined by using the values of the distance trans-
formed image IDT as cost function by

λ̂, µ̂ = argmin
λ,µ

∑
i

IDT (P · T (λ, µ) · mi) . (10)

Rotation is not considered, as we are primarily interested in the compensation
of breathing motion which occurs in axial direction. The projection matrix con-
sidered for projecting the model into the imaging plane is not required to be
one of the projection matrices used for model generation, i.e., the C-arm can be
moved in between model generation and tracking. Given the parameters λ̂, µ̂,
found by a nearest-neighbor search, that minimize Eq. (10), the catheter model
can be updated to m�

i ∈ R4 by

∀i : m�
i = T (λ, µ) · mi. (11)

The same transformation T (λ̂, µ̂) is then also applied to the 3-D volumetric data
set that is used for the image overlay. This way, we can achieve a 3-D motion
compensation for mono-plane fluoroscopic images.

5 Evaluation and Results

Evaluation was performed using a leave-one-out validation approach. The track-
ing accuracy was measured in comparison to a gold-standard segmentation. The
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Fig. 3. Two-dimensional tracking error for all 26 sequences. For each sequence, the
average error, minimum error, and maximum error is given. An overall mean error of
0.58 mm, an overall minimum error of 0.08 mm, and an overall maximum error of
1.62 mm was achieved.

sequence considered for testing was not included in the respective training data
set. For evaluation, 13 clinical biplane sequences were available. Our data was
taken from six different patients at one clinical site. They were recorded on an
AXIOM Artis dBC biplane C-arm system (Siemens AG, Healthcare, Forchheim,
Germany). For each sequence, a 3-D model was generated as described in Sec. 2.
Afterwards, our method was evaluated by considering each imaging plane of the
biplane sequences independently. This way, we obtained 26 sequences with a total
frame number of 938 frames to evaluate catheter tracking. A 2-D tracking error
was obtained by calculating the average 2-D distance of the projected catheter
model to the gold-standard segmentation used for training. The average error,
minimum error, and maximum error for each sequence are illustrated in Fig. 3.
Our method yielded an overall mean error of 0.58 mm, an overall minimum error
of 0.08 mm, and an overall maximum error of 1.62 mm.

Since the motion compensation is performed in 3-D, a 3-D error can esti-
mated as well. To this end, the tip of circumferential mapping catheter was
manually localized in 3-D using triangulation from two views. The available 3-D
trajectories of the catheter tip were taken as a gold-standard for the observed
3-D motion.

In one sequence, the 3-D error turned out rather high, because the catheter
moved significantly perpendicular to the optical plane, see Fig. 4. However, in
cases where the circumferential mapping catheter was firmly placed at a pul-
monary vein no such movement occurred, and we were able move the overlay
well in sync with the 3-D motion. The method in [16] is still superior regarding
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Fig. 4. Three-dimensional tracking error for all 26 sequences in comparison to the
observed 3-D motion. For each sequence, the average, minimum, and maximum for the
tracking error as well as the observed motion is given. On average, we observed an
overall mean error of 2.12 mm, an overall minimum error of 0.01 mm, and an overall
maximum error of 11.01 mm was achieved.

the 3-D error, but its better accuracy comes at the cost of simultaneous biplane
fluorosopy, i.e., increased X-ray dose.

6 Discussion and Conclusions

The 2-D tracking error of our proposed method is in the same range as 2-D
reference method [15]. But instead of performing only a 2-D/2-D registration, we
now rely on a constrained 2-D/3-D registration involving a 3-D catheter model.
The advantage of a 3-D catheter model is that re-positioning of the C-arm is
possible whereas a 2-D catheter representation needs to be re-initialized if view
directions change. Nevertheless, a pure 2-D approach is the method of choice if
only a monoplane fluoroscopic system is available. In addition, our new approach
is learning-based whereas the approach in [15] is filter-based. Therefore, our new
method requires a training phase for the segmentation of the catheter. Note,
however, that by using a learning-based method we might be able to improve the
tracking results. At least, this is what we observed for the biplane approach [14].
Here, the filter-based approach [16] yielded a 2-D tracking error of 1.0 mm and
a 3-D tracking error of 0.8 mm. Using a learning-based method, the errors were
reduced to 0.8 mm in 2-D and to 0.7 mm in 3-D [14].

The dedicated biplane method [14] yields a smaller 3-D error than our new
method, but it requires simultaneously biplane fluoroscopy. A comparison of all
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Method Comparison

Our [14] [15]

Catheter Model 3-D 3-D 2-D

Compensation in 3-D 3-D 2-D

mono-/biplane fluoro +/+ -/+ +/-

Mean 2-D Error: 0.58 mm 0.8 mm 0.59 mm

Mean 3-D Error: 2.12 mm 0.7 mm —
Table 1. Comparison between available methods for respiratory and cardiac motion
compensation during atrial fibrillation catheter ablation procedures. Our method uses a
learning-based approach to segment a commonly used circumferential mapping catheter
and then performs a mono-plane 2-D/3-D registration of a 3-D model to the segmen-
tation. The method in [14] a bi-plane 2-D/3-D registration. The method in [15] uses a
filter-based method to segment the same catheter and uses only a 2-D model which is
registered to mono-plane sequences.

three methods (current approach, [14], [15]) is given in Tab. 1. In our current
technique, we provide only a limited 3-D motion compensation but do not re-
quire simultaneously biplane fluoroscopy as in [14]. The limitation of our method
is mainly related to the fact that motion along the viewing direction cannot be
taken into account as depth information is hard to determine from mono-plane
projection images. To achieve a depth correction, a perfect segmentation of the
catheter would be required and, in addition, we would also need to know the
exact dimensions of the catheter in 3-D, i.e., its diameter and its thickness. Any
noise in the 2-D segmentation or at the 3-D model would decrease the accuracy
of the depth estimate. To avoid this problem we have chosen to use only search
directions parallel to the imaging plane. As a price to pay, we accept that the
3-D error will not be as good as in [15]. As in the previously presented methods,
our new approach does not require a perfect segmentation of the circumferential
mapping catheter, because the registration method can compensate for segmen-
tation errors.

For comparison, electro-anatomic mapping systems provide a mean tracking
error of 0.7 mm [24] which is comparable to our mean tracking error of 0.58 mm.
In addition, our reference catheter, the circumferential mapping catheter, is di-
rectly at the site of ablation. Hence, it enables motion compensation for respira-
tory and cardiac motion without the need to separate these two motion patterns
or the requirement to synchronize with ECG. Since we do not need to record the
ECG signal, a stand-alone version of an augmented-reality, motion-compensated
fluoroscopy system is possible.

A comparison between a frame with and without motion compensation is
presented in Fig. 5. In a clinical setup, a physician working on a biplane system
is likely to use his imaging planes in an alternating way. For such a clinical
use case, our newly proposed method provides a significant advantage over the
previously introduced methods [13,15] in terms of accuracy and practicality.
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(a) (b)

Fig. 5. A comparison showing the difference if motion compensation is considered or
not. (a) One frame of sequence 17 without motion compensation. (b) Shows the same
frame of sequence 17 as in (a) but this time with motion compensation.
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