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Abstract

The aim of image registration is to compute a mapping from one image’s frame
of reference to another’s, such that both images are well aligned. Even when the
mapping is assumed to be rigid (only rotation and translation) this can be a quite
challenging task to accomplish between different image modalities. Noise and other
imaging artifacts like bias fields in magnetic resonance (MR) imaging or streak ar-
tifacts in computed tomography (CT) can pose additional problems. In non-rigid
image registration these problems are further compounded by the additional degrees
of freedom in the transform.

Another problem is that the non-rigid registration problem is usually ambiguous:
Different deformation fields can lead to equally well aligned images. Nevertheless, one
would prefer deformations that coincide with medical or physiological expectations.
For instance, in MR low intensity image values can indicate bones as well as air. We
would prefer a registration result that only maps bone to bone and air to air, even
though matching air to bone might lead to a visually similar result.

This work strives to address some of these problems. In a first step we provide a
solid non-rigid registration algorithm. We compare several optimization algorithms,
to ensure that the registration result is at least numerically as good as possible.
We also explore how the parameter determining the global stiffness of the computed
transform can be specified in a way that yields predictable results. In a second
step we want to integrate prior information about the desired deformation into this
registration algorithm. Two types of prior information are considered in this work:

The first are known point correspondences that explicitly specify the desired de-
formation for some parts of the images. This provides a very straightforward way for
a user to interact with the registration algorithm. The known correspondences are
efficiently integrated into the registration algorithm, which allows the specification of
arbitrary number of correspondences and the application of the approach in 2-D and
3-D. As the landmarks are treated as hard constraints it is guaranteed that they are
matched exactly. It is shown that this additional information can immensely benefit
the registration result, especially in difficult cases like the registration of relatively
unrelated imaging modalities like positron emission tomography (PET) and CT.

The second type of information is provided in the form of training deformations
reflecting the kinds of deformation usually encountered in an application. These are
used to generate a model which can be used to guide the registration to a result that
is similar to the training data. We consider two variants of statistical deformation
models. Either the model is generated and applied on the deformations themselves
or on their Laplacian. The latter has the advantage of being inherently invariant to
remaining rigid misalignments in the training data. They are applied in the context of
atlas registration for MR/PET attenuation correction. An template CT image is reg-
istered with the patient MR to generate a pseudo-CT of the patient that can be used
for the PET attenuation correction. However, the different intensity distributions in
CT and MR, effects like bias fields and the low inter-slice resolution common in MR
imaging, make the multi-modal registration prone to errors. The deformation model,
learned from a set of mono-modal registrations, is used to constrain and thus improve
the multi-modal registration. The algorithm is evaluated on a set of patient data for



which the ground-truth CT scan is available. This allows the evaluation of the atlas
registration results through a direct comparison with the ground truth CT data. Our
experiments show that the registration employing the statistical deformation models
yields generally improved results.



Übersicht

Die Bildregistrierung in der Medizin hat zur Aufgabe eine Abbildung zu berech-
nen die zwei Bilder in ein gemeinsames Koordinatensystem überführt. Selbst wenn
nur eine starre Abbildung gesucht ist, ist dies eine Herausforderung wenn unter-
schiedliche Bildmodalitäten kombiniert werden sollen. Weiter erschwert wird diese
Aufgabe durch die zur Verfügung stehende Bildqualität die oftmals unter Rauschen
und anderen Artefakten zu leiden hat. In der nichtstarren Bildregistrierung kommt
zusätzlich die Vielzahl der Freiheitsgrade in der Transformation erschwerend hinzu.

Ein weiteres Problem speziell bei der nichtstarren Registrierung ist, dass die Auf-
gabenstellung meist nicht eindeutig ist: Unterschiedliche Deformationen können zu
ähnlich gut aussehenden Ergebnissen führen. Dennoch sind nicht alle diese Defor-
mationen in jeder Anwendung gleich gut, da man in der Regel gewisse medizinisch
oder biologisch motivierte Erwartungen an die Art der Abbildung hat. Beispiel-
sweise zeigen viele Datensätze aus der Magnetresonanztomographie (MRT) ähnliche
Intensitätswerte für Luft und Knochen. In der Anwendung würde man jedoch Defor-
mationen bevorzugen die Luft auf Luft und Knochen auf Knochen abbilden, obwohl
eine Abbildung von Luft auf Knochen visuell das gleiche Ergebnis liefern kann.

Diese Arbeit hat zum Ziel einige dieser Probleme anzugehen und entsprechende
Lösungsvorschläge zu präsentieren. Dazu führen wir zunächst einen soliden nicht-
starren Registrierungsalgorithmus ein. Wir vergleichen dabei mehrere nichtlineare
Optimierungsalgorithmen um sicherzustellen, dass zumindest ein numerisch gutes
Ergebnis erzeugt wird. Um die Parametrierung zu vereinfachen wird außerdem un-
tersucht, wie der globale Parameter der die Steifheit der Abbildung steuert so gesetzt
werden kann, dass ein vorhersagbares Ergebnis erzeugt wird. In einem weiteren
Schritt wird gezeigt wie zusätzliches Vorwissen über die gewünschte Deformation
in die Registrierung eingebracht werden kann. In dieser Arbeit werden dabei zwei
unterschiedliche Arten von Vorwissen näher betrachtet:

Die erste Variante von Vorwissen sind Punktkorrespondenzen die für einzelne
Bildteile die gewünschte Deformation fest vorgeben. Dies erlaubt einem Anwen-
der eine sehr direkte Interaktion mit dem Registrierungsalgorithmus. Die Punktko-
rrespondenzen werden effizient in den Algorithmus integriert, was die Benutzung
von einer beliebigen Anzahl solcher Landmarken sowohl in 2-D wie auch 3-D Bild-
daten erlaubt. Da die Landmarken als strikte Bedingungen behandelt werden, kann
ihre exakte Abbildung aufeinander garantiert werden. Anhand eines praktischen
Beispiels wird gezeigt, dass dieses zusätzliche Wissen besonders in schwierigen An-
wendungsfällen, wie der Fusion von Daten aus Positronen-Emissions-Tomographen
(PET) und Computertomographen (CT) eine große Verbesserung des Ergebnisses
zur Folge haben kann.

Die zweite Art von Vorwissen mit der wir uns beschäftigen sind bekannte Train-
ingsdeformationen die man bereits in derselben Anwendung beobachtet hat. Aus
diesen kann man statistische Modelle erzeugen, mit denen der Registrierungsalgo-
rithmus so gelenkt wird, dass er Ergebnisse erzeugt die den Trainingsdaten ähnlich
sind. Die Modelle werden dabei entweder direkt auf den Trainingsdaten oder auf
deren zweiten Ableitungen (Laplace) berechnet. Der Zweite Ansatz hat hierbei den
Vorteil gegen starre Fehlausrichtungen der Lerndaten robust zu sein. Beide Metho-



den werden auf das praktische Problem der MRT/PET Schwächungskorrektur mit-
tels Atlasregistrierung angewandt. Dabei wird ein Atlas CT auf einen Patienten
MRT Datensatz registriert um ein pseudo CT Bild dieses Patienten zu erstellen.
Dieses kann dann in einem weiteren Schritt für eine Schwächungskorrektur einer
PET Aufnahme aus einem hybriden MRT/PET Gerät verwendet werden. Diese
Art der multimodalen Registrierung ist jedoch Aufgrund der unterschiedlichen Inten-
sitätsverteilungen in den Bildern, Bildartefakten und unterschiedlichen Bildauflösun-
gen, fehleranfällig. Das Deformationsmodell wird in dieser Anwendung mit Trainings-
daten aus monomodalen (CT/CT) Registrierungen generiert. In der multimodalen
Registrierung kann es dann die möglichen Deformationen zusätzlich beschränken und
so das Endergebnis verbessern. Dieser Ansatz wird auf einem Datenbestand von MRT
und dazugehörigen CT Datensätzen evaluiert. Die vorhandenen CT Daten erlauben
bei dieser Evaluierung den direkten Vergleich zwischen den generierten pseudo CT
Daten mit den tatsächlichen im Anwendungsfall nicht verfügbaren CT Daten. In
diesen Experimenten können wir zeigen, dass unser Ansatz gegenüber einem Stan-
dardansatz ohne Deformationsmodelle ein deutlich verbessertes Ergebnis liefert.
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Chapter 1

Introduction

Over the course of the past forty years medical diagnostics was revolutionized by
the invention of multiple modalities that are able to view the human body and its
function in full 3-D. Where computed tomography (CT) is able to provide detailed
insights into the human anatomy, nuclear medicine methods like positron emission to-
mography (PET) and single photon emission computed tomography (SPECT) allow
to visualize processes like perfusion or enhanced tissue growth due to cancer pro-
liferation. Magnetic resonance (MR) imaging is generally able to provide good soft
tissue imaging combined with the capability to do functional imaging. As all of these
techniques have their individual advantages and disadvantages their combination has
been an area of interest for a long time. This is usually done either by retrospec-
tive image registration that tries to compute a transform between two separately
acquired images, or by acquiring more than one imaging modality “simultaneously”
in the same hybrid scanner. Similarly, combining images from longitudinal studies
by means of image registration allows qualitative and quantitative analysis of the
progression of various diseases and how they are affected by treatment. Image reg-
istration also allows the combination of high quality preoperative images with data
acquired intraoperatively.

The number of registration techniques and variants is almost as varied as their
applications. Rigid and non-rigid, parametric or non-parametric, numerous distance
measures and regularizers, not to name the possible options of optimization schemes,
constitute a rich choice of components for performing the registration task. While
in the area of rigid registration the quality of the resulting match can be relatively
well assessed, this is considerably harder in the non-rigid case, since in virtually all
non-trivial real cases the ground truth deformation is not known. All attempts at
generating synthetic ground truth datasets are likely to favor registration methods
that model the deformation field similarly to the method used for generating the
synthetic deformations. Non-rigid registration is also relatively difficult to apply in
practice, due to the many degrees of freedom it offers in terms of the deformation
that is generated. Usually the user is responsible to select the degree of non-rigidity
allowed in the transform, which is often difficult as there is often a lack of intuition
about the user set parameters that determine the amount of non-rigidity. Last, but
not least, it is often difficult to assess whether a non-rigid registration result is only
visually appealing or makes actual medical and physiological sense.

1



2 Chapter 1. Introduction

This work is therefore concerned with the incorporation of prior knowledge about
the desired deformation into the registration algorithm. Prior knowledge is already
input by the choice of distance measure, regularizer and the parameter governing the
non-rigidity of the transform, which we will aim to make a more intuitive choice for
the user. More advanced forms of prior knowledge we will examine are known point
correspondences and especially statistical information about the deformations most
often encountered in a particular application scenario.

1.1 Overview

The aim of this work is to examine possibilities to make non-rigid registration easier
and more robust to use in practice. To this end current non-rigid, non-parametric
registration techniques, distance measures and regularizers and their respective be-
havior in combination are examined. Furthermore different optimization techniques
are examined as the study of existing and the development of new mathematical terms
can only make sense if they are sufficiently optimized and perceived problems with a
particular term are not just due to a bad optimization. The main focus, however, is
on incorporating prior knowledge about the registration subject that makes it more
likely that the results are in accordance with the expectation of the user. The types of
prior knowledge employed in this context are known point-to-point correspondences
(landmarks) and a statistical model of the expected transform based on a principal
component analysis (PCA).

The incorporation of landmarks is discussed in 5.1. The approach proposed in this
work allows the incorporation of arbitrary numbers of landmarks which are matched
exactly, works in 2-D as well as in 3-D and is shown to significantly improve the
difficult problem of a retrospective registration of a full body PET scan with a CT
scan.

The theory of the second method, which incorporates prior information through
statistical deformation models into the registration algorithm, is discussed in Sec-
tion 5.2. The practical application of these models is then evaluated on the problem
of atlas registration for MR/PET attenuation correction. Attenuation correction is
a post-processing step in PET and SPECT imaging that corrects for the attenuation
the tracer radiation undergoes while it travels from the point of the radiation emission
to the detector. The necessary attenuation information is usually provided by a CT
or a transmission scan. In a MR/PET hybrid scanner the MR image cannot directly
provide such an attenuation map. Instead, an attenuation map can be generated by
non-rigidly registering an atlas CT to the MR.

1.2 Contribution

This work brings several contributions to the field of non-rigid image registration. In
short these can be summarized as:

• comparison of a set of optimization algorithms for non-rigid, non-parametric,
energy regularized registration



1.2. Contribution 3

• easier user interaction for the parameter governing the stiffness of the deforma-
tion, through

– a physical relation for changes to the parameter

– a rescaling of the distance measure and regularizer terms of the registra-
tion, such that the impact of their choice on the stiffness parameter is
lessened

• introduction of prior information into the registration through

– the specification of additional landmarks

– PCA based deformation models

– application of deformation models to MR/PET attenuation correction

The first two contributions aim at simplifying the practical application of the reg-
istration algorithm by providing a good automatically parameterized optimization
and a good intuition for the remaining non-numeric stiffness parameter. The prior
information methods make the registration results more likely to correspond with
user expectations, even for difficult registration problems, which are subject to image
artifacts (noise, bias fields, streak artifacts etc.) and ambiguities.

In more detail, the first contribution is concerned with the comparison of several
optimization algorithms for a non-rigid, non-parametric registration that makes use
of an energy regularization term on the deformation field itself to keep it smooth.
The optimization of the terms in the registration formulation is rather non-trivial
and in practice the result of a registration can differ significantly depending on the
optimization algorithm and the resulting quality of the optimization. We therefore
compare the standard semi-implicit gradient descent scheme [Mode 04] with several
Newton type optimization algorithms, in a single- and multi-level setting, both for a
sum of squared differences and a mutual information distance measure.

In addition to the numeric problems we also consider the practical usability of
the non-rigid registration algorithm. The major problem here is the choice of param-
eters. While the numerical parameters like step sizes, numbers of iterations, image
quantization etc. can be estimated, the parameter governing the stiffness is a funda-
mental choice of the user. To make this choice easier we attach a physical model to
this parameter that makes it easier for the user to predict the result of a parameter
change. Additionally, some rescalings of the distance measure and regularizer terms
to a uniform value range are presented. If such a rescaling succeeds it has the benefit
that different types of distance measures and regularizers can be exchanged without
the need to change the stiffness parameter.

The incorporation of prior information into the registration is also aimed at sim-
plifying the interaction of the user with the algorithm. The work proposes a way to
constrain the non-rigid registration by additional landmarks. The registration thus
has to compute a deformation that guarantees an exact match at the landmarks.
This helps to guide the registration and can help to improve the trustworthiness of
the registration result. To add landmarks to an image intensity driven registration
approach is not a new idea [Fisc 03a, John 02, Hart 02, Ursc 06]. However, the way
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we mathematically integrate these constraints is, to our knowledge, novel in the do-
main of image registration. The point correspondences are treated mathematically as
Dirichlet boundary conditions for the computed vector field. This way the numerical
registration problem gets computationally smaller instead of larger, the more land-
marks are added. This way adding even large sets of landmarks, for example rigidly
registered bones or other segmented and separately registered regions, is no problem.

The final contribution of this work is the generation and practical application of
PCA based model regularization terms to a non-rigid, non-parametric registration
approach. This encompasses a PCA model generated directly on the learning de-
formations, augmented to be invariant to translations, as well as a model based on
the curvature of the deformations, which is invariant to rotations and translations
by construction. The different approaches are evaluated on the problem of MR/PET
attenuation correction through atlas registration.



Chapter 2

Medical Background

As this work is concerned with the processing of medical images, this chapter will
shortly review the most important 3-D medical imaging techniques. This information
is needed primarily to further the understanding of the application scenarios referred
to in the work. For a more in-depth discussion of these imaging modalities please
refer to [Doss 08].

2.1 Computed Tomography (CT)

Wilhelm Conrad Röntgen was the first to extensively study X-ray radiation in 1895.
It allowed for the first time the non-invasive imaging of the interior of the human
body. X-ray radiation is generated by accelerating electrons from a cathode to an
anode in a vacuum tube. Upon hitting the anode the kinetic energy of the electrons
is transformed in part into an electromagnetic radiation known as X-rays. This high
energy radiation has the property that it can pass through solid materials while
undergoing attenuation. The attenuation is due to the radiation interacting with
the material in the form of absorption and scattering. The amount of attenuation
that takes place is dependent on the density of the material being imaged and the
energy of the radiation. Bone for instance is a rather dense material and will therefore
attenuate the radiation much more than soft tissue.

The amount of radiation that can be observed at the detector is governed by the
attenuation law

I = I0e
∫
L
µ(l) dl, (2.1)

where I0 is the radiation generated by the X-ray tube and I the radiation that can
be detected after attenuation. L is the ray from the tube to the detector and µ the
function of attenuation coefficients along the ray i. e. how much the tissue at location
l attenuates the radiation. Basically, µ is the material property that we want to
measure. In computed tomography (CT) one is not interested in the resulting radi-
ation I but rather in the coefficients µ in the volume of interest (i. e. the patient).
To compute these values it is necessary to generate many measurements for I for
different rays through the patient. To this end the X-ray tube and the detector are
rotated around the patient (see Figure 2.1) generating measurements for rays with

5
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Figure 2.1: Schematic of a cone-beam CT. A source projects X-ray radiation through
the patient onto a detector. The detector captures the attenuated radiation. The
procedure is repeated from different angles to generate sufficient data for a 3-D re-
construction.

different angles and origins. From these measurements the values for the attenuation
coefficients of µ can be calculated by methods like filtered back projection or iterative
reconstruction. CT images therefore reflect how much the X-ray radiation is attenu-
ated by the materials in the subject. It, therefore, has excellent imaging of bones, but
a relatively weak soft tissue contrast. For some applications like angiography, a con-
trast agent with high attenuation coefficients is administered to the patient to make
blood vessels visible. Contrast agents also allow for studying functional properties
like blood flow or perfusion.

2.2 Magnetic Resonance Imaging

Magnetic resonance (MR) imaging is based on a completely different principle than
CT. Where CT is based on X-rays, a very high energy radiation, MR works with mag-
netic fields and radio waves, which do not have any harmful effects on humans. The
effects of nuclear magnetic resonance were first studied by Felix Bloch and Edward
Purcell, for which they won the Nobel Prize in 1952. The use of this phenomenon as
imaging modality is due to Paul Lauterbur and Sir Peter Mansfield, who developed
the techniques for spatial localization necessary for imaging. The material presented
in this section is based on [Horn 96].

MR imaging is based on the property of nuclear spin. Each electron, neutron and
positron has the fundamental property called spin, which describes the continuous
rotation of the particle around an axis. Normally, the spin of the particles in a
material is random, such that if all the spins are summed up the net spin is zero.
When placed in a strong magnetic field, usually denoted B0, the spins align with or
opposed to the field (see Figure 2.2). Statistically, however, more spins will align with
the magnetic field than opposed to it. If a group of particles with spin is therefore
treated as a macroscopic entity called a spin packet, its net spin is aligned with the
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(a) Free spins (b) Spins in magnetic field

Figure 2.2: (a) shows the unorganized spins at rest. The net magnetization in the
medium is 0 as the spins are oriented completely at random and cancel each other
out. In (b) the spins are under the influence of a strong magnetic field B0. In a strong
magnetic field the spins align with or opposed to the magnetic field. Statistically more
spins align with the magnetic fields than opposed to it. A group of spins (boxes),
called a spin packet, therefore has a net spin (sum over all spins in a box) aligned
with the magnetic field (gray arrows).

magnetic field. Thus aligned, the particles with spin also have the ability to absorb
radio waves of a specific frequency. The frequency which is called Larmor frequency
depends on the strength of the magnetic field B0 and the chemical compound the
particle is a part of. Hydrogen has the Larmor frequency of

ν = B0 · 42.58 MHz/T. (2.2)

If a spin packet absorbs the energy of a radio wave with this frequency it is knocked
out of its alignment with the magnetic field. Due to its spin it starts to precess
around the axis defined by the direction of the magnetic field. Over time the spin
will return to its alignment with the magnetic field while dispersing the energy it has
taken in by emitting radio waves at its Larmor frequency. These radio waves can
be detected by a receive coil and are ultimately the base measurement needed for
constructing magnetic resonance images. Two properties of the spin returning to its
original aligned state are the quantities that determine what an MR image shows.
These properties are the T1 and the T2 relaxation time. The T1 time tells how
long it takes a particular spin packet to return to its alignment with the magnetic
field. The second property, the T2 relaxation time, results from the spins packet
not being composed of completely homogeneous spins. All the spins in a spin packet
interact and are subject to a very slightly different magnetic field. Once the spins in
the spin packet start to precess, they will do so at very slightly differing frequencies,
prompting them to go out of phase over time. The dephasing speed of the spins is
measured by the T2 relaxation time. For an illustration of the T1 and T2 relaxation
times refer to Figure 2.3.

The T1 and T2 times depend on many factors like the chemical composition of
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(a) Spin packet (b) Spin packet precessing (c) Spin packet pre-
cessing in 3-D coor-
dinate system

X

Z

(d) Spin after pulse (e) Spin relaxing (f) Spin fully relaxed

(g) Spin phase after
pulse

(h) Spins dephasing (i) Spins fully dephased

Figure 2.3: Images (a)-(i) show the behavior of spin packets in the presence of a
strong magnetic field B0 aligned with the z-axis.
Top row: (a) Spin packet at rest rotating around its axis aligned with the magnetic
field. (b) Spin packet that has been knocked out of the alignment with the vector
field. The spin axis is precessing around the direction of the magnetic field B0. (c)
Spin precessing in a 3-D coordinate system, with the magnetic field B0 aligned with
the z-axis.
Middle row: Illustration of T1 decay. Images show xz-coordinate frame of (c) rotating
around the z-axis such that it is always aligned with the spin. (d) The spin after a 90°
pulse, (e) over time the spin realigns (f) with the magnetic field. During realignment
the spin packet has to disperse energy in the form of a radio wave.
Bottom row: Illustration of T2 decay. Images show the precessing spins of a spin
packet in the xy-plane of (c). (g) After an initial 90° pulse all spins of a spin packet
are aligned at the same phase. (h) Over time the spins dephase, (i) until they are
distributed randomly and uniformly.
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Figure 2.4: SPECT detector with collimator (gray pattern). The collimator ensures
that only rays parallel to the sheets of the collimator can reach the detector. In both
image examples two events (star) are shown, one which successfully projects a ray
onto the detector (black arrow) and one that gets shielded by the collimator.

tissue or the mobility of the particles carrying the spin. They can therefore differ very
much for different tissue types, leading to a good soft tissue contrast in MR images.
Additionally, there are a lot of choices in how these times are measured and combined
to form the actual image, yielding many different looking imaging sequences that can
be tailored to fit the application at hand. As discussed above the radio frequency
used for the pulses can only influence particles that resonate with that particular
frequency. In all practical medical applications this element is Hydrogen, which is a
part of any human tissue. However, there is no Hydrogen in bones, which, therefore,
give almost no signal and show up pretty similar to air in MR. Accordingly, bones
are mostly distinguished by the tissues surrounding them.

2.3 Single Proton Emission Computed Tomography

(SPECT)

In contrast to CT and MR the main focus of nuclear medicine imaging modalities
is not the imaging of the patient physiology, but rather the imaging of functions
in the body. This is achieved by injecting the patient with a tracer substance that
contains ligands tailored to take part in certain body functions. For example a glucose
analog substance will take part in the body’s metabolism and will thus concentrate
in regions with a lot of glucose consumption. Other ligands are engineered to bind
to certain tumor specific features [Doss 08]. The localization of the tracer inside the
body is realized through the radioactive decay of a radionuclide that is chemically
bound to the ligand. In single proton emission computed tomography (SPECT)
this radionuclide (e. g. technetium-99m, iodine-123 etc.) undergoes a gamma decay,
meaning that when the radionuclide decays it emits a gamma ray. This radiation can
be detected by a gamma camera.

For the 3-D reconstruction it is necessary to detect not only that a decay has
happened but also at least in which direction from the detector it happened. To
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facilitate this, the detector is equipped with a collimator. A collimator is essentially
a block of lead with holes. Only those rays that are aligned with the holes in the
collimator are thus able to reach the detector behind it. This way only rays with a
clearly defined orientation are detected (compare Figure 2.4). A disadvantage of this
approach is that a lot of information, i. e. rays not aligned with the collimator are
completely ignored.

The radiation observed at the detector coming from a certain direction is de-
pendent on the amount of tracer in the region and the amount of attenuation the
radiation undergoes while traveling through the body. The attenuation observed in
this context is related to the attenuation measured in CT, but not exactly the same
due to the different energy levels of the radiation. Mathematically the measurement
at the detector is thus the result of the attenuation law (2.1). However, in SPECT the
quantity we want to reconstruct is I0, the intensity at the point of origin. The atten-
uation µ is just a side-effect that should not show up in the reconstructed image. It is
therefore necessary to have a µ-map in order to do good reconstruction of the tracer
concentration in the patient. One way to acquire this map is to make a tomographic
reconstruction with an exterior radiation source, much like this is done in CT. These
days, most SPECT (and PET) scanners are hybrid scanners that are integrated with
a CT. Although the energy level of the radiation used in CT is not exactly the same
as that emitted by the tracer, it can still be used as a good approximation to the
needed attenuation map.

To sum up, SPECT has the ability to produce images that visualize processes
in the patient like tumor growth, perfusion or metabolism. It does in general not
visualize the patient anatomy very well and the image quality is, compared to CT
and MR, relatively low. Also, the radioactive tracer and the radiation produced by
it, is not completely harmless, such that the minimization of the tracer dose is always
a concern.

2.4 Positron Emission Tomography (PET)

Positron Emission Tomography is in many ways very similar to SPECT. The main
difference is the radionuclide used for the tracer, which decays not by emitting a
gamma ray, but by emitting a proton (e. g. fluorine-18). After traveling a short
distance the proton will eventually hit an electron, which results in an annihilation of
both while emitting two photons in almost exactly opposite directions. This emission
of two photons in opposing directions makes it possible to determine a line on which
the event took place by simply connecting the two points at which the photons
are detected. A collimator is therefore not necessary and many more events can
be detected, resulting in a higher signal yield. As photons traveling in all possible
directions have to be detected the PET detector is not planar, but instead a tube all
around the imaged volume (see Figure 2.5).

PET is therefore rather similar to SPECT, just with an, in general, better image
quality due to the higher signal yield. PET images therefore also rely on the existence
of an attenuation map for accurate image reconstruction. Aside from this PET and
SPECT also rely on different tracer ligands as not every ligand used in one modality
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Figure 2.5: A PET detector only acknowledges simultaneously arriving photons
(black arrows). The event (star) has to be somewhere on the line between the two
points at which the photons were detected. No collimation is necessary.

can be easily combined with the radionuclide used in the other.
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Chapter 3

Image Registration

Image registration can be employed in a variety of tasks, such as the combination
of data from multiple modalities to combine functional (e. g. Section 2.3 (SPECT)
and 2.4) and morphological information (e. g. Section 2.1 (CT) and 2.2 (MR)) or the
monitoring of tumor growth in longitudinal studies. There are also more “abstract”
applications like facilitating segmentation or classification approaches by registration
with an atlas (see Section 6) or studying anatomical variations by analyzing the trans-
forms generated by co-registering multiple datasets [Spie 09]. In some applications
even datasets of different dimensionality are combined. This is for example employed
in interventional applications where an intra-operative 2-D X-Ray image is registered
with a pre-operative 3-D image. In this work, however, we only consider the pair-wise
registrations between datasets of the same dimensionality.

The basic concept of this kind of registration is to find a transform Φ : Ω 7→ ΩM

that maps the frame of reference of the so-called moving image M : ΩM 7→ R, to
the frame of reference of the fixed image F : ΩF 7→ R, such that the image content
is aligned. The ΩM ⊂ R

d and ΩF ⊂ R
d denote the domains over which the moving

image and the fixed image are defined, respectively. The variable d in this context
specifies the dimensionality of the data, i. e. 2-D, 3-D etc.. The overlap of both
images under the current transform, in the frame of reference of the fixed image, is
defined as Ω = {x | x ∈ ΩF ∧ Φ(x) ∈ ΩM}. As such the overlap domain is actually
dependent on the transform. In this work the dependency of the overlap domain Ω
on the current transform Φ will be ignored, as this would enormously complicate the
mathematical formulations and also their numeric solution. To compensate, all terms
used in the registration formulations presented in this work are normalized over the
size |Ω| of the overlap domain, such that changes in the overlap have as little influence
as possible.

A registration usually aims at minimizing a distance measure D that serves as the
mathematical definition of the quality of the alignment, i. e.

Φ∗ = argmin
Φ

D(F,M ◦Φ). (3.1)

The choice of distance measure is highly problem dependent, though. It can be mono-
or multi-modal, focus on aligning similar gray values, statistically often coinciding
gray values, edges or image patterns. Similarly to the choice of the distance measure

13
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Figure 3.1: Rough categorization of different models used for the transform in popular
registration approaches.

there is also a choice in how the transform Φ should be represented. Naturally, the
transform determined by the algorithm should not be completely arbitrary, but con-
form to some form of regularity to be useful. Usually this regularity is implemented
by requiring Φ to be locally or globally smooth in some sense. Such a restriction can
be imposed directly through the way the transform is modeled or through additional
regularization terms incorporated into the minimization problem.

The next section is intended to give a rough overview over different registration
methods and how they model, constrain and optimize the transform. For further
general overviews of different registration methods please refer to [Mode 04, Clar 06].
The remainder of this work will then concentrate on a non-rigid, non-parametric,
energy regularized registration technique (compare Section 3.1.3). The components
of such an algorithm, namely the distance measure and the regularizer are introduced
in Section 3.3 and Section 3.4 respectively, in terms of the mathematical framework
introduced in Section 3.2.

3.1 Registration Methods

In order to fulfill the varying requirements of clinical practice, namely robustness
with respect to noise and the amount of motion compensated, the accuracy of the
achieved result and the computation speed, a multitude of different approaches for
image registration have been developed over the years. The different ways to constrain
the transform lead to algorithms that differ largely in the number of unknowns that
have to be optimized. As a general rule of thumb, more degrees of freedom in a
transform model, result in a larger degree of deformations that can be compensated,
but also to a reduced robustness with respect to noise and also a more difficult
optimization problem. Figure 3.1 provides a schematic overview of the commonly
employed registration methods, from the rigid registration with the least degrees of
freedom to the non-parametric registration formulation that allows the specification
of a transform separately for every pixel in the image domain. This section will briefly
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outline how most of these methods work.

3.1.1 Rigid and Affine Registration

In rigid registration only the position of the moving image M is changed, but it is not
deformed in any way i. e. the transform Φ is restricted to rotation and translation.

Φa(x) := Aax+ ta (3.2)

The rigid transform Φa is defined through the parameter vector a, which, in the
case of a 3-D transform, contains three parameters to define the rotation and three
parameters defining the translation along the x-,y- and z-axes. There are several
possibilities how the rotation Aa is defined through the three rotational parameters
for instance by a versor (unit quaternion; 3-D only) [Hart 04] or Euler Angles [Hart 04].
The optimization problem (3.1) thus becomes

a∗ = argmin
a

D(F,M ◦Φa). (3.3)

Dealing with a parametric transform simplifies the optimization considerably as the
four parameters in 2-D or six parameters in 3-D needed to define such a transform
represent a rather manageable search space.

Another interesting aspect is the validation of the registration result. In practical
medical applications there is always the problem that the result is hard to check for
its correctness. It is therefore a beneficial property of the rigid transform that only
the position of the image is changed, but the image itself is not deformed. This way,
at least the image itself stays trustworthy. As a downside, there are relatively few
applications, like the registration of the skull, in which a genuinely rigid transform
is observed. In order to account for that it is possible to relax the rigidity constraint
somewhat, by allowing the matrix Aa to include scalings. Adding shears ultimately
leads to a completely affine transform.

As the number of parameters for this transform model is rather low (in 3-D: 6
for rigid, 9 for rigid and scaling, 12 for affine) and therefore require a relatively small
search space, it is well suited to a gradient-free optimization. Calculating good gra-
dients can be quite a challenge, especially for multi-modal distance measures. Some
of the problems encountered in this context are the susceptibility of any gradient
operation to noise, but also less well known effects arising from the problem dis-
cretization, as for example gridding artifacts [Plui 00]. Gradient based optimization
schemes, while often giving the fastest convergence speed, can therefore be detrimen-
tal to the robustness of the algorithm. This robustness combined with the relative
trust that can be placed in the resulting image M ◦ Φa makes rigid registration the
most widespread registration algorithm used in clinical practice.

3.1.2 Parametric Non-rigid Registration

In non-rigid registration the image content is allowed to deform to some extent to
allow a better match. Still, the resulting transform should be locally smooth and
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Figure 3.2: (a) shows the TPS kernel. It is dented at the center and passes through
0 = KTPS( (0, 0)T ). It is also 0 on a circle with a radius of r = 1 from the origin
i. e. KTPS(x) = 0 ∀‖x‖2 = 1. (b) shows a sample application of a TPS interpolating
the points (1, 0), (−1, 0), (0, 1), (0,−1), marked by the white crosses, with values of
1,−1, 1,−1 respectively.

disallow ridges and folds. This can be enforced by representing the deformation as
an inherently smooth, parametric function. Usually these functions are composed
of kernel functions that are controlled by a set of parameters a. The optimization
problem for a parametric non-rigid registration is therefore the same as (3.3). The
most common examples are BSplines and thin-plate splines. Although the regularity
of the transform is implicitly imposed by the model, not every model can guarantee
that unwanted properties of the transform cannot occur. For example it is perfectly
possible to get folds in a BSpline transform if no additional measures are taken to
prevent this. In practice this is often resolved by constraining the step size or search
area in the optimization, such that the control points cannot be moved far enough to
allow such results or by imposing additional constraints on the control points.

Thin-Plate Splines

The thin-plate splines (TPS) are based on the mathematical work of [Wahb 90]
and [Duch 76]. They were introduced into the context of image registration in [Book 89]
and have been used in many publications since (see e. g. [Rohr 01](approximating
TPS), [Evan 91](application in 3-D)). TPS and other radial basis-functions are most
often used in conjunction with landmarks i. e. known point correspondences Φ(xF i) =
xMi, where xF i ∈ ΩF and xMi ∈ ΩM denote the corresponding coordinates of the
landmark in the moving and fixed image frame of reference respectively. Intuitively
a TPS describes the elevation of a metal plate that is deformed by being fixed to
a certain number of points. The TPS is defined as the function that minimizes the
bending energy of the plate while interpolating those fixed points. In 2-D the TPS
kernel function (see also Figure 3.2a) is defined as

KTPS(x) := ‖x‖22 log ‖x‖2, (3.4)
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where ‖ · ‖2 is the L2 norm. KTPS is centered around the origin and passes through
0 = KTPS( (0, 0)T ). The complete spline is made up of an affine transform and a
set of kernel functions centered around the fixed points. The affine transform and
a set of weights for the kernel functions are chosen such that the landmark points
xMi are interpolated. For an example of a TPS surface see Figure 3.2b. To define
a transform by a TPS, the deformation of the plate is interpreted as a displacement
in each dimension respectively i. e. one TPS is needed per dimension. The affine
transform is lifted straightforwardly to d dimensions (d-D). A transform defined by
a TPS is thus written as

ΦTPS(x, a) := Aax+ ta +
n∑

i=1

ba,iKTPS(x− xF i), (3.5)

where a is the set of parameters defining the TPS by providing the control points xF i

with i = 1, . . . , n, the weights of the kernel functions ba,i and the affine components
of the transform Aa and ta. The definition of the transform through the TPS makes
it possible to guarantee a one-to-one match of the landmarks with a smoothly inter-
polated deformation field everywhere else. It also allows for a closed form solution
of the matching problem. One of the disadvantages of this model is that each ker-
nel, and therefore each landmark, has a global influence. Thus moving a landmark
influences the transform over the whole domain and requires a recomputation of all
parameters.

BSplines

BSplines are piecewise polynomial functions that are often used in image processing
to represent smooth data [Lee 97]. In image registration they have been used for
instance by Rückert et al. [Ruec 99] and Rohlfing et al.. [Rohl 00] in non-rigid regis-
tration. These methods employ BSplines to represent the deformation. Depending on
the number of control points used to define a BSpline it can be represented with a rel-
atively low amount of parameters and is inherently smooth. The more control points
are used, the more local the inherent smoothness becomes and the more parameters
are needed.

In 1-D BSplines are composed of a set of kernel functions that are stitched at
given points in their parameter domain. These points are defined by the so-called
knot vector t ∈ R

m. Usually the knot vector is set uniformly to t = (0, 1, 2, . . .).
Using this, the individual 1-D BSpline kernel functions are defined as

KBS(x, i, ν, t) :=
x− ti

ti+ν − ti
KBS(x, i, ν − 1, t)

+
ti+ν+1 − x

ti+ν+1 − ti+1

KBS(x, i+ 1, ν − 1, t) (3.6)

KBS(x, i, 0, t) :=

{

1 if x ∈ [ti, ti+1]

0 else
, (3.7)

In Figure 3.3 the 1-D BSpline kernels for ν = 1, . . . , 4 are shown. In higher dimensions
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Figure 3.3: BSpline kernels for polynomial degree ν = 1, . . . , 4 and uniform knot
vector.

the BSpline basis functions are evaluated for each dimension separately and multiplied
to get the final d-dimensional kernel function. This method of applying BSplines
to higher dimensions is called a tensor product BSpline. Accordingly a separate
knot vector ti ∈ R

mi i = 1, . . . , d is needed for the definition of the intervals in
each dimension. The BSpline is controlled by a set of control points P that are
arranged on a regular grid. In 2-D, for example, with knot vectors t1 ∈ R

m1 and
t2 ∈ R

m2 there would be a control point grid with (m1− ν)× (m2− ν) control points
P = (p1,1, . . . ,pm1−ν,m2−ν). The tensor product BSpline in 2-D is thus written as

ΦBS(x, a) := ΦBS(x, ν,P, t1, t2)

=

m1−ν∑

i=1

m2−ν∑

j=1

pi,jKBS(x1, i, ν, t1)KBS(x2, j, ν, t2). (3.8)

As the BSpline is stitched together from kernel functions with a limited support a
change of a control point also only has a local influence. This is advantageous during
the optimization of the registration transform, as the change of a single control point
does not necessarily mean that the complete distance measure has to be re-evaluated.
A drawback of the stitching of the kernel functions is that the BSpline is only dif-
ferentiable up to one less than the polynomial degree of the basis functions. Thus
for a polynomial degree ν, a BSpline is Cν−1 continuous. Therefore, if one is inter-
ested in properties derived from derivatives of the deformation field or intends to use
optimization schemes based on derivatives, BSplines with a high enough polynomial
degree have to be chosen.
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Additionally, registration models employing BSplines often add an affine trans-
form ΦBS, as the BSpline alone cannot accurately model rotations, for instance. Ex-
cept for BSplines of degree ν = 1, which is just a polygon connecting the control
points, the control points are not interpolated. The smoothness of the model is con-
trolled by the spacing and number of the control points and by the polynomial degree
ν. Theoretically there is no constraint on the placement of the control points, and
therefore also no guarantee that folds may not occur. Practically, this can be con-
trolled through the optimization algorithm by constraining the step size in a suitable
manner or by imposing additional constraints on the control points. For the optimiza-
tion of the transform gradient-free, as well as different gradient based optimization
methods [Kabu 04, Ruec 99] have been used. A review of several optimization meth-
ods is presented in [Klei 07].

3.1.3 Non-Parametric Non-Rigid Registration

The approach that this work is focused on is the non-parametric, non-rigid registra-
tion, which was introduced by Hermosillo et al. [Herm 02b]. The formulation of the
algorithm in this work is also heavily based on the work of Modersitzki [Mode 04].
This approach allows deformations that are not constrained by an explicit model,
which theoretically makes arbitrary transforms possible. As the location of each pixel
x can be moved by an individual offset u(x) it is helpful to represent the transform
in terms of these offsets.

Φ(x) := x− u(x). (3.9)

This formulation with an “offset” function u instead of the transform Φ has the
advantage that u directly represents the intuitive notion of a deformation field, which
is an offset onto the untransformed index space. It is formulated as a negative offset
x − u(x) as a deformation field is supposed to point from the untransformed index
position in the moving image M to the target position in the new frame of reference,
i. e. x ∈ ΩM 7→ x + u(x). But as the distance measure is evaluated in the frame of
reference of the fixed image x ∈ ΩF 7→ x−u(x) has to be evaluated in order to apply
the transform.

In the practical implementation, with discreetly represented vector fields and im-
ages, the deformation is also represented in the frame of reference of the fixed image
for practical reasons: For the computation of Mu the moving image has to be re-
sampled deformed and resampled to the discrete grid on which the fixed image is
represented. The deformation locally expands and compresses the vector field which
leads to over and undersampling. This is difficult to account for when interpolating
the deformed image back onto the regular grid. It is much simpler to represent the
deformation in the frame of reference of the fixed image, as this way, one can simply
look up the corresponding image intensity for every pixel position Mu.

In general, if the transform is not further constrained the mathematical problem
is not well defined. Consider for example a moving edge (see Figure 3.4). With
no additional information it is not possible to determine for a single pixel on the
source edge, where it has to be mapped on the target edge. This is known as the
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(a) Aperture problem, local (b) Aperture problem, global

Figure 3.4: Local view of a moving edge in an image. (a) For a single pixel it is not
possible to determine a unique match on the target edge. (b) A more global view
reveals neighboring corners for which the match is clear. By requiring the vector field
to be smooth the match for all points in between is also made unique.

aperture problem in the optical flow community (see e. g. [Beau 95]). To overcome
this limitation additional information has to be considered for the calculation of the
movement of an individual pixel. This is done by adding a so-called regularizer or
smoother. It adds information about the deformation of the pixel neighborhood by
requiring that the calculated vector field is locally smooth. This way undesirable
transforms that include folds or ridges are discouraged. A regularizer can be added
as an energy term R to the optimization problem (3.1):

u∗ = argmin
u

E(F,M,u)

:= argmin
u

D(F,Mu) + αR(u),
(3.10)

where Mu(x) = M(x− u(x)). (3.11)

The weighting parameter α ∈ R, α > 0 determines how strictly the regularization
term has to be adhered to. This energy regularization is a kind of Tikhonov regular-
ization [Clar 06, Tikh 77]. Usually, when such a regularization is used it is desirable
to ultimately get rid of the regularization term again if a convergence towards a good
result is achieved, as it was not a part of the original problem statement. A standard
approach is, for instance, to iteratively decrease α during the optimization. In medical
image registration, however, it can be argued that the regularizer represents physical
properties of the tissue being deformed and therefore should not be eliminated.

A different way to incorporate the necessary regularization is related to itera-
tive Tikhonov regularization [Clar 06]. Not the energy is regularized, but rather the
search direction (usually the gradient) in the optimization. For example gradient
flow methods [Strz 04, Dros 05] are basically gradient descent optimization schemes
for (3.1) that apply a smoothing operator to the calculated gradient in each step.
This smoothing operator can be a Gaussian smoothing or a more complex operation,
related to the energy regularizers presented in Section 3.4. This way a “smooth path”
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to the final result is generated. Overall this also results in smooth transforms, al-
though the result might be a bit more complicated to predict as in the case of energy
regularization. In some cases, also both approaches are combined by using a gradient
flow optimizer to optimize an energy regularized registration term. Another scheme
that regularizes the change in the deformation field is the fluid registration [Bro 96],
It defines a partial differential equation governing the “time dependent” behavior of
the deformation field. Time here is introduced as an artificial parameter, consider-
ing the moving and the fixed image as two instances of the same object at different
points in time. As the overall deformation field is not further constrained it is able to
match even rather unrelated shapes if necessary. Whether this is a desirable property
depends, as usual, on the application in question.

3.2 Mathematical Framework

For the remainder of this work we will focus on a non-rigid, non-parametric, energy
regularized registration formulation, as outlined in Section 3.1.3. The components
of the algorithm are, therefore, at least a distance measure D and a regularizer R.
In this section we will discuss the mathematical tools and notation needed for the
introduction of the components of the registration algorithm. With these tools it is
possible to introduce the terms in the continuous, formulate their continuous deriva-
tive and the corresponding discretizations necessary for an implementation.

3.2.1 Notation

The following notations are used to help the reader to better distinguish whether a
formulation is presented in the continuous or discrete and if vector or scalar valued
quantities are treated. As usual, matrices and vectors are denoted in bold notation,
such as A and a respectively. Many of the functions used like u are also vector
valued, as they describe an offset in R

d. To better distinguish between these contin-
uous, vector valued functions, they are denoted in bold, italic notation as u, while
their discretized counterparts are denoted in standard vector notation as u. We also
differentiate different norms by subscripts. If not otherwise indicated | · | denotes the
scalar absolute value and ‖ · ‖ the Euclidean or L2 norm.

3.2.2 Variational Calculus

The usual way to solve continuous optimization problems is to identify extremal
points by determining the roots of the derivative of the function that has to be opti-
mized. In the case of equation (3.10), however, one has to deal with an optimization
with respect to a function u. As a function cannot be varied in the same way as a
scalar variable, it is necessary to turn to the calculus of variations [Bron 99] to find a
minimizer u∗. Let the space of functions over which the minimization is performed
be a Hilbert space U : Ω 7→ Ω of functions over the domain Ω ⊆ R

d over which
both images F and M are defined. The Hilbert space is defined by function addition,
subtraction, scalar multiplication and an inner product. For the inner product on U ,
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which also induces a norm ‖u‖U , the following definition is chosen.

∀u,v ∈ U 〈u,v〉U :=
1

|Ω|

∫

Ω

u(x)T v(x) dx ‖u‖U := 〈u,u〉U (3.12)

Note that this definition of the inner product is normalized over the size of the
domain |Ω|. This definition makes the notation of accordingly normalized distance
measures and regularizers easier later on, as the normalization term 1

Ω
will be already

incorporated into the inner product. With respect to a test-function η ∈ U the
Gâteaux derivative [Bron 99] of (3.10) around u is defined as

dE(F,M,u;η) := lim
ǫ→0

E(F,M,u+ ǫη)− E(F,M,u)

ǫ

=
dE(F,M,u+ ǫη)

dǫ

∣
∣
∣
∣
ǫ=0

. (3.13)

For the existence of a minimizer for (3.10), it is necessary that the Gâteaux derivative
vanishes for all possible choices of the test function η, i. e.

dE(F,M,u∗;η) = 0 ∀η ∈ U . (3.14)

This is known as the Euler-Lagrange equation. If this equation holds the Gâteaux
derivative has reached an extremum. This is very similar to a directional derivative,
just with a test function instead of a direction vector. Furthermore, similarly to the
definition of an extremum of a function through directional derivatives, we can use
the inner product of U to define for the Euler-Lagrange equation

〈∇uE(F,M,u),η〉U :=
dE(F,M,u+ ǫη)

dǫ

∣
∣
∣
∣
ǫ=0

= 0 ∀η ∈ U . (3.15)

As this has to hold for all possible test functions η, the Euler-Lagrange equations are
equivalent to ∇uE(F,M,u∗) = 0. It is imperative to keep in mind that ∇uE(F,M,u)
is not a derivative in the common sense, but just defined through the above equation.
This definition is equivalent to the definition of the gradient of a function through
directional derivatives. That this definition is applicable to all the terms encountered
in this work is due to the chain rule being applied in the differentiation. This ensures
that every term in the Gâteaux derivatives we will derive is an inner product of η or
any of its derivatives with another term.

Strictly speaking, we would have to derive the Gâteaux derivative for the com-
plete term of ∇uE(F,M,u) from equation (3.10). However, this would result in very
large equations. Instead we will derive the Gâteaux derivatives separately for the
regularization (Section 3.4) and distance measure terms (Section 3.3). It is there-
fore important that this is done in a consistent fashion and that constants are not
eliminated, as this would then have to be done analogously in all other terms as well.
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3.2.3 Discretization

As it is not possible to represent all possible choices for the continuous functions u,
the optimization of E(F,M,u) requires a discretization of all terms. The basis for
the discretization is the discrete representation of the domain Ω over which all the
functions and their derivatives are defined. To this end, the domain Ω is sampled at
s discrete positions X = (x1, . . . ,xs)

T , where each position xi ∈ Ω is a d-dimensional
vector specifying a discrete position. In practice, the sample positions xi are chosen
on a rectangular grid with uniform spacing hj and j = 1, . . . , d in each dimension.
As it is easier to represent the sampled functions and gradients as a large vector than
as a matrix corresponding to X, the discretized vector fields are arranged as

u = (uT
1 , . . . ,u

T
d )

T

= (u1,1, . . . , u1,s, . . . , ud,1, . . . , ud,s)
T

= (u1(x1), . . . , u1(xs), . . . , ud(x1), . . . , ud(xs))
T

. (3.16)

The discrete representation u of the deformation function u therefore contains d
sequential vectors ui of size s, which define the deformation in each dimension sep-
arately. The same discretization is also employed for the gradient of the energy
∇uE(F,M,u) and the terms it is composed of. The inner product (3.12) can thus be
discretized as

〈η,u〉U
︸ ︷︷ ︸

continuous

≈ 〈η,u〉U
︸ ︷︷ ︸

discrete

=
1

s
η
Tu. (3.17)

The discretized Gâteaux derivative of the energy E is therefore

〈η,∇uE(F,M,u)〉U ≈ 〈η,∇uE(F,M,u)〉U =
1

s
η
T ∇uE(F,M,u) = 0. (3.18)

As the discrete gradient is the vector of all partial derivatives with respect to all
parameters, it can be constructed by replacing the discrete test function η by the
standard basis vectors. This then constitutes real directional derivatives, defining
a d-D gradient vector. The resulting gradient is similar to the one that would be
obtained, if it was calculated directly on the discretized energy E(F,M,u). Note
that the partial derivatives for each sample position xi get shorter with the overall
number of samples s. As the number of sample positions goes to infinity, the change
that can be obtained at a single “discrete” position tends to zero, because the region
represented by the sample position also tends to zero.

It has also been discussed whether one should “discretize and optimize” or “opti-
mize and discretize”, meaning whether the discretization should be performed before
or after the gradient derivation (see e. g. [Habe 06]). One of the main differences be-
tween these approaches is that if the discretization is performed first, the calculation
of the derivative can be performed with differential calculus (vector derivative), which
is in general mathematically easier to handle than the derivation in the framework of
the calculus of variations (function derivative). In our experience the result is in most
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Figure 3.5: Rough categorization of different distance measures in popular registra-
tion approaches.

cases pretty much identical with the notable exception of how boundary conditions
get incorporated.

With these tools at hand we can now proceed to introduce the formulations of
the distance measures and regularizers. These are always introduced as continuous
terms, for which the Gâteaux derivative is calculated. Finally, the continuous terms
are discretized to get formulations that can be implemented in a computer program.

3.3 Distance Measures

In any registration algorithm the distance measure decides what is considered a good
match. In this section we will introduce the two distance measures used in the ex-
periments in this work. To put them into context a rough schematic overview over
the different classes of distance measures is depicted in Figure 3.5. The first block
shown there are feature based distance measures, which do not compare the im-
ages directly, but instead only the distance between a set of (sparse) corresponding
features computed on the images. The way that the features are identified on the
images ranges from manual specification, to automatic methods like differential oper-
ators (detect ridges, corners etc.), SIFT features (compare [Ke 04]) or salient region
features [Huan 04, Hahn 06]. A review of several local feature descriptors applicable
in this problem domain can be found in [Miko 05].

A more direct approach to compare the two images is to compare the gray val-
ues directly. The simplest variant of this approach are the mono-modal measures
which assume that corresponding structures in the two images have identical inten-
sities. The most prominent examples of mono-modal distance measures are the sum
of absolute differences, the sum of squared differences and the cross-correlation. The
cross-correlation already relaxes the assumption of identical image intensities to some
extent. The sum of squared differences has gained some popularity as distance mea-
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sure due to its inherent simplicity which makes it well understood, easy to implement
and thus a good subject for experimenting with new registration methods or opti-
mization schemes. As it is also the measure of choice for the mono-modal registrations
performed in this work it is discussed in more detail in Section 3.3.1. In order to be
able to better match images from multiple modalities, measures have to compare de-
rived quantities such as image patterns (compare [Wees 97] for 2-D/3-D registration),
the normal field [Dros 04, Habe 05] or image statistics. Image statistics based dis-
tance measures feature some of the most prominent multi-modal distance measures
like the mutual information [Well 96, Maes 97] (MI), which is discussed in more de-
tail in Section 3.3.2, the normalized mutual information [Stud 99] or the correlation
ratio [Roch 98].

In the following sections the two distance measures used in this work are presented.
We will discuss the calculation of their respective derivatives and how a discrete
implementation can be realized.

3.3.1 Sum of Squared Differences

The sum of squared differences (SSD) is one of the simplest distance measures avail-
able (see e. g. [Mode 04]). It is based on the assumption that the intensities of corre-
sponding tissue within two datasets are equal and is defined as follows:

DSSD(F,Mu) :=
1

|Ω|

∫

Ω

(F (x)−Mu(x))
2
dx. (3.19)

Note that this denotes a d-D integral. The definition presented here contains a
normalization over the size of the computational domain |Ω|. This makes the measure
somewhat more predictable when applied to differently sized datasets. The according
derivative can be calculated in the framework of the variational calculus as

dDSSD(F,Mu;η) =
d

dǫ

1

|Ω|

∫

Ω

(F (x)−M(x− u(x)− ǫη(x)))2 dx

∣
∣
∣
∣
ǫ=0

=
1

|Ω|

∫

Ω

2η(x)T (F (x)−M(x− u(x))) ((∇M)(x− u(x))) dx

= 〈2(F −Mu)∇Mu,η〉U

= 0 ∀η ∈ U (3.20)

Note that ∇Mu = (∇M)(x−u(x)) denotes the gradient of the untransformed moving
image M evaluated at the transformed position x− u(x). Using (3.15) we can thus
define

∇uDSSD(F,Mu) = 2(F −Mu)∇Mu. (3.21)
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The discrete approximation of (3.19) and its derivative (3.21) is determined on the
grid X by the application of the discretization of the inner product (3.17), as

DSSD(F,Mu) =
1

s
(F (x)−Mu(x))

2

=
1

s

s∑

i=1

(F (xi)−Mu(xi))
2 (3.22)

∇uDSSD(F,Mu)(xi) =
2

s
(F (xi)−Mu(xi))∇Mu(xi) ∀i = 1, . . . , s. (3.23)

3.3.2 Mutual Information

For the multi-modal registration task, distance measures based on image intensity
statistics are widely established. One of the most often used statistical distance mea-
sures is the mutual information and its variants. Use of the mutual information (MI),
was introduced as distance measure for image registration by Wells et al. [Well 96]
and Maes et al. [Maes 97]. The mutual information evaluates how much informa-
tion is shared between both images in their current alignment. It is defined over the
probability density functions (PDF) of gray values in the moving image pMu

, fixed
image pF and the joint PDF pF,Mu

. The PDFs describe how likely the gray values iM ,
iF and the gray value pair i = (iF , iM)T can be observed in their respective images
under the current deformation u.

If F and Mu were statistically independent then pF,Mu
= pF pMu

. For a good
match the intensities of F and Mu should be as statistically dependent as possible.
As a joint distribution of pF,Mu

= pF pMu
would indicate a statistical independence

of the two distributions, the mutual information distance measure therefore aims to
maximize the Kullback-Leibler divergence (KL) between pF,Mu

and pF pMu
. To be

useful as a distance measure, which has to be minimized, the mutual information
distance measure here is formulated with the negative KL.

DMI(F,Mu) := −KL(pF,Mu
, pF pMu

)

= −

∫

R2

pF,Mu
(i) log

pF,Mu
(i)

pF (iF ) pMu
(iM)

di (3.24)

The implementation and derivation of DMI presented here is done as outlined in [Herm 02a].

Density Estimation

The first step in computing DMI is the calculation of the joint PDF pF,Mu
and its

marginals pF and pMu
. To estimate a smooth PDF, Parzen estimation is applied.

Parzen established in his work [Parz 62] that a PDF can be approximately recovered
by sampling the data and smoothing the samples with an appropriate kernel function
K. Let ρ = (ρ1, ρ2)

T denote the bandwidth parameter of the kernel function then K
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is defined as

Kρ(x) :=
1

ρ
K

(
x

ρ

)

for 1-D (3.25)

Kρ(x) := Kρ1(x1) Kρ2(x2) for 2-D, (3.26)

If n “joint intensity” samples jk are drawn from the image pair (F,Mu) the Parzen
estimate for the joint PDF pF,Mu

is written as

pF,Mu
(i) ≈

1

n

n∑

k=1

Kρ(i− jk). (3.27)

If the function K satisfies the conditions

∫ ∞

−∞
K(x) dx = 1

∫ ∞

−∞
|K(x)| dx < ∞

lim
x→∞

|xK(x)| = 0 sup |K(x)| < ∞, (3.28)

then the estimate (3.27) converges towards the true PDF for n → ∞ and ρ → 0. For
a dense sampling of Ω, (3.27) therefore converges to

pF,Mu
(i) =

1

|Ω|

∫

Ω

Kρ(i− (F (x),Mu(x))
T ) dx. (3.29)

Examples of functions fulfilling the requirements (3.28) are the Gaussian G(x) :=
1√
2π
e−

1
2
x2

and the BSpline kernel functions as introduced in (3.6).

Open points in the presented density estimation are the choice of the Parzen
kernel function K, its bandwidth ρ and the sampling strategy. These points are
actually very important to the resulting estimate and have been the subject of much
research (see e. g. [Hahn 10]). In the context of this work, we will only shortly touch
on some of the subjects mentioned there. As kernel function it was decided to use
a discretized Gaussian for this work. The theoretical disadvantage of the unlimited
support of the Gaussian is somewhat alleviated in practice, as in a discrete Gaussian
kernel representation only a limited support is used anyway. Ideally the choice of the
number of samples, bins and bandwidth all depend on each other and on the chosen
kernel function. In this work we always use a dense sampling, i. e. each pixel position
in the discretized computational domain Ω is sampled once. A sparser sampling would
not really speed up the computation much, as each image pixel has to be touched
during the calculation of the transformed gradient image anyway. Unless otherwise
noted m = 64 bins and a bandwidth of ρ equal to twice the bin size was chosen, as
those are values reported to work well in literature (see [Knop 06, Hahn 10]).

Derivative

The calculation of the derivative of the mutual information distance measure DMI

is rather involved. The derivation used in this work is based on the one presented
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by Hermosillo in [Herm 02a]. As starting point we have to consider the variation of
DMI(F,Mu) with respect to ǫη again that defines the Gâteaux derivative.

dDMI(F,Mu;η) = −
d

dǫ

∫

R2

pF,Mu+ǫη
(i) log

pF,Mu+ǫη
(i)

pF (iF )pMu+ǫη
(iM)

di

∣
∣
∣
∣
ǫ=0

= −

∫

R2

(
dpF,Mu+ǫη

(i)

dǫ

)

log
pF,Mu+ǫη

(i)

pF (iF )pMu+ǫη
(iM)

+ pF,Mu+ǫη
(i)

(
d

dǫ
log

pF,Mu+ǫη
(i)

pF (iF )pMu+ǫη
(iM)

)

di

∣
∣
∣
∣
ǫ=0

= −

∫

R2

(
dpF,Mu+ǫη

(i)

dǫ

)

log
pF,Mu+ǫη

(i)

pF (iF )pMu+ǫη
(iM)

+ pF (iF )pMu+ǫη
(iM)

(
d

dǫ

pF,Mu+ǫη
(i)

pF (iF )pMu+ǫη
(iM)

)

di

∣
∣
∣
∣
ǫ=0

= −

∫

R2

(
dpF,Mu+ǫη

(i)

dǫ

)

log
pF,Mu+ǫη

(i)

pF (iF )pMu+ǫη
(iM)

+ pF (iF )pMu+ǫη
(iM)

(
1

pF (iF )pMu+ǫη
(iM)

dpF,Mu+ǫη
(i)

dǫ

−
pF,Mu+ǫη

(i)

pF (iF )pMu+ǫη
(iM)2

dpMu+ǫη
(iM)

dǫ

)

di

∣
∣
∣
∣
ǫ=0

= −

∫

R2

(

1 + log
pF,Mu

(i)

pF (iF )pMu
(iM)

)(
dpF,Mu+ǫη

(i)

dǫ

∣
∣
∣
∣
ǫ=0

)

di

+

∫

R2

pF,Mu
(i)

pMu
(iM)

(
dpMu+ǫη

(iM)

dǫ

∣
∣
∣
∣
ǫ=0

)

di (3.30)

The second term of (3.30) can be shown to be 0, as

∫

R2

pF,Mu+ǫη
(i)

pMu+ǫη
(iM)

dpMu+ǫη
(iM)

dǫ
di =

∫

R

1

pMu+ǫη
(iM)

dpMu+ǫη
(iM)

dǫ

∫

R

pF,Mu+ǫη
(i) diF

︸ ︷︷ ︸

=pMu+ǫη
(iM )

diM
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=
d

dǫ

∫

R

pMu+ǫη
(iM) diM

︸ ︷︷ ︸

=1

= 0 (3.31)

It is thus only necessary to determine
dpF,Mu+ǫη

(i)

dǫ

∣
∣
∣
ǫ=0

to get to the final derivative.

To do so we substitute pF,Mu+ǫη
by its Parzen estimation introduced in (3.29).

dpF,Mu+ǫη
(i)

dǫ

∣
∣
∣
∣
ǫ=0

=
d

dǫ

1

|Ω|

∫

Ω

Kρ(i− (F (x),Mu+ǫη(x))
T ) dx

∣
∣
∣
∣
ǫ=0

=
1

|Ω|

∫

Ω

∂Kρ

∂iM
(i− (F (x),Mu(x))

T )(∇Mu(x))
Tη(x) dx (3.32)

Similarly to the definition in the sum of squared differences distance measure, ∇Mu(x) =
(∇M)(x−u(x)) denotes the derivative of the untransformed moving image, accessed
at the transformed position x− u(x). With this result (3.30) can be rewritten as

dDMI(F,Mu;η) = −
1

|Ω|

∫

R2

∫

Ω

EMI(i)
∂Kρ

∂iM
(i− (F (x),Mu(x))

T )

(∇Mu(x))
Tη(x) dx di (3.33)

where EMI(i) = 1 + log
pF,Mu

(i)

pF (iF )pMu
(iM)

. (3.34)

Equation (3.33) can be regarded as a convolution with respect to EMI. Denoting the
convolution with ⋆ equation (3.33) is transformed to

dDMI(F,Mu;η) = −
1

|Ω|

∫

Ω

(
∂Kρ

∂iM
⋆ EMI(i)

)

(F (x),Mu(x))
T (∇Mu(x))

Tη(x) dx

=

〈

−

(
∂Kρ

∂iM
⋆ EMI(i)

)

(F (x),Mu(x))
T (∇Mu(x)),η

〉

U
. (3.35)

From (3.15) it is thus possible to identify

∇uDMI(F,Mu) = −

(
∂Kρ

∂iM
⋆ EMI

)

(F (x),Mu(x))
T (∇Mu(x)). (3.36)

Note that in contrast to the definition in [Herm 02a] the factor 1
|Ω| disappears in our

formulation of ∇uDMI due to the choice of the inner product. Hermosillo also points
out that the partial derivative commutes with the convolution, such that (3.36) can
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be reformulated as

∇uDMI(F,Mu) = −

(

Kρ ⋆
∂EMI

∂iM

)

(F (x),Mu(x))
T (∇Mu(x)) (3.37)

where
∂EMI

∂iM
(i) =

∂pF,Mu
(i)

∂iM

pF,Mu
(i)

−

∂pMu

∂iM

pMu

. (3.38)

For a practical implementation there is no clear advantage of using equation (3.36) or
(3.37) as the basis. In (3.36) the partial derivative of the kernel Kρ can be calculated
analytically, such that only one discrete filter operation is necessary. In (3.37) some-
thing similar is possible, as the joint and moving image PDFs are calculated from
Parzen estimation. The same Kernel Kρ is applied there, although not as a convo-
lution. It is, therefore, possible to incorporate the partial derivatives in (3.37) into
the application of the Parzen density estimation, such that also just one discretized
kernel has to be applied.

Discretization

In the discretization of the mutual information distance measure the calculation of the
densities takes a central role again. Evaluating (3.27) is computationally very costly
as the sum over all samples is usually quite large. To reduce the computational costs
the samples are not used directly but instead binned into a histogram. Equation (3.27)
can be rewritten in terms of the histogram entries as

pF,Mu
(i) =

1

n

m∑

k=1

bkKρ(i− ck)

=

(

Kρ ⋆
b

n

)

(i),

(3.39)

where m is the number of bins in the histogram, ck denotes the k-th bin center and
b = (b1, . . . , bm) the number of samples in the respective bins. The resulting formula-
tion can be calculated by a discrete convolution of the histogram entries b, normalized
to
∑n

k=1 bk = 1, with the discretized Parzen kernel function Kρ. Once pF,Mu
has been

successfully estimated, pF and pMu
can be determined by marginalization. The same

is true for the estimation of
∂pF,Mu

∂i
and

∂pMu

∂iM
as

∂pMu

∂iM
=

∫

Ω

∂pF,Mu

∂iM
diF .

All in all the discrete version of (3.36) is written as

∇uDMI(F,Mu)(xi) = −
1

s

(
∂Kρ

∂iM
⋆ EMI

)

(F (xi),Mu(xi))
T (∇Mu(xi)). (3.40)
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In practice the values for EMI(i) are calculated at the same joint intensity values i

that were chosen as bin centers for the histogram in the joint density estimation. This
way, the calculation of the mutual information consists of the sampling of the joint
images to generate the histogram followed by the application of the Parzen kernel.
In order to not get into any boundary handling issues during the computations on
the histogram values the histogram is padded with a number of zeros equal to the
radius of the local support of the Parzen kernel used for the density estimation. The
first convolution with the Parzen kernel for the density estimation of the joint PDF
and the marginal PDF of the moving image is then performed on the whole padded
histogram, using a 0 Dirichlet boundary condition. From the result the values of EMI

can be straightforwardly calculated for every bin according to (3.34).

The second convolution with the partial derivative of the Parzen kernel ∂Kρ

∂iM
is

then executed only inside the original, unpadded histogram region, not in the padded
boundary, as the result of the convolution will only be accessed at intensities of
(F (xi),Mu(xi))

T . This way no additional boundary handling is necessary as for the
region, for which the convolution is applied the local support of the Parzen kernel is
fully contained within the padding. For the same reason it is also not necessary to
handle any calculation of EMI where the densities are 0. If either pF = 0 or pMu

=
then pF,Mu

= 0. And if pF,Mu
= 0 then there simply was no sample for that specific

intensity combination in the data that was in reach of the support of the Parzen
kernel. Thus, no bin within the support of the Parzen kernel around this value will
ever be accessed.

Finally, for every discrete position xi the image gradient of the moving image is
multiplied with the energy term resulting from ∂Kρ

∂iM
⋆ EMI accessed at the according

gray value index i. To get a smoothly varying gradient, the values that were only
calculated on the histogram bins are linearly interpolated for gray value indices i that
lie in between histogram bin centers.

3.4 Regularizers

In non-parametric, non-rigid registration the regularity of the computed deformation
field relies on the regularization that is applied. It also ensures that the problem
is well posed (compare Section 3.1.3). Most regularizers have in common that they
require the vector field to be locally smooth, penalizing sharp changes like ridges and
folds. Accordingly, common regularization techniques are often based on derivatives
of the vector field. The diffusion regularizer (Section 3.4.1) quadratically penalizes
the first derivative of the vector field, the curvature regularizer (Section 3.4.2) the
second. A notable advantage of the curvature regularizer is that it is invariant to
affine transforms in the deformation, making the registration less dependent on a
good rigid pre-registration.

In the following we will introduce the diffusion and curvature regularizers, with
their respective derivatives and discrete approximations, as they are used in the
experiments presented in this work.
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3.4.1 Diffusion Regularizer

A straightforward way to ensure a smooth vector field is to quadratically penalize any
variation of the vector field, i. e. the gradient of the vector field should be minimized.
This approach is known as a diffusion regularizer (see [Fisc 99]) as the resulting term
is equivalent to the steady state solution of a diffusion problem on the vector field,
with the gradient of the distance measure acting as the driving force. It is defined as

RDiff(u) =
1

|Ω|

∫

Ω

‖∇u(x)‖2F dx =
1

|Ω|

∫

Ω

d∑

i=1

‖∇ui(x)‖
2
dx, (3.41)

where ‖, ‖F is the Frobenius matrix norm. In the derivative calculation, it can be a
bit confusing which dimensionality the respective terms have. The reader is therefore
reminded that u ∈ R

d is a vector valued function and therefore the gradient is the
Jacobian matrix ∇u = (∇u1, . . . ,∇ud) ∈ R

d×d. Finally, the Laplacian of a vector
field is again a vector valued quantity ∆u ∈ R

d. Applying the calculus of variations
as outlined in Section 3.2 leads to the following Gâteaux derivative.

dRDiff(u;η) =
d

dǫ

1

|Ω|

∫

Ω

d∑

i=1

‖∇ui(x) + ǫ∇ηi(x)‖
2
dx

∣
∣
∣
∣
∣
ǫ=0

=
1

|Ω|

∫

Ω

2
d∑

i=1

∇ηi(x) ∇ui(x) dx

=
1

|Ω|

∫

Ω

2(∇η(x))T (∇u(x)) dx

(3.42)

In order to get rid of the derivative of the test function we have to make use of
boundary conditions imposed on the function u. In this case either von Neumann
(fixed first derivative across the domain boundary) or Dirichlet (fixed known function
on the domain boundary) boundary condition can be chosen. The boundary condition
imposed on u also implicitly impose constraints on the test functions η as these may
not change u in a way that would lead u + ǫη to violate the boundary condition.
The Dirichlet boundary condition is formally defined as

u(x) = c(x) implies η(x) = 0 ∀x ∈ ∂Ω, (3.43)

where c(x) is the known function of boundary values for u and ∂Ω denotes the
boundary of the domain Ω. For the definition of the von Neumann boundary con-
dition it is necessary to introduce n which is a function that for every coordinate
x ∈ ∂Ω is orthogonal to the domain boundary and has unit length. Formally, if
b(t) : R 7→ R

d is a piecewise differentiable curve that defines the domain boundary
∂Ω then n(b(t))T∇b(t) = 0 and ‖n(x)‖ = 1 ∀xin∂Ω. The von Neumann bound-
ary conditions on a vector valued function u then specify for the Jacobian ∇u and
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therefore for each component ∇ui that

n(x)T∇u(x) =
(
n(x)T∇u1(x), . . . ,n(x)

T∇ud(x)
)T

= 0 ∀x ∈ ∂Ω

implies

n(x)T∇η(x) =
(
n(x)T∇η1(x), . . . ,n(x)

T∇ηd(x)
)
= 0 ∀x ∈ ∂Ω.

(3.44)

These boundary conditions can be used in conjunction with Green’s theorem [Bron 99]
to simplify equation (3.42). Green’s theorem is the multi-dimensional extension of
integration by parts and is used here to eliminate the derivative of the test function
∇η.

dRDiff(u;η) =
2

|Ω|

∫

∂Ω

η(x)T (∇u(x)) dx

︸ ︷︷ ︸

=0 by (3.43) or (3.44)

−
2

|Ω|

∫

Ω

η(x)T (∆u(x)) dx

= 〈−2∆u,η〉U
= 0 ∀η ∈ U

(3.45)

In accordance with (3.15), we thus define

∇uRDiff(u) = −2∆u. (3.46)

The regularizer and its gradient formulation is discretized by replacing the differential
operator ∆ with its discretized equivalent A∆, resulting from the use of second order
central differences.

RDiff(u) =
1

s
uTA∆u (3.47)

∇uRDiff(u) =−
2

s
A∆u (3.48)

A∆ is a block structured matrix of the form

A∆ = diag (A∆,b, . . . ,A∆,b)

=






A∆,b 0
. . .

0 A∆,b






(3.49)

where each block matrix A∆,b represents a diffusion matrix In stencil notation (see
Appendix (B)) the block matrices A∆,b can be denoted as

1

h2





0 1 0
1 −4 1
0 1 0



 (3.50)
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for 2-D and a homogeneous image spacing h. More generally the stencil entries e for
a diffusion stencil in d dimensions can be given as

ei1,...,id =
1

h2







−2d if ik = 0 ∀1 ≤ k ≤ d

1 if |il| = 1 ∧ ik = 0 ∀1 ≤ k ≤ d ∧ k 6= l

0 otherwise

, (3.51)

where the subscripts ik indicate the offset in the according dimension from the stencil
center. The full matrix A∆ has therefore a size of ds × ds, where d is the dimen-
sionality and s the number of pixels/voxels with which the data has been discretized.
Additionally, the used boundary condition has to be incorporated into A∆

(k,k). In the
discrete we make the simplification that the domain boundaries are always aligned
with one of the dimensions, due to the rectangular nature of the discrete pixels.

In the following we will make a few simplifications for an easier notation. We
only consider the matrix A∆

k,k so only one component of the vector field at a time.
We will also only consider the domain boundary of the l-th dimension and therefore
omit the dimension index, for the other dimensions. The value ui1,...,id is therefore
simply written as uj with j = il. Furthermore, only the lower domain boundary is
considered i. e. entry u1 is the pixel right adjacent to the boundary and u0 is already
outside the computational domain.

The Dirichlet boundary condition (3.43) just require all values outside of the
computational domain to be equal to 0, and thus u0 = 0. This behavior can be
achieved by deforming the matrix stencil at the boundary such that in the changed
stencil entry ei1,...,id = 0 for ij < 0.

For the von Neumann boundary condition (3.44) it has to be ensured that deriva-
tives over the domain boundary are 0. Using a backward difference we can conclude
that

u1 − u0

h
= 0

u0 = u1.
(3.52)

The stencil thus has to be modified thus that any access across the boundary is
mapped to the adjacent pixel inside the domain, i. e. for the diffusion stencil from (3.51)
placed on a boundary pixel this results in

ei1,...,id =
1

h2







−2d+ 1 if ik = 0 ∀1 ≤ k ≤ d

1 if |il| = 1 ∧ ik = 0 ∧ ij ≥ 0 ∀1 ≤ k ≤ d ∧ k 6= l

0 otherwise

.

(3.53)

3.4.2 Curvature Regularizer

The so-called curvature regularization minimizes second order derivatives, more specif-
ically the Laplacian ∆ of the vector field u to constrain the non-rigidity of the defor-
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mation. This approach was used by Horn and Schunck for optical flow in [Horn 81]
and was introduced as registration regularizer by Fischer et al. in [Fisc 03b]. It is
defined as

RCurv(u) = ‖∆u‖2U =
1

|Ω|

∫

Ω

‖∆u(x)‖2 dx. (3.54)

An important property of RCurv(u) is that affine transforms are not penalized by this
regularizer, as ∆(Ax + t) = 0. As such the quality of the rigid registration that
usually precedes the application of a non-rigid registration loses some importance. It
is also of some advantage for inter patient registrations that global scalings are not
penalized. The Gâteaux derivative of the curvature regularizer is

dRCurv(u;η) =
d

dǫ

1

|Ω|

∫

Ω

‖∆u(x) + ǫ∆η(x)‖2 dx

∣
∣
∣
∣
ǫ=0

=
1

|Ω|

∫

Ω

2(∆η(x))T (∆u(x)) dx.

(3.55)

Similarly to the derivation of the derivative of the diffusion regularizer we have to
make use of boundary conditions. The used boundary conditions in this case are of
von Neumann type, i. e. (3.44) and additionally

n(x)T ∇∆u(x) = 0 implies n(x)T ∇∆η(x) = 0 ∀x ∈ ∂Ω. (3.56)

By the application of Green’s theorem (3.55) can be simplified to

dRCurv(u;η) =
2

|Ω|

∫

Ω

(∆η(x))T (∆u(x)) dx

=
2

|Ω|

d∑

=1

∫

Ω

(∆ηi(x))
T (∆ui(x)) dx

=
2

|Ω|

d∑

=1

∫

∂Ω

(n(x)T∇ηi(x))
︸ ︷︷ ︸

=0 by (3.44)

∆ui(x) dx−

∫

Ω

(∇ηi(x))
T (∇∆ui(x)) dx

=
2

|Ω|

d∑

=1

−

∫

∂Ω

(n(x)T∇∆ui(x))
︸ ︷︷ ︸

=0 by (3.56)

ηi(x) dxΩ +

∫

Ω

(∆2ui(x))ηi(x) dx

=
2

|Ω|

∫

Ω

η(x)T (∆2u(x)) dx

=
〈
2∆2u,η

〉

U
= 0 ∀η ∈ U (3.57)

. (3.58)
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We can therefore define that

∇uRCurv(u) = ∆2u. (3.59)

In the discrete the curvature regularizer and its derivative is represented by a linear
operator

RCurv(u) =
1

s
uTA∆2u (3.60)

∇uRCurv(u) =
2

s
A∆2u. (3.61)

There are two feasible ways to discretize the operator ∆2 to the matrix A∆2 . The
first is based on the observation that ∆2 = ∆T∆. In the previous section it was
shown that ∆ can be discretized with the matrix A∆. The matrix resulting from the
discretization of ∆2 can therefore be expressed as A∆2 = A∆

TA∆, with discretized
von Neumann boundary conditions.

Another way to arrive at a discretized operator is to directly discretize ∆2, with
finite differences. The resulting matrix A∆2 has the same block structure as the dif-
fusion regularizer (see (3.49)), only with a matrix representing the discretized second
order derivatives.

A∆2 = diag(A∆2
(1,1), . . . ,A∆2

(d,d)) (3.62)

The matrices A∆2
(i,i) acting on the individual dimensions of the vector field are dis-

cretized using finite differences. In stencil notation, with a homogeneous spacing h
of the data, they can be denoted as

1

h4









0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0









, (3.63)

in 2-D. The matrix stencil in 3-D can be given as

ei1,i2,i3 =
1

h4







42 if i1 = i2 = i3 = 0

−12 if
∑3

l=1 |il| = 1

2 if |ik| = 1 ∧
∑3

l=1 |il| = 2

1 if |ik| = 2 ∧
∑3

l=1 |il| = 2

0 otherwise

. (3.64)

For the incorporation of the boundary condition we employ the same simplifications
for the notation as described for the diffusion regularizer above. For the curvature
regularizer we have to incorporate the von Neumann boundary condition on the
vector field (3.44), which was already discussed in (3.52) and on the vector fields
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Laplacian (3.52). Looking again at the domain boundary in one dimension, this
second condition can be discretized using finite differences as

(∆u)1 − (∆u)0
h

= 0

(∆u)1 = (∆u)0
u0 − 2u1 + u2

h2
=

u−1 − 2u0 + u1

h2
using finite differences

u2 − u1 = u−1 − u0

u2 = u−1 using (3.52) (u1 = u0). (3.65)

We thus end up with a kind of mirroring boundary handling. In 2-D these boundary
conditions will therefore result in the following deformed stencils, which are respec-
tively one pixel off of the image boundary and directly adjacent to it.

1
h4









0 0 1 0 0
0 2 −8 2 0
0 −7 20 −8 1
0 2 −8 2 0
0 0 1 0 0









1
h4









0 0 1 0 0
0 0 −6 2 0
0 0 12 −7 1
0 0 −6 2 0
0 0 1 0 0









one pixel removed from the boundary directly on the boundary

(3.66)

3.5 Parameter Selection

The registration formulation discussed this far has only one parameter that is a fun-
damental choice of the user: The weighting parameter α that balances the regularizer
against the distance measure. All other parameters discussed, like the number of bins
or the kernel width in the mutual information implementation are only numerical pa-
rameters that can be automatically estimated (compare [Hahn 10]). The α parameter,
however, is a user choice that decides how much deformation should be allowed to
get a good match. The problem is therefore how to allow the user to choose a value
for α that will yield a result that matches his expectations. Ideally the parameter
governing the stiffness of the calculated deformation should therefore have an intu-
itive meaning attached to it. In practice, however, the values that have to be chosen
for α to get a desired result depend on the used distance measures and regularizers
and on the images that are registered. It is not even well defined what a change in
the value for α will change in the registration result. Doubling α will not necessarily
result in a “twice as rigid” deformation. It is unclear how one would define a “twice
as rigid” deformation to begin with. We therefore examine in the following how the
parameter specifying the stiffness of the desired transform can be specified in a way
that is at least somewhat intuitive and behaves in a predictable fashion.

3.5.1 Stiffness

The term stiffness or rigidity of a deformation is intended to describe how much
the deformation field is allowed to change over a certain distance. This stiffness is
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(a) (b)

Figure 3.6: The same deformation (gray arrows) applied to a (a) “normal” and in (b)
shorter, “compressed” stick. Intuition tells us that bending the shorter stick by the
same amount as the long one takes more force.

measured in the algorithms used in this work by the regularization terms. For instance
let us consider a 1-D object, i. e. a stick in a 2-D world. If some force is applied to
one end of this idealized stick, while the other is fixed, it will deform according to
the strength of the force and the physical characteristics of the stick. If the same
forces are applied to a stick twice as long we would expect it to be bended to a much
larger extent. Or, if we wanted to bend a shorter stick by the same amount, we would
expect to need much more force (compare Figure 3.6). This example is the intuitive
model we will rely on to set the parameter for the stiffness of the deformation. In
respect to our regularization terms the change in length of the stick corresponds to a
change in size of the problem domain Ω in which the deformation is represented, while
the deformation itself i. e. the length of the offsets remains unchanged. If the same
deformation is scaled (compressed or expanded) to another problem domain the value
of the regularizer will change accordingly. In order to evaluate this mathematically
we define the domain scaled by κ on which the regularizer is evaluated as Ωκ, and
the quantities represented in it, as

Ωκ :=
{

x(κ) | x(κ) =
x

κ
∧ x ∈ Ω

}

|Ωκ| =
|Ω|

κd
u(κ)(x(κ)) := u(κ)

(x

κ

)

:= u(x).

(3.67)

We will now use this to take a look at the change in the regularization energy when the
problem domain is scaled. First, let us consider the derivative ∇u(κ)(x). Substituting
u for u(κ) in the derivative yields

∇u(κ)(x) = ∇xu(κx) = κ∇u(κx). (3.68)

It is imperative to keep in mind here to apply the chain rule when substituting u(κx)
for u(κ)(x). Evaluating the diffusion regularizer from Section 3.4.1 on the scaled
problem domain Ωκ yields

RDiff(u
(κ)) =

1

|Ωκ|

∫

Ωκ

d∑

i=1

‖(∇u
(κ)
i )(x(κ))‖2 dx(κ)

=
κd

|Ω|

∫

Ωκ

d∑

i=1

‖κ ∇ui(κx
(κ))‖2 dx(κ)
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=
κd+1

|Ω|

∫

Ω

d∑

i=1

‖∇ui(x)‖
2 1

κd
dx by substitution x(κ) =

x

κ

=
κ

|Ω|

∫

Ω

d∑

i=1

‖∇ui(x)‖
2
dx. (3.69)

Doing the same for the curvature regularizer gives

RCurv(u) =
1

|Ωκ|

∫

Ωκ

‖∆u(κ)(x(κ))‖2 dx(κ)

=
κd

|Ω|

∫

Ωκ

‖∇T
x
(κ ∇u(κx(κ)))‖2 dx(κ)

=
κd

|Ω|

∫

Ωκ

‖κ2 ∆u(κx(κ))‖2 dx(κ)

=
κd+2

|Ω|

∫

Ω

‖∆u(x)‖2
1

κd
dx by substitution x(κ) =

x

κ

=
κ2

|Ω|

∫

Ω

‖∆u(x)‖2 dx. (3.70)

Therefore, while a change in the size of the computational domain by a factor of κ in-
duces the same amount of scaling in the diffusion regularizer, it is scaled quadratically
i. e. by κ2 in the curvature regularizer. Therefore α has to be varied differently for
those two regularizers in order to get an (intuitively) similar increase in the stiffness
of the transform.

To get a more intuitively behaving parameter governing the stiffness of the trans-
form we propose to use the parameter κ introduced in this discussion instead of α.
We thus consider the regularizer in an artificially scaled computational domain Ωκ.
A high value for κ leads to a compressed domain, which generates higher values in
the regularizer as the vector field appears to vary more rapidly. Thus the parameter
setting for κ has an intuitive meaning attached that allows the user to better predict
the consequences of a specific increase or decrease of κ. Doubling the stiffness κ leads
to domain Ωκ scaled down by a factor of 2 and thus a “twice as smooth” deformation.
That this intuition actually makes sense is illustrated in Figure 3.7 (compare also
the results presented in Figure 6.2). The same approach would also be applicable to
other standard regularizers known from literature, as for instance, elastic.

Computationally the use of κ instead of α to weight the regularization term,
does not change anything, as for a given regularizer a parameter setting of κ can be
readily translated into a setting for α, for the diffusion and curvature regularizers,
respectively.

αDiff(κ) := κ αCurv(κ) := κ2. (3.71)

In the discrete formulation the same effect can be achieved in our discretized regular-
ization terms (3.48) and (3.61) by simply scaling the image spacing h by the stiffness
parameter as hκ = h

κ
.
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(a) κ = 20 (b) κ = 40, scaled and tiled (c) κ = 40

Figure 3.7: Example registration (see Section 4.7.1 for a description of the dataset)
with a curvature regularizer and two different values for the stiffness κ. As κ is
doubled between (a) and (c) the deformation should be “twice as smooth”. This is
illustrated by (b) which is the same result as (c), but scaled down by a factor of 2
and tiled to yield an image that should have roughly the same amount of variation
and similarly sharp edges as (a).

3.5.2 Distance Measure Scaling

Even though there is now an intuition how a change in the parameter κ changes
the registration result, there is still no information about how a given κ will act
on a new, unknown dataset. The first part of this problem is due to the different
distance measures, which can evaluate to quite different values when applied to the
same dataset. As the different distance measures have been designed with different
goals for a good match in mind, it is certainly not possible to map them in a way
that they will produce directly comparable values. However, it should be possible to
rescale them at least into a common value range defined by a best case and worst
case match. To this end we assume two identical images as the theoretical best
case match. As a “realistic” worst case match we will work with a random mapping
of the pixels in the two images to each other. Naturally, there will often be even
worse matches available for a specific distance measure but to give meaning to the
rescaling the assumed worst case match should be the same for all distance measures.
A linear rescaling is applied to map the values produced by the distance measure
into a range of size of 1. This way the possible variation between different distance
measures is at least limited, which will allow, to a certain extent, to generate similar
results with different distance measures, while keeping the stiffness κ constant. Even
though this rescaling cannot change anything about the differing non-linear behavior
of the distance measures, it worked surprisingly well in practice, as exemplified in
Figure 3.8. Nonetheless, this kind of rescaling is not applied during any of the other
experiments in this work, to allow for an easier reproducibility of the results.

In the following the details of the linear rescaling are introduced for the distance
measures used in this work (sum of squared differences and mutual information).
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(a) Sum of squared differences,
before

(b) Sum of squared differences,
after

(c) Sum of squared differences,
deformation magnitude

(d) Mutual information, before (e) Mutual information, after (f) Mutual information, defor-
mation magnitude

Figure 3.8: Result of two registrations on a mono-modal dataset (see Section 4.7.1
for a description of the dataset) using the rescaled mutual information and sum
of squared differences distance measures with the same stiffness parameter κ = 4.
First column (a)(d): checkerboard overlay before registration; Second column (b)(e):
checkerboard overlay after registration; Third column (c)(f): gradient magnitude
image of deformation u
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Sum of Squared Differences

In the case of the sum of squared differences distance measure the best possible
match, i. e. two identical images will result in a distance of DSSD = 0. For the worst
case match, a random association of pixels with each other i. e. they are assumed
to be independent, we have to estimate the values in the difference image created
by this match. As a simplification we will assume that the input image intensities
iF and iM can be described by normal distributions i. e. their corresponding means
and variances. Using these we can also model the image intensities of the difference
image as a normal distribution with

idiff
:= iF − iM

E [idiff] = E [iF ]− E [iM ] (3.72)

Var [idiff] = Var [iF ] + Var [iM ] . (3.73)

The identity for the variance is based on the given worst case assumption that the
distributions for iF and iM are independent. In the discrete the sum of squared
differences distance measure computes the arithmetic mean of the squared differences
in the domain. As the arithmetic mean is the same as the discrete expectation, we
can write this as

DSSD(F,M) = E
[
i2
diff

]
(3.74)

This can be reformulated by using the following equivalence.

Var [idiff] = E
[
(idiff − E [idiff])

2
]

= E
[
i2
diff

− 2E [idiff] idiff + E [idiff]
2]

= E
[
i2
diff

]
− 2E [idiff]

2 + E [idiff]
2

= E
[
i2
diff

]
− E [idiff]

2

(3.75)

Solving the above for E [i2
diff
] we can conclude that

DSSD(F,M) = E
[
i2
diff

]

= Var [idiff] + E [idiff]
2

= Var [iF ] + Var [iM ] + (E [iF ]− E [iM ])2 by eq. (3.72) and (3.73) .
(3.76)

The sum of squared differences distance measure is therefore scaled with the inverse
of E [i2

diff
], which can be computed from the expectation and variance of the input

images. The rescaled distance measures will then yield results in the range [0, 1]
most of the time. As the upper bound is based on the assumption that the worst
case match is a random matching of gray values, which is not the actual worst case
possible, it is not guaranteed that it will always be contained within this range.
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Mutual Information

For the mutual information the assumed worst case match of an independence of
the distributions of iF and iM means that pF,Mu

(i) = pF (iF )pM(iM). The mutual
information distance measure will evaluate to

DMI(F,Mu) = −

∫

R2

pF,M(i) log
pF,M(i)

pF (iF )pM(iM)
di = 0. (3.77)

Please note that the distance measures in this work have to be minimized and the
mutual information distance measure is defined as the negative mutual information.
This is therefore the largest value the mutual information distance measure will take.

The best possible match F (x) = M(x) is characterized by pF (i) = pM(i). For
the joint probability it has to hold that pF,M(i) di = pF (iF ) diF = pM(iM) diM ⇐⇒
iF = iM and pF,M (i) = 0 ⇐⇒ iF 6= iM .

DMI(F,M) = −

∫

R2

pF,M(i) log
pF,M(i)

pF (iF )pM(iM)
di

= −

∫

R

pF (iF ) log
diM

pF (iF )
diF

=

∫

R

pF (iF ) log pF (iF ) diF −

∫

R

pF (iF )(log diM) diF

= −H(pF )− log diM (3.78)

= −H(pM)− log diF (3.79)

Here, H denotes the continuous entropy. In the continuous case the value log diM
is equal to infinity. In practice, however, we never have to deal with this problem,
as diM simply corresponds to the quantization of our input images in the mutual
information calculation i. e. the resolution used during the histogram binning. In
reality pM and pF will rarely be identical. We therefore use the maximum absolute
rescaling factor that can be achieved by the formulation. The mutual information
distance measure can thus be rescaled by a constant value to yield values in the
interval [−1, 0] which has the same range as the rescaled sum of squared differences
distance measure described above. In contrast to the range we chose for rescaling
the sum of squared differences distance measure, the rescaled mutual information
distance measure will actually not be able to generate results outside of this range.

Another possibility would certainly be to use any of the normalized mutual in-
formation variants available. However, all of these make use of a division by a non-
constant factor, which leads to more complicated derivatives of the measure.

3.5.3 Regularizers

A similar problem is posed by the regularizer. The values of the regularizer are usually
not standardized and can describe rather different things. A similar approach to the
rescaling of the distance measures is difficult as a worst case deformation is rather
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impossible to define. Instead of the worst case deformation one might choose to define
a “standard” deformation for which all regularizers should yield the same value. Such
a “standard” deformation would have to be similar to deformations one would expect
to see in practice. The choice that we explore in this context is based on a sine
function. The advantage of using a trigonometric function for the specification of the
vector field is that it yields a smooth variation that does not vanish in the higher
order derivatives. Additionally, in the cases described here the regularizers can be
calculated explicitly for the chosen “standard” deformation. The specific deformation
used is

ustd(x) :=
1

d

d∑

i=1

sin(xi). (3.80)

The regularizer is evaluated on ustd over the domain Ω = {x | − π ≤ xi ≤ π i =
1, . . . , d} to obtain the standardization value. We thus derive for the diffusion regu-
larizer that

RDiff(ustd) =
1

|Ω|

∫

Ω

‖∇ustd(x)‖
2
F dx

=
1

|Ω|

∫

Ω

‖∇
1

d

d∑

i=1

sin(xi)‖
2
dx

=
1

|Ω|d

∫

Ω

d∑

i=1

cos2(xi) dx

=
1

|Ω|d

d∑

k=1

|Ω|

2
dx

=
1

2
, (3.81)

The elimination of the integral is done by performing partial integration as follows

∫

Ω

cos2(xi) dx = [sin(xi) cos(xi)]Ω +

∫

Ω

sin2(xi) dx

=

∫

Ω

1 dx−

∫

Ω

cos2(xi) dx

∫

Ω

cos2(xi) dx =
|Ω|

2
.

Analogously we can calculate for the curvature regularizer

RCurv(ustd) = ‖∆ustd‖
2
U

=
1

|Ω|

∫

Ω

‖∆
1

d

d∑

i=1

sin(xi)‖
2
dx
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=
1

|Ω|

∫

Ω

‖ −
1

d

d∑

i=1

sin(xi)‖
2
dx

=
1

|Ω|d

∫

Ω

d∑

i=1

d∑

j=1

sin(xi) sin(xj) dx

=
1

2|Ω|d

d∑

i=1

d∑

j=1

∫

Ω

cos(xi − xj)− cos(xi + xj) dx

︸ ︷︷ ︸

=0

(3.82)

The integrals under the double sum are for i = j

∫

Ω

cos(0)− cos(2xi) dx = |Ω|.

For i 6= j we can again use partial integration to show that

∫

Ωxj

∫

Ωxi

cos(xi − xj)− cos(xi + xj) dxi dxj

=

∫

Ωxj

sin(π − xj)− sin(−π − xj)− sin(π + xj) + sin(−π + xj) dxj

= − cos(2π) + cos(0) + cos(−2π)− cos(0) + cos(2π)− cos(0)− cos(0) + cos(−2π)

= 0.

Inserting these identities into (3.82) we get

RCurv(ustd) = ‖∆ustd‖
2
U

=
1

2|Ω|d

d∑

i=1

d∑

j=1

∫

Ω

cos(xi − xj)− cos(xi + xj) dx

︸ ︷︷ ︸

=0

=
1

2|Ω|d
d|Ω|

=
1

2
. (3.83)

For this specific test function there is accordingly no rescaling necessary. But this
changes quickly if the test function is changed. For example if the sin function is varied
with twice the angular velocity i. e. sin 2xi then RDiff(ustd) = 4.5 and RCurv(ustd) =
40.5, due to the application of the chain rule in the derivatives. This will therefore
only work to a very limited extent (compare Figure 3.9). Due to this, and also to
keep the results reproducible, no rescaling of this kind was applied during any of the
other experiments contained in this work.
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(a) checkerboard before regis-
tration

(b) checkerboard after registra-
tion with RDiff

(c) checkerboard after registra-
tion with RCurv

(d) deformation magnitude ustd(e) deformation magnitude af-
ter registration with RDiff

(f) deformation magnitude af-
ter registration with RDiff

Figure 3.9: Result of two registrations on a mono-modal dataset (see Section 4.7.1 for
a description of the dataset) using the sum of squared differences distance measure.
Compared is the use of the diffusion and curvature regularizer weighted with a stiffness
parameter κ = 40. First row, checkerboard overlays: (a) before registration, (b)
after registration with diffusion regularization, (c) after registration with curvature
regularization; Second row, magnitude deformation fields: (d) reference deformation
ustd (e) deformation after registration with diffusion regularization, (f) deformation
after registration with curvature regularization



Chapter 4

Optimization in Non-rigid,
Non-parametric Registration

An important part of any registration approach is the optimization of the chosen
energy terms. Experiments show that the result of the registration can strongly vary
with the amount of optimization applied and also with the optimization algorithm
used. This is mostly due to the complicated energy landscape represented by the tar-
get energy functional E , which usually has several local minima. In itself this is not
at all surprising, but it demonstrates that before specialized smoother and matching
energies are designed and evaluated it is necessary to ensure that they are properly
optimized. Otherwise, any evaluation will not only judge a specific registration for-
mulation, but also the quality of the optimizer employed. Vice versa the choice of the
distance measure and regularizer plays an important role in judging the performance
of the optimization algorithm, as some measures are, for example due to a higher
non-linearity, easier to optimize than others. The numerical implementation of the
optimization also has a significant impact on the practical usability of the registration
in terms of runtime, memory requirements and numerical parameters needed for a
specific algorithm.

All optimization algorithms discussed in the following are based on solving the
Euler Lagrange equations arising from ∇uE(F,M,u) = 0, or rather the discretized
equivalent ∇uE(F,M,u) = 0.

4.1 Gradient Descent

The simplest approach to minimize the energy functional E is to employ a gradient
descent optimization scheme. For the registration problem this is written as

u(t+1) = u(t) − τ∇uE(F,M,u)

= u(t) − τ (∇uD(F,Mu(t)) + α∇uR(u))

= u(t) − τ
(
∇uD(F,Mu(t)) + αAu(t)

)
,

(4.1)

where the matrix A is the linear operator resulting from the discretization of ∇uR
i. e. A∆ (3.48) or A∆2 (3.61). The superscripts in brackets in this formulation indicate

47
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(a) Fixed image F (b) Moving image Mu (c) Magnitude deformation ‖u‖

Figure 4.1: Result of an explicit optimization scheme using the sum of squared
differences as distance measure and diffusion as regularizer after 20 iterations. In
order to get any significant steps at all, line searching was disabled. (a) is the reference
image, (b) the deformed moving image after the registration. It is clearly visible that
the algorithm did not regularize the deformation sufficiently such that only at the
edges in the image changes were performed. This is also reflected in the magnitude
image of the deformation (c).

the index of the variable over the course of the non-linear iteration. Theoretically
gradient descent is guaranteed to eventually converge to a local minimum, provided
that E is sufficiently smooth and that the step size τ is chosen sufficiently small. In
practice however, the calculated descent direction is often so bad that a step size
resulting in an actual decrease of the energy is so small that no real improvement is
achievable. This problem occurred most pronounced in our experiments when using
the mutual information as distance measure.

A reason for these problems can be observed when looking at the vector field
after a view iterations of a registration using the sum of squared differences distance
measure and a diffusion regularizer. Figure (c) shows the gradient magnitude of the
calculated deformation. It exhibits strong edges and thus a high variance of the
image gradient which are properties of a very non-smooth deformation field. This
result can be better understood by considering the regularizer which is supposed to
keep the deformation smooth. An application of, for instance, the diffusion regularizer
is similar to diffusion filtering on the gradient of the distance measure. From diffusion
filtering it is known that in an explicit scheme small step sizes and many iterations are
necessary (compare e. g. [Weic 98]) to solve this problem. But in a gradient descent
based registration scheme, the diffusion problem only gets one iteration step applied
before the driving force, the gradient of the distance measure changes again. As a
result, the deformation is not sufficiently smoothed during each iteration step which
results in the poor performance of the gradient descent scheme.

4.2 Semi-Implicit Gradient Descent

As consequence to the observations made above, the regularizer has to be treated
differently. As all the regularizing terms we are dealing with are implemented as
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linear operators, it is possible to solve for them implicitly. We therefore consider the
deformation u that the regularizer is applied to already in the next time step, i. e.
the regularizer is applied to u(t+1) instead of u(t). Equation (4.1) thus becomes

u(t+1) = u(t) − τ∇uD(F,Mu(t))− ταAu(t+1)

(I+ ταA)u(t+1) = u(t) − τ∇uD(F,Mu(t)). (4.2)

An implicit formulation is known to be much more stable, allowing the use of larger
step sizes, which offsets the added computational cost. In this case the formulation
is only semi-implicit, but as the regularizer, which was identified as one of the main
problem sources, is handled implicitly this is still a big improvement and the conver-
gence is much more stable [Schw 06]. In practice this semi-implicit scheme is relatively
well behaved and delivers good results after a sufficient number of iterations [Schw 06].

In exchange it is now necessary to solve for a large sparse linear system. As the
system matrix I + ταA is positive definite (see Appendix A), it is possible to apply
iterative sparse matrix solvers like Gauss-Seidel, Jacobi, Krylov subspace methods
(like conjugate gradient (CG)) (see [Schw 06]) or Multigrid (see [Brig 00]). For the
regularizers used in this work there is also a very efficient direct solver based on the
Fast Fourier Transform (FFT) (see [Fisc 99, Mode 04]). Another downside of this
formulation is that it complicates line searching. Whenever the step size τ is changed
the linear system has to be solved again, which is computationally quite costly.

4.3 Inexact Newton

In the previous sections, the regularizing term was identified as a major problem in
the optimization. As it is known that in the original energy E the regularizer is only
a second order term, a second order method like Newton’s method that makes use of
the known Hessian H will not make any “errors” as far as the regularizer is concerned.
The corresponding Newton type optimization will then look like

u(t+1) = u(t) − τH−1
E(F,M,u(t))

∇uE(F,M,u(t))

= u(t) − τ
(

HD(F,M
u
(t) ) + αHR

)−1 (
∇uD(F,Mu(t)) + α∇uR(u(t))

)

= u(t) − τ
(

HD(F,M
u
(t) ) + αA

)−1 (
∇uD(F,Mu(t)) + αAu(t)

)
.

(4.3)

Additionally, the Hessian provides valuable information about how much the energy
changes with respect to each variable, and thus how much change should be applied
at each discrete position in the vector field. The gradient alone does not contain this
kind of information. While the gradient does only indicate in which direction the
method has to step in order to minimize the measure, the Hessian used in Newton’s
method also provides an approximation of how long this step has to be. In 1-D (see
Figure 4.2) this corresponds to gradient descent fitting a tangent to the function, while
Newton’s method fits a parabola, with its minimum marking the natural, indicated
step length. This also explains one of the weaknesses of Newton’s method: If the
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(c) Newton x = 0.6

Figure 4.2: Illustration of one step of a (a) gradient descent and (b) Newton’s
method. The black curve is the function f(x) = (x − 1)(x + 1)(x − 2)2. The blue
curve depicts the tangent or respectively the parabola the methods fit to the function.
(c) shows Newton’s method in a concave area of the function f , where it turns into
a maximization method.

function is not convex at the current position x (i. e. positive definite in d-D) then
Newton’s method is not a minimization method anymore, as the fitted parabola will
flip upside down (see 4.2c). If the function is concave (negative definite in d-D), it
will therefore maximize the function and if it is indefinite (only possible in d-D), it
will converge towards a saddle point.

If the advantage of Newton’s method was limited to just the global step length,
this would not be a big deal as we calculate a good step length in the line search
procedure anyway. The real advantage is that this behavior is exhibited in each
variable of a vector valued function, thus allowing the method to scale the gradient
vector individually in each component (compare Figure 4.3).

The benefit of this behavior can be illustrated by taking a look at the derivative
of the mutual information distance measure (3.36). It depends on the image gradient
∇Mu. If the image statistics are the same for two image regions the overall mutual
information energy will depend on both image regions in a similar way. For example in
Figure 4.3 two circles have to be matched onto two squares. Due to the image gradient
present in the gradient of the mutual information energy, the gradient strength differs
for the two circles. Practically this means that over the course of the iteration the
white area will be deformed much quicker than the gray area. In extreme cases, this
can mean that an area with high gradients completely dominates the optimization
process and an area with weaker gradients gets almost ignored. A very common
example where this might happen is in registering computed tomography images
where the bone and contrast agent to soft tissue contrast can generate such high
gradients in the distance measure. In practice, a good step size control will try to
find a balance between both image regions. The better solution, however, would be
a Newton type method that can use its Hessian (or an approximation thereof) to
rescale the gradient appropriately.

The challenge in applying Newton’s method is to calculate the Hessian of the
distance measure HD(F,M

u
(t) ) and to solve the large linear system, arising from the

inverse of the Hessian of the energy HE(F,M,u(t)). For the sum of squared differences
distance measure (see Section 3.3.1) the discrete Hessian can be calculated from the
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(a) Gradient descent; f(x, y) = x2 + 5y2
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(b) Newton; f(x, y) = x2 + 5y2
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(c) Gradient descent; f(x, y) = x2 + 10y4
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(d) Newton; f(x, y) = x2 + 10y4

Figure 4.3: Illustration of one step of (a)(c) gradient descent and (b)(d) Newton’s
method. The fat blue line is the step the methods would take with a step length of
1, the thin blue line shows the range that a line search could pick from. The 2-D
functions (a)(b) f(x, y) = x2 + 5y2 and (c)(d) f(x, y) = x2 + 10y4, are visualized
by isolines at f(x, y) = 1, . . .. In the purely quadratic function, Newton’s method
is obviously superior as the target function can be correctly fitted. In the mixed
quadratic and quartic function, Newton’s method is not able to converge in one step,
but still it is visible that the search direction is superior to that given by gradient
descent and also the indicated step size is reasonable.
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(a) Fixed image F (b) Moving image M

(c) Mutual information gradient magnitude
‖u(x)‖

(d) Overlay Mu and ‖u(x)‖

Figure 4.4: Behavior of the gradient of the mutual information distance measure.
(a) fixed image, (b) moving image, (c) mutual information gradient magnitude, (d)
moving image after one step of semi-implicit gradient descent, overlaid with fixed
image contour

discrete derivative ∇uDSSD (3.23) as

HDSSD(F,M
u
(t) )(xi) = ∇2

u
DSSD(F,Mu)(xi)

= ∇u (2(F (xi)−Mu(xi))∇Mu(xi))

=
2

s
(∇Mu(xi))(∇Mu(xi))

T +
2

s
(F (xi)−Mu(xi))∆Mu(xi). (4.4)

The according discrete Hessian matrix HD(F,Mu) therefore has on its main diagonal
the squared first order partial derivatives and the second order partial derivatives
of Mu. On the off-diagonals there are the mixed products of the first order partial
derivatives and the mixed second order partial derivatives coupling the dimensions.
Theoretically one could just use this term, calculate it and use it in Newton’s iteration.
In practice, however, there are several problems with this approach. One problem is
that on image data that is often degraded by noise, it is pretty hard to calculate a
good second derivative of the image ∆Mu. Another problem is that Newton’s method
is only guaranteed to converge to a minimum on convex functions i. e. the Hessian
of the function is required to be positive definite. For the energy E(F,M,u) this is
in general not the case, due to the dependence on the image content. As far as the
Hessian is concerned, it is again the part with the second derivatives ∆Mu which
causes the problem. The summand with the first derivatives is inherently positive
definite, as is the regularizer (see Appendix A).

A possible solution to this problem is to just drop the term 2
s
(F − Mu)∆Mu,
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Figure 4.5: General structure of the reduced Hessian HD(F,Mu) for the sum of squared
differences distance measure. The delimited boxes indicate the block matrices for the
dimension (here 3-D). On the main diagonal there are the quadratic first order partial
derivatives, on the off-diagonal the corresponding mixed products of the first order
partial derivatives.

arguing that close to the correct solution F −Mu will be small and ultimately tend
to 0. The Hessian of the sum of squared distance measure is therefore approximated
just by

HDSSD(F,M
u
(t) )(xi) ≈

2

s
(∇Mu)(∇Mu)

T . (4.5)

Only the first order partial derivatives are retained. This results in a matrix as
depicted in Figure 4.3). Hömke et al. proposed in [Homk 06] an approach using this
approximation for the Hessian. The work makes clear that the main problem using
this approximation of the Hessian is to solve for the resulting inverse problem. The
system matrix has, depending on the image content strongly varying stencil entries
and adds additional matrix couplings between the dimensions, such that solving for
the diffusion or curvature regularizer cannot be broken down into a sub-problem for
each dimension anymore. This not only makes the application of an FFT based solver
scheme impossible, it also makes the application of an iterative numeric solver rather
complicated. This is also shown in [Kalm 03]. In [Homk 06] a multigrid solver which
has to employ line smoothing in order to obtain acceptable convergence rates is used.
All of this means that solving the linear problem with this approximation of the
Hessian introduces a lot of overhead and is computationally quite costly. Henn et al.
introduced a closely related approach in [Henn 03], with the main difference that they
use an iterative regularization, by applying the regularizing term only in the Hessian
and not in the energy functional itself. They circumvented the problem of the linear
solver by working with a direct sparse matrix solver. But direct sparse matrix solvers
are limited in their applicability mostly to 2-D, due to memory constraints. Also they
are usually much slower for large problems than good iterative solvers.

In order to alleviate the problem with the linear solver, Haber et al. [Habe 06] use
only the main diagonal of (∇Mu)(∇Mu)

T instead of the full matrix. This still does
not make an FFT based solver applicable, but it reduces matrix coupling and makes
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the implementation of a Multigrid solver for this problem easier.

HDSSD(F,Mu) ≈ 2 diag

((
∂Mu(x)

∂x1,1

)2

, . . . ,

(
∂Mu(x)

∂xd,s

)2
)

. (4.6)

The good convergence of a method only employing a diagonal matrix as an approx-
imation of the Hessian of the distance measure and the observation that actually the
regularizer and not the distance measure was the cause of most problems in the opti-
mizations, prompted us to simplify even further. We therefore examined approaches
that employ only a scaled identity matrix ǫI as approximation to the Hessian of the
distance measure HDSSD(F,Mu).

HDSSD(F,Mu) ≈ ǫI (4.7)

This eliminates most of the advantages discussed above that Newton’s method has
in approximating the distance measure. On the other hand it makes it possible again
to employ FFT based solvers for the solution of the linear problem and also greatly
simplifies any iterative solvers. The convergence rate of the non-linear scheme, how-
ever, can be expected to be degraded as the approximation of the distance measure
is basically reduced to the same quality as in pure gradient descent. Naturally the
real performance of such methods depends on the choice of ǫ which should reflect the
scaling of the gradient of the distance measure. A straightforward choice for the sum
of squared difference distance measure is to just use the arithmetic average over the
squared main diagonal of the part of the Hessian that was used in (4.5).

ǫ =

∑sd

i=1 (∇Mu)
2
i

sd
(4.8)

Even with this very crude approximation the convergence of the algorithm is rather
good, as shown in Section 4.7.

4.4 Quasi-Newton

So far all the Newton type methods presented were restricted to sum of squared
differences as distance measure. This is due to the complicated nature of analytically
calculating higher order derivatives for mutual information. As an alternative it is
possible to try to approximate HDMI(F,Mu) numerically. Newton-type algorithms that
work with numerically approximated Hessians are generally known as Quasi-Newton
methods. Quasi-Newton methods are essentially the multidimensional extension of
the secant method which replaces the gradient i. e. the tangent of the function by
a secant through the function values of the last steps. Quasi-Newton methods are
derived from the so-called secant condition, which requires the current approximation
of the Hessian Hi+1 to at least be valid for the last two steps of the optimization
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algorithm.

Hi+1si = ti

where si = u(t+1) − u(t)

ti = ∇uD(F,Mu(t+1))−∇uD(F,Mu(t)) (4.9)

The secant condition constitutes a linearization of the Hessian around the current
values of u(t+1) and u(t). As a starting point, this can be used to determine a numerical
value for ǫ from equation (4.7), by requiring that ǫ be a least-squares solution to (4.9).

Hi+1 = ǫi+1I

ǫ∗i+1 = argmin
ǫi+1

(ǫi+1si − ti)
2

ǫ∗i+1 =
sTi ti

sTi si
(4.10)

Interestingly this is essentially a finite difference scheme projected down onto si.

There are two immediate problems with this approach. The first is how to secure
the positive definiteness of Hi+1 i. e. ǫ > 0. In order for ǫ > 0 it has to hold
that sTi ti > 0. This could for instance be ensured in the line search by employing
the strong Wolfe line search condition described in Section 4.5. However, the Wolfe
conditions add quite some computational cost. Other more heuristic ways to deal
with this problem are to just ignore a negative value for ǫi+1 and continue with the
last valid estimate or to use its absolute value. In our implementation, the second
alternative was chosen, along with a lower threshold for ǫ in order to prevent it from
getting too close to 0. The second problem is that the formula requires an “old” u(t)

and a “new” u(t+1) position to compute ǫi+1. In other words, it is assumed that a step
has already been performed.

In most Quasi-Newton algorithms this first step is simply a gradient descent step
i. e. H1 = I. In the case of registration, this is not a good idea due to the bad
performance of the gradient descent. A better way is to perform a single step of the
semi-implicit gradient descent scheme. In this case a small initial step size for this
scheme is sufficient as only any kind of first step is needed.

Thus far we started out with an algorithm that uses a rather good approximation
of the Hessian of the sum of squared differences distance measure and progressively
simplified it. The advantage of a simple representation of the Hessian is that the linear
solver becomes simpler and the calculation of the Hessian can be done numerically.
During the simplification the second order accuracy for the regularizer is retained.
The regularizer is therefore much less of a problem. What is sacrificed is the accuracy
in the distance measure, which leads to a degradation in the convergence rate of the
non-linear iteration.

In order to recover some of the information that the Hessian provides, we now
employ numerical approximations similar to what is used in (4.10) to determine the
factor ǫ. In Quasi-Newton methods, this is done by updating a current approximation
of the Hessian with low rank matrix updates which are numerically calculated from
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the last iteration steps. In this work, we will only consider the scheme named after
Broyden, Fletcher, Goldfarb and Shanno or BFGS for short (see e. g. [Noce 99] for a
more in detail explanation of the BFGS and related Quasi-Newton schemes). The
BFGS formula is based on updating, not the Hessian H, but instead the inverse of
the Hessian B = H−1. In Newton’s algorithm, this eliminates the need to solve for
the updated matrix. The actual update rule can be derived from the inverse secant
condition (compare (4.9))

Bi+1ti = si. (4.11)

In addition to the secant condition Quasi-Newton methods employ additional con-
straints to arrive at the actual update rule. These constraints comprise a low rank
update (rank 1 or 2), the preservation of the symmetry of the Hessian and the re-
quirement for the update to be minimal in some sense. Different choices of these
constraints, for example for the minimality of the update will lead to different meth-
ods. In the case of the BFGS update rule a symmetric rank 2 update of the form

Bi+1 −Bi = aaT + bbT (4.12)

is chosen, which ensures the preservation of the symmetry of the Hessian by construc-
tion. The unknowns a and b can be derived from the inverse secant condition (4.11)
and from the requirement of a minimal update i. e. that

Bi+1 = argmin
B

‖B−Bi‖WF (4.13)

where ‖.‖WF denotes a weighted Frobenius norm. For details about the derivation
of the update rule please refer to [Noce 99]. The update rule resulting from the
application of these requirements is then

Bi+1 = VT
i BiVi + ρisis

T
i

where ρi =
1

tTi si

Vi = I− ρitis
T
i .

(4.14)

The matrix Bi+1 is obviously not sparse, which would be a problem in a non-rigid
registration application where the full size of the matrix can be huge. The solution
to this is to not actually calculate the new matrix Bi+1 but instead to store the
vectors si and ti and perform the update on the fly during the multiplication with
Bi+1. As it is also impractical to keep all the updates accumulated over the course of
an optimization in memory, only a limited number is actually retained. This type of
update scheme is therefore called limited memory BFGS or L-BFGS, as introduced by
Nocedal in [Noce 80]. Nocedal also describes an efficient recursive evaluation scheme
for (4.14) that is originally due to Matthies and Strang [Matt 79]. The BFGS update
suffers from similar problems as the numerical schemes used for the calculation of
the scaling factor ǫ. The vectors t and s have to fulfill certain conditions in order
to keep Bi+1 positive definite. Similarly, to the numeric calculation of ǫi+1 for the
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inexact Newton method, these conditions can be ensured by employing the strong
Wolfe conditions in the line search. As an alternative, if we do not want to perform
these computationally expensive line search checks, we opted to simply skip a BFGS
update for which the conditions are not met.

4.5 Automatic Step Size Control

A rather important aspect in the application of optimization algorithms is the step
size control that automatically determines the length of the step τ that the algorithm
takes. In algorithms like the explicit gradient descent or the Newton type methods
this is also known as line search, as the step size τ determines how far along the
computed descent direction the algorithm advances. In the semi-implicit gradient
descent formulation, however, the step size is contained within the linear problem
that has to be solved, which leads to a search on a curve rather than on a line. This
has the disadvantage that for every choice of τ the algorithm tries, the linear problem
has to be solved again. This check, the line search condition, makes sure that there is
a “sufficient” decrease of the energy relative to the given step size τ . The most basic
line search condition that can be employed, is to simply check whether there is any
improvement at all, i. e.

E(F,M,u(t+1)) < E(F,M,u(t)). (4.15)

This is the least that any algorithm should check during iteration. The Armijo line
search condition is an extension to this that ensures that the decrease in the energy
is sufficient related to the length of the step taken. If the decrease in energy is rather
small, shorter steps are favored. Let d denote the descent direction and c1 ∈]0, 1[ a
user set parameter that controls how strictly the check for a “sufficient” decrease is
performed, then the Armijo line search condition is defined as

E(F,M,u(t+1)) = E(F,M,u(t) + τd)

≤ E(F,M,u(t)) + c1τd
T∇uE(F,M,u(t)). (4.16)

The application of this formula is illustrated in Figure 4.6a. As in the semi-implicit
gradient descent there is no real descent direction we define that d := u(t+1) − u(t)

with an artificial step length τ = 1 for the check of the condition. Equation (4.16) is
just the first order Taylor expansion around E(F,M,u(t)+τd) with respect to τ . The
parameter c1 that is added into this Taylor expansion reduces the slope of the linear
approximation, thus relaxing the constraint. As, for a sufficiently smooth function,
the Taylor expansion becomes more and more accurate as the step size τ is reduced,
it has to be possible to fulfill (4.16) for a sufficiently small τ . The smaller c1 is chosen,
the closer this condition becomes to (4.15). In practice rather small values are used
e. g. c1 ≈ 10−4 (compare [Noce 99]), in order to not get stuck in the line search too
long or generate unnecessarily short steps.

The Armijo condition can always be fulfilled with a sufficiently small step size, but
for the algorithm to actually advance it should not be chosen too small. One way to
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Figure 4.6: All figures show a shifted parabola f(x) = (x − 2)2 − 1 as the function
to be optimized (black curve). The current position x = 0.5 is marked by a black
’+’, the fat black line identifies the points on the function accepted by the line search
condition, the dotted black lines highlight the accepted region boundaries.
(a) Armijo condition; blue line: tangent; red line “tangent” with scaled slope (scaled
by c1 = 0.1) defining the Armijo condition (everything below is accepted)
(b) curvature condition; any point of ∇f (blue curve) above the red line depicting
c2∇f(x) is accepted (c2 = 0.5)
(c) both conditions applied in combination (Wolfe conditions)

achieve this is to use a backtracking line search. A backtracking line search starts with
a relatively large step size and successively reduces it by a fixed factor 0 < γ < 1 until
the line search condition is satisfied.

Require: τ > 0; 0 < γ < 1
1: while not Armijo do
2: τ = γτ
3: end while
4: return τ

In all the applications presented in this work the reduction factor is always chosen as
γ = 0.5.

As any small enough step will satisfy the Armijo condition one can add to this a
constraint that ensures a sufficiently large step size in order to speed up the conver-
gence. The following constraint with the constant c2 ∈]0, 1[ is called the curvature
condition (see also Figure (b)).

dT∇uE(F,M,u(t) + τd) ≥ c2d
T∇uE(F,M,u(t)). (4.17)

In contrast to (4.15) and (4.16) this condition ensures that the step taken is not too
small. If used together with (4.16) and 0 < c1 < c2 < 1 these two conditions are
known as the Wolfe conditions. This condition compares the derivatives of the target
function with respect to the step size. The right hand side is, for an actual descent
direction d always negative. If the left hand side of the condition is “more negative”
than that, and the condition therefore not fulfilled, it is an indication that d is still a
good descent direction at the new position u(t)+τd and a longer step should be taken.
If it is less negative, or even positive d is no longer a good descent direction and the
line search can be stopped. The condition can be made more strict by comparing the
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absolute curvature values instead.

|dT∇uE(F,M,u(t) + τd)| ≤ c2|d
T∇uE(F,M,u(t))|. (4.18)

The main difference to (4.17) is that in this formulation, too strongly positive values of
dT∇uE(F,M,u(t) + τd) are also rejected. Together with the Armijo condition (4.16)
this is known as the strong Wolfe conditions. If this condition fails the step size has to
be increased. It is therefore necessary to employ a different line search strategy that
allows for increasing and decreasing of the step size. In this work we used a strategy
based on the bisection method.

Require: τ > 0
Require: l == 0; u == 0; b == false
1: while not b do
2: if not Armijo then
3: u = τ
4: τ = 0.5(l + τ)
5: else if not Curvature then
6: if u == 0 then
7: τ = 2τ
8: else
9: l = τ

10: τ = 0.5(u+ τ)
11: end if
12: else
13: b = true
14: end if
15: end while
16: return τ

Even though it is guaranteed that there is a value for the step size satisfying the Wolfe
conditions, we chose to terminate the while-loop after a maximum of 5 iterations, if
at least the Armijo condition is satisfied. This is done to safe computations and as a
safeguard in situations where numerical errors in the evaluation of the measures can
lead to difficulties in satisfying the conditions. A disadvantage of the Wolfe conditions
are the added computations for evaluating the energy gradient at the new positions
u(t) + τd. These evaluations have to be performed for every step size candidate.
In exchange the Wolfe conditions should provide the best estimate and additionally
ensure in combination with the BFGS method that the approximated Hessian stays
positive definite.

The last thing that has to be determined is, how the line search is initialized in
the first iteration of the optimization algorithm. In the case of the Newton based
methods, an initial step size of τ = 1 is a possible choice, as that corresponds to the
optimum step size if the quadratic approximation on which Newton’s method relies,
is correct. A better approach in practice is to specify the initial step size depending
on the length of the initial step. Especially when using a backtracking line search the
initial step size has to be chosen large enough or the iteration progress will be small.
If it is chosen too large such that considerable parts of the images are not overlaid
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anymore, the registration will fail completely. For calculating a good initial step size,
we choose a sensible length r, like 5% of the shortest edge of the image domain Ω as
a reference length for the desired average deformation in each pixel. The initial step
size is then computed as

τinit
:= r

∑s

i=1 ‖∇uE(F,M,u)(xi)‖

s
. (4.19)

In most experiments, this has proven to be a good initial guess for the backtracking
line search. In all successive iterations, the step size of the last successful step is used.

In the case of the semi-implicit gradient descent, the gradient of the distance
measure is used instead of the descent direction. This is based on the assumption
that the solution to the linear system I+ ταA acts only as a smoothing and does not
change the overall length of the gradient vector too much.

4.6 Multilevel

In addition to the various choices of linear and non-linear solvers and line search
methods, a multi-level continuation can be added to speed up the optimization pro-
cess and to alleviate problems with local minima. The basic idea of a multi-level
approach is to downsample the input images to a lower resolution, solve the registra-
tion problem there and upsample the result again. The upsampled result can then
be used as an initial guess for the original registration problem and thus be refined.
The optimization of the low resolution registration problem has much lower compu-
tational cost than the original problem. Additionally, if a downsampling scheme that
incorporates some smoothing is employed, high frequency structures will disappear in
the low resolution images, which will lead to fewer local minima in the optimization.

This approach can be iterated, thus creating a pyramid of levels of increasingly
lower resolution. Generally a downsampling by a factor of 2 along each dimension is
often employed in practice, and is also the choice in each application of a multi-level
scheme in this work. In a 2-D application, the number of pixels in the lower resolution
problem and therefore the computational cost decreases by a factor of 4, in 3-D it
decreases by a factor of 8. It can therefore be beneficial to perform more iterations
on the lower levels than on the finer ones, as the cost is low and the gain might be
a reduced number of iterations on the next finer level. On the other hand, the low
resolution images can never fully capture the original problem. Most importantly,
during the downsampling there is usually some averaging of pixel values performed.
This leads to gray values in the low resolution image that were not present in the
original images. This can impair the registration result on the low resolution images,
especially when statistical measures like the mutual information are used. Due to
this, the effectiveness of the multi-level technique can vary depending on the image
content.
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4.7 Comparison of Optimization Methods

The presented optimization techniques and choices for the line search will be evalu-
ated in the following on a set of 2-D example datasets. The evaluated optimization
techniques and their respective designations are

• semi-implicit – semi-implicit gradient descent (4.2)

• Newton secant – Newton’s method (4.3) with HD(F,M
u
(t) ) estimated according

to (4.7) and (4.10)

• Newton SSD average – Newton’s method (4.3) with HD(F,M
u
(t) ) estimated for the

sum of squared differences (SSD) distance measure according to (4.7) and (4.8)

• Newton SSD diagonal – Newton’s method (4.3) with HD(F,M
u
(t) ) estimated for

the sum of squared differences (SSD) distance measure according to (4.6)

• L-BFGS secant – limited memory BFGS method (4.3)(4.14) with B0 estimated
according to (4.7) and (4.10) (similar to „Newton secant”)

For the line search the used conditions and names are

• descent – simple condition checking if the measure improved at all (4.15)

• Armijo – Armijo rule (4.16) with c1 = 0.1

• Wolfe – Wolfe rules consisting of the Armijo rule (4.16) with c1 = 0.1 and the
strong curvature condition (4.18) with c2 = 0.9

The values chosen for the line search parameters c1 and c2 have been experimen-
tally determined, but are also in agreement with the values recommended by No-
cedal [Noce 99]. For the Armijo condition parameter c1, which is chosen relatively
high, lower values lead to results that are pretty much identical to the „descent” con-
dition and even with this value the differences are slim. In some cases the results for
the line search condition “descent” is therefore omitted to reduce clutter in the plots.
As the semi-implicit gradient descent method does not really allow to search on a
line, the application of the Wolfe rules for this optimization algorithm is questionable
and therefore omitted.

The methods are compared in their respective single level convergence. Addition-
ally the final result of a single and a multi-level application employing the respective
optimization methods is also presented. For the single level applications, 50 iterations
are performed. In the multi-level case, 10 iterations are performed on the finest level
and the maximum number of iterations is doubled for each step down in the multi-
level pyramid. Finally plots are provided that allow a comparison of the influence
of the different line search conditions on the optimization algorithms. The L-BFGS
method is run in all examples with 5 updates to the estimated Hessian matrix, as a
good compromise of convergence improvement and memory consumption.

The example datasets are introduced in the following. All of them are taken from
real world applications that make use of the registration algorithms implemented as
a part of this work.
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(a) Fixed image F (b) Moving image M (c) Checkerboard overlay

Figure 4.7: The kidney perfusion dataset fixed image F , moving image M and a
checkerboard overlay of both, showing the initial mismatch.

4.7.1 Kidney Perfusion

The first application example is a mono-modal registration of abdominal MR images.
The aim of this application is to calculate the perfusion in the kidneys from sequen-
tially acquired MR images without the use of contrast agents (compare [Ritt 10]). If
the kidneys are correctly registered, the perfusion can be computed by comparison
of the pixel gray values in two successive images. As the images are acquired in
a relatively short time period no rigid pre-registration is necessary and the images
can be regarded as mono-modal. We therefore chose the sum of squared differences
distance measure (see Section 3.3.1) in combination with the curvature regularizer
(see Section 3.4.2) for this application case. The images have a size of 256× 256 with
a pixel spacing of h = (1.4, 1.4) mm and gray values in the range [0 550] stored as
unsigned short, 12-bit dicom data. The used stiffness parameter is κ = 20 and the
multi-level registrations use 4 levels. The dataset and an example result are depicted
in Figure 4.7 and 4.8 respectively.

As this a mono-modal registration problem, the used distance measure is the sum
of squared differences. This application example allows the comparison of all the dif-
ferent presented methods for estimating HD(F,M

u
(t) ). These are tested in conjunction

with the inexact Newton’s method. The L-BFGS method is only applied with the
numerical estimator based on the secant condition that is also applicable in a multi-
modal scenario. This allows the best comparison of the different estimators and how
the L-BFGS method which is also applicable in a multi-modal scenario, compares to
Newton’s method employing the best, sum of squared differences specific estimate for
the Hessian of the distance measure, “Newton SSD diagonal”.

The performance with respect to the different optimization algorithms (Figure 4.9)
shows that, not surprisingly, the Newton method employing the most accurate esti-
mate of the Hessian “Newton SSD diagonal” also exhibits the best performance. But
it is encouraging to see that the exclusively numerical working L-BFGS method is
about as good with the Wolfe line search conditions and even trumps the “Newton
SSD diagonal” performance when both use the simpler Armijo line search condition.
It is also visible from Figure 4.10 that “Newton SSD diagonal” is pretty much the
only optimization algorithm in this application example that significantly benefits
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(a) Checkerboard before registration (b) Checkerboard after registration

(c) Difference before registration (d) Difference after registration

(e) Deformed image with checker-
board

(f) Magnitude image of deformation

Figure 4.8: Sample results for the registration of the kidney perfusion dataset. The
used optimization algorithm is the multi-level “Newton diag” with the Wolfe line
search conditions. First row: checkerboard overlays of fixed and moving image (a) be-
fore and (b) after registration. Second row: difference images (c) before and (d) after
registration. Last row: (e) moving image overlaid with a checkerboard image and
deformed; (f) magnitude image of the deformation.
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single level multilevel
initial 9.242142 · 102 9.242142 · 102

semi-implicit, descent 2.621928 · 102 1.949514 · 102

semi-implicit, armijo 2.733949 · 102 1.977111 · 102

Newton secant, descent 2.383151 · 102 1.885831 · 102

Newton secant, armijo 2.425350 · 102 1.907033 · 102

Newton secant, wolfe 2.361874 · 102 1.868363 · 102

Newton SSD average, descent 2.398196 · 102 1.897096 · 102

Newton SSD average, armijo 2.398196 · 102 1.906924 · 102

Newton SSD average, wolfe 2.279642 · 102 1.881680 · 102

Newton SSD diagonal, descent 2.047015 · 102 1.854769 · 102

Newton SSD diagonal, armijo 2.047015 · 102 1.854725 · 102

Newton SSD diagonal, wolfe 1.869532 · 102 1.851277 · 102

L-BFGS secant, descent 1.926995 · 102 1.864865 · 102

L-BFGS secant, armijo 2.000681 · 102 1.864668 · 102

L-BFGS secant, wolfe 1.943582 · 102 1.860350 · 102

Table 4.1: Final energies after optimization with the different algorithm and line
search combinations, applied to the kidney perfusion dataset.

from the improved line search due to the application of the Wolfe conditions. In par-
ticular the “descent” line search condition yields no significantly different results from
the “Armijo” condition. Finally the optimization results for all the applied methods
in the single and the multi-level scheme are given in Table 4.1 and 4.2. It is clearly
visible that all methods improve a lot when used in the multi-level framework. How-
ever L-BFGS seems to benefit the least of all the methods. The different types of line
search seem to only have a rather marginal effect on the end result of a multi-level
based optimization.
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single level multilevel
initial 9.242142 · 102 9.242142 · 102

semi-implicit, descent 2.241489 · 102 1.662688 · 102

semi-implicit, armijo 2.332077 · 102 1.689916 · 102

Newton secant, descent 2.047475 · 102 1.599432 · 102

Newton secant, armijo 2.086677 · 102 1.625634 · 102

Newton secant, wolfe 2.012050 · 102 1.574586 · 102

Newton SSD average, descent 2.066580 · 102 1.614456 · 102

Newton SSD average, armijo 2.066580 · 102 1.623398 · 102

Newton SSD average, wolfe 1.949253 · 102 1.598922 · 102

Newton SSD diagonal, descent 1.745574 · 102 1.563084 · 102

Newton SSD diagonal, armijo 1.745574 · 102 1.562825 · 102

Newton SSD diagonal, wolfe 1.578066 · 102 1.557602 · 102

L-BFGS secant, descent 1.637812 · 102 1.573520 · 102

L-BFGS secant, armijo 1.691247 · 102 1.573811 · 102

L-BFGS secant, wolfe 1.642830 · 102 1.565525 · 102

(a) Distance

single level multilevel
initial 1.135443 · 102 1.135443 · 102

semi-implicit, descent 3.804390 · 101 2.868262 · 101

semi-implicit, armijo 4.018726 · 101 2.871942 · 101

Newton secant, descent 3.356765 · 101 2.863991 · 101

Newton secant, armijo 3.386730 · 101 2.813989 · 101

Newton secant, wolfe 3.498234 · 101 2.937774 · 101

Newton SSD average, descent 3.316158 · 101 2.826396 · 101

Newton SSD average, armijo 3.316158 · 101 2.835265 · 101

Newton SSD average, wolfe 3.303892 · 101 2.827580 · 101

Newton SSD diagonal, descent 3.014413 · 101 2.916844 · 101

Newton SSD diagonal, armijo 3.014413 · 101 2.919000 · 101

Newton SSD diagonal, wolfe 2.914661 · 101 2.936754 · 101

L-BFGS secant, descent 2.891833 · 101 2.913450 · 101

L-BFGS secant, armijo 3.094344 · 101 2.908572 · 101

L-BFGS secant, wolfe 3.007523 · 101 2.948253 · 101

(b) Regularizer

Table 4.2: Final energies after optimization with the different algorithm and line
search combinations, applied to the kidney perfusion dataset.
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(a) Optimizer performances with Armijo type line search condition

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  10  20  30  40  50

Newton secant
Newton SSD average
Newton SSD diagonal

L-BFGS secant

iterations

en
er

gy
E

(b) Optimizer performances with Wolfe type line search condition

Figure 4.9: Comparison of optimizer performances with Armijo and Wolfe type line
search conditions. The “descent” line search condition is omitted as the results are
almost identical to those of the Armijo conditions.
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(c) Newton SSD average
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(e) L-BFGS secant

Figure 4.10: Comparison of the impact of the choice of line search condition on
the different optimization algorithms, for the mono-modal kidney perfusion dataset.
Except for the “Newton SSD diagonal” optimization algorithm (d) the different line
search conditions show almost no effect. In all plots where the line of the descent
condition is not visible it is identical to the Armijo.
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(a) Fixed image F (b) Moving image M (c) Checkerboard overlay

Figure 4.11: The hair follicle dataset.

4.7.2 Hair Follicle

The second application example we use to evaluate the optimization algorithms is
the reconstruction of 3-D volume data from histological slices. Histological slices
are produced by embedding a tissue sample, in this case a hair follicle, in a hard
matrix, usually paraffin wax, and then cutting and photographing thin slices from it.
However, the mechanical stress due to the cutting and the following staining of the
tissue can introduce artifacts in the form of deformations and fissures. Some slices
are also completely destroyed during this process. The registration algorithm is used
in this application to interpolate lost slices by registering the two neighboring slices.
The lost slice is then replaced by a “halfway” deformed neighbor i. e. only 0.5u is
applied. For more details please refer to Gaffling et al. [Gaff 09].

The staining process generally leads to considerable intensity differences between
the images. Although an intensity standardization is employed in this application,
there remain enough intensity differences between the images to make a multi-modal
registration employing the mutual information as distance measure necessary. The
two images used here (see Figure 4.11) have not been rigidly preregistered. They are
reasonably well aligned, but, as the registration result (see Figure 4.12) shows, there is
some rotational component in the solution. The images have a size of 648×514 and a
gray value range of [0 255] i. e. 8-bit images. A spacing of h = (1, 1) is assumed as no
specification for the image resolution is available. The algorithms used a stiffness for
the registrations of κ = 4 and 5 levels for the multi-level optimization. The dataset
and an example result is showcased in Figure 4.11 and 4.12 respectively.

The results depicted in Figure 4.13 and 4.14 show the L-BFGS algorithm with
the Wolfe line search condition outperforming the semi-implicit time marching as well
as the “Newton secant” method by a considerable amount. The L-BFGS algorithm
also reacts in the expected way to the line search conditions (see Figure 4.15), with
the Wolfe conditions yielding the fastest convergence, followed by the Armijo con-
dition and the descent condition. The semi-implicit gradient descent on the other
hand shows rather good results with the descent line search conditions but performs
remarkably worse with the Armijo conditions. This bad performance in conjunction
with the Armijo conditions might be related to the fact that reducing the step size
in the semi-implicit method does not result in the search on a line, but rather on
a non-linear curve instead, which is the same reason why the semi-implicit gradient
descent is not run with the Wolfe conditions in these experiments. Finally, the “New-
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(a) Checkerboard before registration (b) Checkerboard after registration

(c) Contour overlay before registration (d) Contour overlay after registration

(e) Deformed image with checkerboard (f) Magnitude image of deformation

Figure 4.12: Sample results for the registration of the hair follicle dataset. The used
optimization algorithm is the multi-level “L-BFGS secant” with the Wolfe line search
conditions. First row: checkerboard overlays of fixed and moving image (a) before
and (b) after registration. Second row: fixed image overlaid with contours of moving
image (c) before and (d) after registration. Last row: (e) moving image overlaid with
a checkerboard image and deformed; (f) magnitude image of the deformation.
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ton secant” method performs slightly worse than the semi-implicit gradient descent
and does not seem to be significantly affected by the choice of the line search, even
though the Wolfe line search conditions seem to have a slight edge on the others.

The numerical results in Table 4.3 again show large improvements in the multi-
level application of the algorithms. The L-BFGS still performs best in the multi-
level framework, but the “Newton secant” now outperforms the semi-implicit time
marching. Furthermore the impact of the line search condition becomes relatively
negligible, with the Wolfe conditions even performing worst of the three.

This dataset also illustrates nicely that the differences in the final registration
energy are not only of numerical interest but actually result in significant differences
in the final registration result as depicted in Figure 4.16.
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(b) Armijo

Figure 4.13: Comparison of optimizer performances with descent and Armijo type
line search conditions on the “hair follicle” dataset.
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Figure 4.14: Comparison of optimizer performances with the Wolfe type line search
conditions on the “hair follicle” dataset.
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(b) Newton secant
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(c) L-BFGS secant

Figure 4.15: Comparison of the impact of the choice of line search condition on the
different optimization algorithms, for the “hair follicle” dataset.
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single level multilevel
initial −3.527458 · 10−1 −3.527458 · 10−1

semi-implicit, descent −5.680410 · 10−1 −6.725602 · 10−1

semi-implicit, armijo −5.320870 · 10−1 −6.444729 · 10−1

Newton secant, descent −5.381436 · 10−1 −6.903303 · 10−1

Newton secant, armijo −5.406839 · 10−1 −6.865059 · 10−1

Newton secant, wolfe −5.530918 · 10−1 −6.819689 · 10−1

L-BFGS secant, descent −5.830720 · 10−1 −7.158433 · 10−1

L-BFGS secant, armijo −5.979125 · 10−1 −7.160220 · 10−1

L-BFGS secant, wolfe −6.225189 · 10−1 −7.119749 · 10−1

(a) Energy

single level multilevel
initial −3.527458 · 10−1 −3.527458 · 10−1

semi-implicit, descent −5.936443 · 10−1 −6.956034 · 10−1

semi-implicit, armijo −5.556283 · 10−1 −6.688135 · 10−1

Newton secant, descent −5.598435 · 10−1 −7.117882 · 10−1

Newton secant, armijo −5.605795 · 10−1 −7.089288 · 10−1

Newton secant, wolfe −5.771348 · 10−1 −7.064972 · 10−1

L-BFGS secant, descent −6.165330 · 10−1 −7.381439 · 10−1

L-BFGS secant, armijo −6.262602 · 10−1 −7.383496 · 10−1

L-BFGS secant, wolfe −6.487738 · 10−1 −7.352672 · 10−1

(b) Distance

single level multilevel
initial 2.573186 · 10−2 2.573186 · 10−2

semi-implicit, descent 2.560326 · 10−2 2.304325 · 10−2

semi-implicit, armijo 2.354132 · 10−2 2.434056 · 10−2

Newton secant, descent 2.169989 · 10−2 2.145790 · 10−2

Newton secant, armijo 1.989564 · 10−2 2.242290 · 10−2

Newton secant, wolfe 2.404303 · 10−2 2.452834 · 10−2

L-BFGS secant, descent 3.346105 · 10−2 2.230057 · 10−2

L-BFGS secant, armijo 2.834769 · 10−2 2.232763 · 10−2

L-BFGS secant, wolfe 2.625494 · 10−2 2.329222 · 10−2

(c) Regularizer

Table 4.3: Final energies after optimization with the different algorithm and line
search combinations, applied to the “hair follicle” dataset.
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(a) Semi-implicit gradient descent

(b) L-BFGS

Figure 4.16: Checkerboard images of the results of a multi-level registrations using
the (a) semi-implicit gradient descent and the (b) L-BFGS method. Especially in
the highlighted regions it becomes very visible that the numerical difference in the
registration energies has a significant impact on the visual outcome of the registration.
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(a) Fixed image F (b) Moving image M (c) Checkerboard overlay

Figure 4.17: The glaucoma dataset.

4.7.3 Glaucoma

The final dataset used for the evaluation is from a database of glaucoma, color fundus
images. These are color images of the human retina, showing the optic nerve head in
particular. There are currently several application scenarios based on these images
that make use of a non-rigid registration. In [Paul 10] gradient magnitude images of
these color fundus images are co-registered to get information about the optic nerve
head variability that can provide information about the probability of glaucoma.
The same method has also been applied directly to the images. A different approach
registers two consecutive images of the same patient in order to extract movement
from which 3-D information about the optic nerve head can be gained, which in turn
can give further insights about the glaucoma risk of the patient.

The experiment performed for the optimization evaluation is concerned with the
latter application. The images (see Figure 4.17) have a size of 1300 × 900 with
gray values in the range of [0 255] (8-bit). The image spacing is taken as h =
(1, 1) as no specific image resolution is available. As the illumination does not stay
quite constant the registrations have to be considered multi-modal and the employed
distance measure is the mutual information. The registrations use a stiffness of
κ = 3.5 and 5 levels for the multi-level registrations. At first glance the images exhibit
only slight differences, but results (see Figure 4.18) show some rather significant
deformations especially at the left boundary of the optic nerve head.

The single level registration results (see Figure 4.19 and 4.20) show again the “L-
BFGS secant” method in the lead. The “Newton secant” method and the semi-implicit
gradient descent appear, depending on the used line search condition, pretty closely
matched. The semi-implicit gradient descent again exhibits the peculiar behavior
of performing worse in conjunction with Armijo condition, than with the simpler
“descent” condition (see Figure 4.21). Aside from this the line search condition does
not seem to have much impact in this application example.

The multi-level registration results show the same tendency as in the “hair follicle”
dataset. The “L-BFGS secant” is in the lead followed by the “Newton secant” and
the semi-implicit gradient descent The line search condition again has only a minor
impact, but it improves the results somewhat, especially with the Wolfe conditions.
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(a) Checkerboard before registration (b) Checkerboard after registration

(c) Contour overlay before registration (d) Contour overlay after registration

(e) Deformed image with checkerboard (f) Magnitude image of deformation

Figure 4.18: Sample results for the registration of the glaucoma dataset. The used
optimization algorithm is the multi-level “L-BFGS secant” with the Wolfe line search
conditions. First row: checkerboard overlays of fixed and moving image (a) before
and (b) after registration. Second row: fixed image overlaid with contours of moving
image (c) before and (d) after registration. Last row: (e) moving image overlaid with
a checkerboard image and deformed; (f) magnitude image of the deformation.
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(a) descent
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(b) Armijo

Figure 4.19: Comparison of optimizer performances with descent and Armijo type
line search conditions on the “glaucoma” dataset.
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Figure 4.20: Comparison of optimizer performances with the Wolfe type line search
conditions on the “glaucoma” dataset.
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(b) Newton secant
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(c) L-BFGS secant

Figure 4.21: Comparison of the impact of the choice of line search condition on the
different optimization algorithms, for the “glaucoma” dataset.
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single level multilevel
semi-implicit, descent −7.975746 · 10−1 −8.073360 · 10−1

semi-implicit, armijo −7.939780 · 10−1 −8.067917 · 10−1

Newton secant, descent −8.005637 · 10−1 −8.135049 · 10−1

Newton secant, armijo −8.025690 · 10−1 −8.083490 · 10−1

Newton secant, wolfe −8.028601 · 10−1 −8.106817 · 10−1

L-BFGS secant, descent −8.142090 · 10−1 −8.194019 · 10−1

L-BFGS secant, armijo −8.134388 · 10−1 −8.179640 · 10−1

L-BFGS secant, wolfe −8.139087 · 10−1 −8.196936 · 10−1

(a) Energy

single level multilevel
semi-implicit, descent −8.061491 · 10−1 −8.171590 · 10−1

semi-implicit, armijo −8.021961 · 10−1 −8.161303 · 10−1

Newton secant, descent −8.088138 · 10−1 −8.247281 · 10−1

Newton secant, armijo −8.108823 · 10−1 −8.179362 · 10−1

Newton secant, wolfe −8.116863 · 10−1 −8.206396 · 10−1

L-BFGS secant, descent −8.246216 · 10−1 −8.339531 · 10−1

L-BFGS secant, armijo −8.240784 · 10−1 −8.321323 · 10−1

L-BFGS secant, wolfe −8.244515 · 10−1 −8.336899 · 10−1

(b) Distance

single level multilevel
semi-implicit, descent 8.574472 · 10−3 9.823000 · 10−3

semi-implicit, armijo 8.218024 · 10−3 9.338676 · 10−3

Newton secant, descent 8.250060 · 10−3 1.122314 · 10−2

Newton secant, armijo 8.313321 · 10−3 9.587228 · 10−3

Newton secant, wolfe 8.826252 · 10−3 9.957811 · 10−3

L-BFGS secant, descent 1.041264 · 10−2 1.455127 · 10−2

L-BFGS secant, armijo 1.063967 · 10−2 1.416825 · 10−2

L-BFGS secant, wolfe 1.054276 · 10−2 1.399628 · 10−2

(c) Regularizer

Table 4.4: Final energies after optimization with the different algorithm and line
search combinations, applied to the “glaucoma” dataset.
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4.7.4 Discussion

Overall the results from the 3 example datasets lead to a few conclusions. In general
the “L-BFGS secant” method performed best, or at least tied for best method in all
application examples, single and multi-level. Even in the case of the mono-modal
application where better, analytical estimates of the Hessian of the distance measure
are available it performed almost on par with the Newton method employing that
estimate. The “Newton secant” method usually performed either about as good or
a little better than the semi-implicit gradient descent. In the multi-level framework
it always outperformed the semi-implicit gradient descent. In general the multi-
level results were in each instance a major improvement on the single level results.
It is also noteworthy that the line search procedure is more complicated for the
semi-implicit gradient descent and often required significantly more checks until a
good first step size was found. In the Newton based methods, the line searching
is computationally cheaper and easier to initialize. Those Newton based methods
(“Newton secant”, “L-BFGS secant”) that employ a step of the semi-implicit gradient
descent for initialization could run this single step, with a rather small step size,
which made excessive backtracking unnecessary.

The choice of line search condition itself shows somewhat mixed results. In some
cases of combinations of application example and optimization algorithm, a better
and more computationally demanding line search condition like the Wolfe conditions
also leads to an improvement in convergence speed. This is most notable in the “L-
BFGS secant” and the “Newton SSD diagonal” algorithm. This is probably due to
them yielding the best descent directions, for which a more demanding and thus more
accurate line search will give the most benefits. On the other hand, in some appli-
cations the improvement was negligible even for those algorithms. With most of the
other optimization algorithms the improvement is also quite disappointing. Finally,
in the case of the semi-implicit gradient descent, the use of the Armijo condition
instead of the simple “descent” condition actually made the algorithm perform much
worse. As previously noted, this is probably due to the step size τ in this algorithm
is not applied to a descent direction i. e. there is not actually a line to search on,
which violates the basic assumptions made in the Armijo and Wolfe conditions.

Overall, it thus looks as if the “L-BFGS secant” was the clear winner of this com-
parison, combining good performance and multi-modal applicability. However, it also
has some disadvantages. It has significant additional memory requirements to store
the updates for the estimated Hessian matrix and some computational overhead ap-
plying them. For a 1283 single precision floating point volume the additional memory
requirement is for 5 updates to a 3-D vector field is 1283 ·3·5·4Bytes ≈ 120MB, which
is manageable. For a 5123 volume it is already 64 times as much i. e. 7.68GB, which
should be quite detrimental on most consumer PCs. Additionally, the numerical
estimates regarding the Hessian are always susceptible to ill behaved optimization
functions. A sharp ridge in the target function can lead to a value that is far off
from a good approximation to the Hessian. For the estimate of ǫ such a bad value
only takes effect during the next iteration step, as ǫ is then replaced. In an L-BFGS
scheme with 5 updates, it stays for the next 5 iterations. This admittedly happened
very rarely and never for the datasets that were used to analyze the methods in
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this section. But it did happen and thus made the “Newton secant” an overall more
robust algorithm. For these reasons, and for the reason that in the multi-level frame-
work the convergence advantage of the L-BFGS algorithm is somewhat diminished
the “Newton secant” method is used for all the applications presented in this work.
As the “Newton secant” method showed very little dependency on the type of line
search used, it is always used together with the “descent” line search condition, which
requires the least computational amount to evaluate.
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Chapter 5

Prior Information in Registration

The registration methods presented so far are based on some fundamental assump-
tions. The deformation field u should be smooth and the gray values should be nearly
identical in a good match (for the sum of squared differences distance measure) or
at least statistically dependent (for mutual information distance measure). All of
these assumptions constitute some form of prior knowledge about the registration
application. But so far the information incorporated into the registration approach
is of a very broad and general nature. In this chapter we present some possibilities
how more specific information, targeted at certain applications or even only valid for
a specific pair of datasets can be used to add further stability and robustness to the
registration algorithm.

Similarly to the components of the registration presented so far, the distance
measure and the regularizer, the incorporation of prior information can have two
targets. Either the type or shape of the deformation field can be further constrained
or the way the gray values in the image are compared is augmented by some additional
knowledge. We will concentrate on the first possibility, additional constraints on the
deformation field. The advantage of constraints placed on the deformation field, is
that they are applicable without change to any modality combination, assuming that
the expected deformation is the same. This is an important property when applied for
example to MR imaging, where even for the same imaging sequence the gray values
are not standardized and thus can vary somewhat between successive scans. It also
has the advantage that a training can be performed on simple to register modality
combinations, with the result still being valid in more difficult application scenarios.

5.1 Landmark Correspondences

The most straightforward type of prior information about a registration is if some
parts of the transform are already known. The classic case being known point-to-
point correspondences or landmarks. Formally this means that there is an area or a
set of areas Ωc ⊂ Ω with known corresponding locations in the fixed image xF and
the moving image xM , and the function c : Ωc 7→ R

d that associates them with each
other as xM = c(xF ). Therefore the transform in these areas is

xF = c(xF )− u(xF ) ∀xF ∈ Ωc. (5.1)

83
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These landmarks could be used with a landmark based registration method such as
thin-plate splines (compare Section 3.1.2). However, such a method only considers
the landmarks and otherwise ignores the image content. Ideally, we would like to have
a method that adheres to the known correspondences where available and considers
the image content for the calculation of the match everywhere else.

This basic idea of combining landmark and intensity based registrations into one
method has been treated in several works. Johnson and Christensen [John 02] propose
an algorithm that alternatingly optimizes the landmark and intensity based registra-
tion. The intensity based registration itself is however unaware of the landmarks.
They reason that if the landmarks are specified at image corners, edges or other sig-
nificant points, the intensity based algorithm will not change them. Their algorithm,
however, cannot guarantee that the landmarks are matched. This is especially the
case if their assumption is violated and landmarks are specified so that they contra-
dict the intensity information. Hartkens et al. [Hart 02] and Urschler et al. [Ursc 06]
propose approaches that add an additional regularization term for the landmarks,
to the energy term minimized in the intensity based registration. As the additional
energy term only contributes a part of the matching energy both approaches also
cannot guarantee an exact matching of the landmarks.

Fischer et al. propose in [Fisc 03a] to integrate (5.1) the landmarks with La-
grange multipliers as hard constraints into the registration energy. This allows an
exact matching of the landmarks. The approach requires during each iteration step
the calculation of the according Lagrange multipliers by solving an additional linear
system, whose complexity depends on the number of landmark constraints used.

We propose a computationally simpler approach for introducing the landmark
constraints in the registration formulation that likewise guarantees an exact match
of the landmark points. The approach and its realization is outlined in the following
section. In Section 5.1.2 a synthetic and a practically relevant application example
of the method are presented. An application employing this approach in the context
of the registration of histological slices has recently been published in [Gaff 11].

5.1.1 Optimization of Non-rigid Registration with Landmarks

The basic concept of our approach to integrate the landmarks is not to constrain the
regions with known correspondences, but instead to entirely remove them from the
computational domain. This can be mathematically expressed as

Ω̃ := Ω \ Ωc. (5.2)

The known transform u(xF ) ∀xF ∈ Ωc is used as a Dirichlet boundary condition
(see (3.43)), which will influence the areas adjacent to these boundaries. This way
the computational work is actually reduced for each constraint that is added, as the
computational domain gets smaller and smaller.

We will use the semi-implicit gradient descent to outline a practical implementa-
tion of this approach, as it is much easier to integrate dirichlet boundary conditions
into this scheme than it would be with the Newton based schemes. Let us recall the
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formulation for a problem without any point correspondences from (4.2)

(I+ ταA)u(t+1) = u(t) − τ∇uD(F,Mu(t)), (5.3)

where A is the system matrix of the regularizer (in this work either A∆ or A∆2). The
discretized correspondences from (5.1) are represented as known discrete transforms.

ui = u(xi) = xi − c(xi) ∀i : xi ∈ Ωc (5.4)

With this information we could eliminate the rows i in the linear system of equa-
tion (5.3) right away, as these correspond to the, now known, variable ui. However,
this would make it necessary to introduce a new mapping of values in u to the dis-
crete positions in the image domain. For easier implementation we therefore instead
replace the corresponding rows in the system matrix I + ταA by “identity stencils”,
which, in stencil notation (see Appendix B), are written as





0 0 0
0 1 0
0 0 0



 . (5.5)

Additionally, we set that (∇D(F,Mu))i = 0, as the “derivative” with respect to a
fixed value has to be 0. By making these two adjustments it is now ensured that ui

will not change if one iteration of the non-linear optimization is performed. Thus, if
u(0)

i is initialized with the known transform from the corresponding point-to-point
correspondence, it will stay constant throughout the iteration. The neighborhood of
these boundary points, however, will be influenced through the regularizer and result
in a smooth deformation around the landmark.

It is debatable whether ui should be included in the distance measure calculation.
In the case of the sum of squared differences distance measure this would result in
a constant contribution to the value of the distance measure and therefore be of no
consequence. In the mutual information distance measure, in contrast, the points
would influence the overall statistics and therefore have an influence on the distance
measure value and also its non-linear behavior. In all our experiments we adhere to
our initially proposed idea to completely remove Ωc from Ω and thus exclude the
known points from the distance measure computation altogether.

A slight drawback of this approach is that the computational domain Ω loses its
rectangular shape. This has the following consequences: Normally, the regularizer
matrix A and therefore the system matrix I + ατA is symmetric (compare Sec-
tion 3.4.1 and 3.4.2). However, as the changes indicated above are only applied to
some of the rows of this matrix, the ones that correspond to pixels removed from
the domain Ω, this symmetry is, in general, lost. As the symmetry of this matrix is
a prerequisite of the application of the FFT based solver scheme or also a standard
conjugate gradient solver these are now not applicable anymore. The linear system
either has to be resymmetrized by performing Gaussian elimination on the columns
containing i corresponding to the modified rows i or we have to rely on linear solvers
that can deal with non-symmetric matrices like the stabilized bi-conjugate gradient
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method.

In our experiments the bi-conjugate gradient method often was slow to converge
when started from an all zero initial deformation field. We therefore additionally try
to provide a good initialization. This is done by solving the optimization for the
regularizer only i. e.

Au(0) = f (5.6)

where A is again a placeholder for the regularizer matrix and f is an all 0 vector except
for the entries corresponding to a landmark, which are set according to (5.1). The
result is a smooth deformation field only based on the landmarks. For the curvature
regularizer this deformation field is to some extent similar to the deformation that
would have been obtained for a thin-plate spline registration. The difference is that
the thin-plate spline also minimizes the mixed derivatives, which are not considered
in the curvature regularizer. This deformation field, which is globally smooth and
satisfies the landmark constraints, is used as an initial guess for the actual registration
algorithm.

Another issue that has to be dealt with is how to treat the landmarks in the
multilevel scheme that was outlined in Section 4.6. In order to specify landmarks on
the coarse grid we consider each coarse grid pixel whose physical location coincides
with one or more landmarks to be a landmark as well. Naturally, this will lead
to a “growth” of the discrete landmark regions on the coarser grids, as an isolated
fine grid landmark pixel will result in a single coarse grid landmark pixel, which is
physically much larger. If there are larger landmark regions specified on the fine grid
this growth effect can only occur on the boundary of these regions. Nevertheless,
the coarse grid solutions always proved to be good enough in our experiments to
benefit the optimization on the finer levels. The initialization of the next finer grid
is then done by upsampling of the coarse grid solution as explained in Section 4.6),
with one additional step: On the finer grid the landmark pixels are reset to the fixed
values that they should have to compensate for smoothing or numerical errors from
the up-sampling.

5.1.2 Application Examples

To illustrate the influence of the landmarks on the standard registration approach we
first consider a synthetic example depicted in Figure 5.1. For a human observer it
seems obvious that the square structure in the image has moved. For the registration
algorithm, however, any solution that maps the black objects onto each other is fine.
The standard algorithm therefore tries to shrink the square structure into the main
object at the one location and pull it out again at the other. In order to get the
rotating motion instead 4 landmarks are specified at the corners of the square. These
landmarks are sufficient to nudge the registration algorithm into doing the desired
deformation while still keeping the rest of the object in place.

As a real application problem we chose a full body PET with CT registration
problem. This kind of registration application is difficult for several reasons. First,
PET and CT show fundamentally different things (compare also Section 2.1 and 2.4),
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(a) Fixed image (b) Moving image (c) Landmark positions in
fixed image

(d) Result, no landmarks (e) Checkerboard, no land-
marks

(f) Deformation overlay, no
landmarks

(g) Result, with landmarks (h) Checkerboard, with land-
marks

(i) Deformation overlay, with
landmarks CT

Figure 5.1: Non-rigid registration of a synthetic dataset to illustrate the influence
of the landmarks on the standard non-rigid registration algorithm. Without the
additional landmarks (second row) the protruding square is shrunk into the structure
and drawn out at the new location. That this process cannot be completed (remaining
line and rounded corners of the new square) is due to the regularizer, prohibiting such
a very non-smooth deformation to some extent. With the landmarks set (third row)
it is actually rotated while the distance measure keeps the remaining structure in
place.
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which means that not every structure visible in one dataset has a counterpart in the
other. Furthermore, the blurry appearance of the PET and the intensity gradients
sometimes present in organs that appear homogeneous in the CT, leads to not very
peaky, smeared looking joint histograms in the mutual information, which degrades
the matching energy. Finally, the typical image acquisition protocol for CT requires
the patient to lie with his arms up and fully inhaled, while in PET he has the arms
down and is freely breathing. These very different patient positions lead to large
deformations between the datasets. As a result one would need to select a rather
low stiffness to have enough freedom to move the organs around. As a downside,
this also makes it possible for the algorithm to locally deform the datasets in a way
to compensate for their inherently different characteristics like the higher degree of
blurriness in the PET, which is an intolerable behavior. Figure 5.2c shows the result
of such a non-rigid registration with a stiffness parameter that guarantees that no
such local deformations in the PET can occur. The coronal slices show a definite
improvement over the only rigidly registered dataset (Figure 5.2b) but there is still a
large degree of mismatch. With landmarks placed on the highest and lowest points
of both kidneys along the axial dimension of the dataset, the lowest point of the
liver and two at the diaphragm, the result improves immensely (Figure 5.2d). The
improvement is also visible in areas like the lungs where the landmarks cannot have
a direct influence. Instead, we presume the better match in other image parts such
as the liver and the kidneys leads to a better overall matching energy. This in turn
improves the match in image parts not directly affected by the landmarks.
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(a) CT (b) PET/CT rigid

(c) PET/CT non-rigid (d) PET/CT non-rigid with landmarks

Figure 5.2: Coronal planes of fused 3-D CT and PET dataset, showing a (b) rigid,
(c) non-rigid and (d) non-rigid with landmarks registration result, respectively. Land-
marks have been specified in the highest and lowest points along the axial dimension
of the kidneys (4 landmarks), at the lower tip of the liver (1 landmark) and at the
diaphragm (2 landmarks).
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5.2 Deformation Models

A more involved, but also far more flexible way to impose constraints on a deforma-
tion field, is to constrain the deformation field to be similar to transformations that
were observed previously for other datasets in the same application. In other words
there has to be a learning phase where “good” transformations for the application in
question are analyzed and the result is used to make subsequent registrations more
robust. The deformations used for training are analyzed statistically, for example
with principal component analysis (PCA) to determine major modes of variation
that are characteristic for the kind of deformations occurring in the application. This
kind of statistical model constraint in image registration is usually referred to as
statistical deformation models (SDM). Wang and Staib [Wang 00] describe a method
that generates a sparse PCA-based model on a set of boundary points that they
use to constrain the dense non-rigid registration. Kim et al. [Kim 08] construct a
dense PCA-based deformation model from registrations with a standard registration
approach. The model is used to generate a large set of sample images which are
then compared to the reference image in order to find a good starting position for a
standard registration approach. Xue and Shen [Xue 09] propose a model base on the
wavelet PCA that has the advantage to also capture very local and fine grained defor-
mations. Nevertheless, the model is only used for an initial registration followed by
an unconstrained non-rigid registration. Wouters et al. [Wout 06] use a PCA based
regularization in conjunction with a viscous flow registration. They constrain the
registration result completely within the space represented by the PCA. On a basis
of 85 learning datasets of the brain they are still somewhat short of a complete cover-
age of the possible deformations. This indicates that for more complex anatomies it
is rather unlikely that it is possible to capture the whole range of possible anatomical
variability with such a model.

This work therefore focuses on a regularization with a PCA model that prefers the
resulting deformation to be close to the model space, but does not rigidly enforce it.
The hope is that, similarly to the addition of landmarks to the registration approach
as in Section 5.1 it is sufficient to “nudge” the algorithm in the right direction, without
the need to have a model that covers every little detail.

The general workflow of our approach is outlined in Figure 5.3. For training (see
Figure 5.3a) a template dataset is registered with a number of training datasets.
Preferably these registrations are more robust and reliable than the registration in
the latter application. For instance, in our application case (see Section 6) we want
to improve multi-modal registrations, by learning from the results of a set of mono-
modal registrations, which are less error prone. These deformation fields are treated
as the gold standard for the application and are used to train the PCA based model.
Later on the model is then used to constrain the registration (see Figure 5.3b) to
stay close to known deformation fields from the model, which makes the registration
more robust. A first work describing this approach, was published in [Daum 09].

A related method has been published by Albrecht et al. [Albr 08]. They use a PCA
based regularization to enhance a diffusion regularized registration of shape images,
i. e. distance transforms of segmentations. One of the major advantages of the two
approaches presented here, is the added robustness with respect to the initial rigid



5.2. Deformation Models 91

Rigid Registration

Non-rigid Registration

Learning Data Template CT

Deformation Fields

PCA

Model
(a) Model generation

PCA

Model

MR Reference Template CT

Registered Template /

Pseudo CT

Rigid Registration

Non-rigid Registration

(b) Model application

Figure 5.3: Workflow for (a) the generation and (b) application of the PCA model.

alignment of the datasets, either by incorporating translations explicitly in the model
or by working on derivatives of the deformation field. In [Albr 08] the regularization
scheme is also introduced only in the discrete, while we develop the regularization
term consistently in the non-rigid registration framework outlined in Section 3.2.
They also do not discuss how they optimize the final energy functional, although the
optimization scheme can have a considerable influence on the final result.

In the subsequent sections the theoretical and practical tools to implement this
regularizer are introduced. A practical application of this approach is presented in
Section 6.

5.2.1 Functional Principal Component Analysis

In the field of non-parametric, non-rigid registration we are dealing with the problem
of optimizing for an unknown function u. To handle the probabilistic analysis of
functions as training data we therefore have to turn to methods for functional data
analysis (see e. g. [Rams 05]). As we want to identify common modes of variation
we make use of the functional principle component analysis (PCA). The function
space U introduced in Section 3.2 defines an inner product that induces the norm
‖u‖U =

√
〈u,u〉U . The aim of a functional PCA decomposition is thus to find

mutually orthogonal modes vi that optimize

v̂i(x) = argmax
vi

m∑

j=1

〈wj − w̄,vi〉
2
U (maximum variation) (5.7)

with w̄(x) =
1

m

m∑

i=1

wi(x) (mean) (5.8)

subject to (5.9)

‖vi‖
2
U = 〈vi,vi〉U = 1 (normal length) (5.10)

〈vi,vj〉U = 0 ∀i 6= j (orthogonality), (5.11)
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where wi i = 1, . . . ,m are the m training functions, and w̄ is the corresponding
mean training deformation. The modes vi then represent the principal axes along
which the major variations in the sample data could be observed. They can be used
to regularize the registration by favoring deformations that coincide with these axes.
The principal axis vi can be determined by incorporating the constraint ensuring the
normal length by a Lagrangian multiplier

v̂i = argmax
vi

EPCA(vi) = argmax
vi

(
m∑

j=1

〈wj − w̄,vi〉
2
U

)

− λ(〈vi,vi〉U − 1). (5.12)

From this, one can calculate the Gâteaux derivative to identify the extremal points.

dEPCA(vi;η) =
d

dǫ

(
m∑

j=1

(
1

|Ω|

∫

Ω

(wj(x)− w̄(x))T (v(x) + ǫη(x)) dx

)2
)∣
∣
∣
∣
∣
ǫ=0

−
d

dǫ
λ

1

|Ω|

∫

Ω

(vi(x) + ǫη(x))2 dx

∣
∣
∣
∣
ǫ=0

=

(
m∑

j=1

2

|Ω|2

∫

Ω

η(y)T (wj(y)− w̄(y)) dy

∫

Ω

(wj(x)− w̄(x))Tv(x) dx

)

− λ
2

|Ω|

∫

Ω

η(x)Tvi(x) dx

= 2

〈

η,

(
m∑

j=1

(wj − w̄)〈(wj − w̄),v〉U

)

− λvi(x)

〉

U
= 0 ∀η ∈ U (5.13)

It therefore follows that

〈

η,
m∑

j=1

(wj − w̄)〈(wj − w̄),vi〉U

〉

U

= 〈η, λivi(x)〉U (5.14)

which is the continuous version of an Eigenvalue problem. In practice this is solved in
the discrete, by replacing the variables with their discrete equivalents and the inner
product with its discretized version from equation (3.17). This essentially reduces
the functional PCA to a PCA on the discrete values of u at the grid positions defined
in X. The discrete Eigensystem is thus

m∑

j=1

1

s
(wj − w̄)(wj − w̄)Tv = λv

1

s
WWTv = λv. (5.15)
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with W = (w1 − w̄, . . . ,wn − w̄) ∈ R
m×sd, s the number of samples in the discrete

domain Ω and d the number of dimension.

The Eigenvalue / Eigenvector analysis of 1
s
WWT to determine the principal axis

vi and the corresponding Eigenvalues λi, would be very computationally costly, if
not outright impossible, if performed directly, as WWT ∈ R

sd×sd can become very
large. As we have only a small number of sample deformation fields m, which is
much smaller than the number of unknowns sd in the discrete deformations wj, we
employ a trick for the Eigenvalue / Eigenvector analysis of WWT which was, to
our knowledge introduced by Murase and Lindenbaum [Mura 95]. Multiplying (5.15)
from the left with WT , yields

1

s
(WTW)WTv = λWTv. (5.16)

It is thus evident that solving the smaller system

1

s
(WTW)ṽ = λṽ (5.17)

with WTW ∈ R
m×m, also leads to a solution of the larger system (5.15) with v =

WT ṽ.

While the determined Eigenvectors vi specify the directions of maximal variation,
the associated Eigenvalues λ are related to the variation along these principal axes.
The variance along the axis vi is

σ2
i =

1

m

m∑

j=1

〈wj − w̄,vi〉
2
U

=
1

m|Ω|

∫

Ω

vi(x)
T

m∑

j=1

(wj(x)− w̄(x))〈wj − w̄,vi〉U dx

=
1

m|Ω|

∫

Ω

vi(x)
Tλvi(x) dx by (5.14)

=
λ

m
by (5.10) . (5.18)

Similarly, the total variance of the data can be expressed in terms of the variances
along the Eigenvectors and therefore the Eigenvalues. In the first step of the following
calculation we make use of the fact that all the Eigenvectors vi together form an
orthonormal basis for the samples wj. We can therefore apply a basis transform and
get

σ2
total =

1

m

m∑

j=1

‖wj − w̄‖2U

=
1

m

m∑

j=1

∥
∥
∥
∥
∥

m∑

i=1

vi〈(wj − w̄),vi〉U

∥
∥
∥
∥
∥

2

U
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=
1

m

m∑

j=1

1

|Ω|

∫

Ω

m∑

i=1

m∑

k=1

〈(wj − w̄),vi〉Uvi(x)
Tvk(x)〈(wj − w̄),vk〉U dx

=
1

m

m∑

j=1

m∑

i=1

m∑

k=1

〈(wj − w̄),vi〉U 〈vi(x),vk(x)〉U
︸ ︷︷ ︸

=1 if i=k, =0 otherwise

〈(wj − w̄),vk〉U

=
m∑

j=1

1

m

m∑

i=1

〈(wj − w̄),vi〉
2
U

︸ ︷︷ ︸

=
λj

m
by (5.18)

=
m∑

j=1

λj

m
=

m∑

j=1

σ2
k. (5.19)

These relations are used in Section 6.1.3 to calculate how much of the overall variation
in the data is covered by a certain number of PCA modes in the model. This is
necessary for choosing a suitable number of modes for the application.

5.2.2 PCA Regularization

A straightforward approach to generate the proposed morphological model is to per-
form the PCA directly on the training deformations. The resulting model is incorpo-
rated into the registration energy E(F,M,u) (from (3.10)) as an additional regular-
ization, which forces the result to be close to the model by quadratically penalizing
any deviation from the model space represented by the PCA.

u∗ = argmin
u

E(F,M,u) = D(F,Mu) + αR(u) + βP(u) (5.20)

P(u) =

∥
∥
∥
∥
∥
u(x)− (w̄ +

m∑

i=1

vi(x)〈vi,u− w̄〉U)

∥
∥
∥
∥
∥

2

U

=
1

|Ω|

∫

Ω

(

u(x)− (w̄ +
m∑

i=1

vi(x)〈vi,u− w̄〉U)

)2

dx, (5.21)

where β is a weighting factor that governs the strictness with which the morphological
model is applied.

Even though all datasets are aligned rigidly before performing the non-rigid reg-
istration for the training as well as for the application of the model, the result of
this rigid registration is not always consistent. As we are dealing with registrations
between different patients the rigid registration cannot yield a perfect result. The
rigid registration therefore tries to find a “best possible” match. Depending on the
data this can lead to the algorithm aligning those parts of the patient data best that
are most similar, i. e. in one registration the facial area might be matched best and in
another the back of the skull. This is a problem for the PCA model as it is sensitive
to differences in this initial rigid alignment. To alleviate this problem somewhat we
make our model robust to variations in the translational part of the rigid alignment,
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by explicitly introducing global rigid translations into the model. We define the d
constant global rigid translation functions as

tj(x) = (0, . . . , 0, 1
︸︷︷︸

j-th entry

, 0, . . . , 0)T ∈ R
d j = 1, . . . , d. (5.22)

Note that tj are chosen such that they have unit length i. e. ‖tj‖
2
U = 1, and are

mutually orthogonal. These translations are then removed from all training data wi,
by using

w̃i(x) = wi(x)−
d∑

j=1

tj(x)〈tj,wi〉U i = 1, . . . , n, (5.23)

as the new training data. The adjusted training data w̃i is thus orthogonal to the
global rigid translations tj. As the m Eigenmodes vk are linear combinations of the
training data, they have to be orthogonal to the functions tj as well. This makes
the modes tj orthonormal to the PCA basis vk and we are free to define vm+j = tj
as additional modes for the PCA basis. Adding these “artificial” modes to the PCA
makes P invariant to global translations in the vector field u, as they are now included
in the model and will not be penalized by P(u).

Unfortunately, the same approach cannot be applied to compensate rotations. It
is certainly possible to represent a rotation by a vector field. However, if that vector
field is scaled by a scalar value, as this happens when used as a PCA mode, the
rotation turns into a scaling and rotating operation, as the deformation vectors scale
linearly and do not follow the circular movement given by the rotation.

In order to incorporate our new PCA energy term into the registration framework,
the derivative ∇uP has to be calculated. During this derivation we make, for now,
the simplifying assumption that the samples have a zero mean, i. e. w̄(x) = 0. The
Gâteaux derivative of P is thus

d

dǫ
P(u+ ǫη)

∣
∣
∣
∣
ǫ=0

=
2

|Ω|

∫

Ω

(

η(x)−
m∑

i=1

vi(x)〈vi,η〉U

)T (

u(x)−
m∑

i=1

vi(x)〈vi,u〉U

)

dx

= 2

〈

η,u−
m∑

i=1

vi〈vi,u〉U

〉

U

− 2

(
m∑

i=1

〈η,vi〉U〈vi,u〉U

)

+ 2
( m∑

i=1

m∑

j=1

〈vi,vj〉U
︸ ︷︷ ︸

=1 if i = j,
=0 otherwise

〈η,vi〉U〈u,vj〉U

)
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=

〈

η, 2
(

u−
m∑

i=1

vi〈vi,u〉U

)
〉

U

. (5.24)

Before we can wrap up the calculation of the derivative we have to return to a model
with a non-zero mean. To this end we substitute u by u− w̄, yielding

d

dǫ
P(u+ ǫη) =

〈

η, 2

(

u− w̄ −
m∑

i=1

vi〈vi,u− w̄〉U

)〉

U

=

〈

η, 2

(

u−
( m∑

i=1

vi〈vi,u〉U

)

−
(

w̄ −
m∑

i=1

vi〈vi, w̄〉U

)
)〉

U

=

〈

η, 2

(

u−
( m∑

i=1

vi〈vi,u〉U

)

− w̃

)〉

U

(5.25)

where w̃ = w̄ −
m∑

i=1

vi〈vi, w̄〉U , (5.26)

This is possible as the model mean is a constant with respect to the function u. The
model mean w̄ is transformed into a constant offset w̃ on the derivative, making it
easier to handle. Using again (3.15), we can thus define

∇uP(u)(x) = 2
(

u(x)−
m∑

i=1

vi(x)〈vi,u〉U

)

− 2w̃. (5.27)

Note that this term is identical to (5.21) except for the squared norm and the factor
2 in the derivative. This can be exploited in the numerical implementation of the
regularizer to save computations.

Discretization and Optimization

The discretization can be directly obtained by replacing functions and the inner
products with their discrete equivalents.

P(u) = s−1

(

u− w̄ − s−1

m∑

i=1

viv
T
i (u− w̄)

)2

= s−1
(
(I− s−1VVT )(u− w̄)

)2
(5.28)

∇uP(u)(x) = 2

(
(

u− s−1

m∑

i=1

viv
T
i u
)

− w̃

)

= 2
(
(I− s−1VVT )u− w̃

)
(5.29)

w̃ = s−1(I−VVT )w̄, (5.30)
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where V = (v1, . . . ,vn). The s−1 preceding the sum here is due to the definition of
the function scalar product we used which results in discrete Eigenvectors vi with
norm s−1‖vi‖ = 1.

As described above, the energy P is integrated straightforwardly as a penalty
term into the registration energy (5.20), but adding it to the optimization algorithms
is not quite as straightforward. The simplest solution is to treat the derivative of the
PCA energy term ∇uP in a way similarly to the distance measure. The semi-implicit
gradient descent scheme from equation (4.2) then becomes

(I+ ταA)u(t+1) = u(t) − τ
(
∇uD(F,Mu(t)) + 2β(I− s−1VVT )u− 2βw̃

)
, (5.31)

where A is a placeholder for the linear operator resulting from the standard regu-
larizer, i. e. A∆ (3.48) or A∆2 (3.61). Similarly, for the Newton based methods, this
results in

u(t+1) = u(t) − τ
(

HD(F,M
u
(t) ) + βHP + αA

)−1

(
∇uD(F,Mu(t)) + αAu(t) + 2β(I− s−1VVT )u(t) − 2βw̃

)
. (5.32)

where

HP = 2
(
I− s−1VVT

)
(5.33)

If we do not want to solve the large and densely populated HP = s−1(I−VVT ) this
scheme can only be used with a numeric approximation for the Hessian of the overall
energy. Based on the secant condition (4.7)(4.10) it is possible to calculate a rough
estimate for HD(F,M

u
(t) ) + βHP . While this method seems to work well enough in

practice, synthetic examples showed that they are limited. For instance a synthetic
test case proved impossible to optimize, due to the descent directions being so bad
that the step size control essentially stopped any progress. In this test case a circle
had to be registered to a box, with a high weighted PCA regularizer containing only
translational components tj. Cases like this seem to require that the PCA regularizer
is treated together with the standard regularizer. As the system matrix of the PCA
VVT is a linear operator of rather low rank it is possible to solve for the linear system
arising from the combination of the standard regularizer and the PCA term. Doing
so for the semi-implicit gradient descent results in

(I+ ταA+ 2τβ(I− s−1VVT ))u(t+1) = u(t) − τ(∇uD(F,Mu(t))− 2βw̃)

((1 + 2τβ)I+ ταA− 2τβs−1VVT )u(t+1) = u(t) − τ(∇uD(F,Mu(t))− 2βw̃). (5.34)

This means one has to solve for the matrix (1 + 2τβ)I + ταA − 2τβVVT . As the
regularizer matrix A and the PCA system matrix VVT are symmetric and positive
semi-definite, and the identity I is symmetric and positive definite, the whole system
is symmetric and positive definite (compare Appendix A). It can thus be solved by
the application of a Krylov subspace method like Conjugate Gradient (CG), which
requires only an implementation of the multiplication with the system matrix. The
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multiplication with the matrix VVT can be efficiently implemented as a sum of inner
products VVTu =

∑m

i=1 vi(v
T
i u). The same can be applied for the Newton based

methods, with a system matrix of HDist + αA+ 2β(I−VVT ).

Another approach to solve for the linear system containing the added PCA matrix
VVT is based on the Sherman-Morrison-Woodbury formula (see e. g. [Pete 08]). This
formula allows to rewrite the inverse of a matrix that is composed of the sum of a
full rank matrix and a low rank update.

(E+ aFFT )−1 = E−1(a−1I+ F(I− FTE−1F)−1FTE−1), (5.35)

with E ∈ R
n×n and F ∈ R

n×m, m ≤ n. The advantage of the reformulation is
that the inverse of (I − FTE−1F) containing the low rank matrix F has only a size
of Rm×m. If m is small compared to n this inverse is computationally cheap. The
inversion of the original linear system can thus be reduced to solving several times
for E, which can be an advantage if E is sparse or otherwise easy to solve for. In the
case of the semi-implicit gradient descent we can associate

E = (1 + 2τβ)I+ ταA F = V a = −2τβs−1. (5.36)

The linear system E is thus equivalent to the linear system arising from the appli-
cation of the standard regularizer without the PCA. To evaluate (5.35) with these
associations it is necessary to solve for E m times in order to evaluate E−1F and
an additional 2 times to calculate the final result. If E does not change in between
iterations i. e. if the step size is not changed then the result of E−1F can be cached.
Otherwise it has to be recomputed in each iteration. This approach is, therefore,
computationally quite demanding. The main advantage is that it allows to employ
the FFT based direct solver for the solution of the standard regularizer matrix. Hav-
ing a direct solver available for this kind of problem is advantageous, as it allows to
assess whether this implicit approach has a real advantage. If the system matrix is
instead solved by an iterative solver like conjugate gradient we are faced with the
problem of having to trade off between accuracy and runtime, and can never be fully
certain that the non-linear optimization could not have performed better if the result
of the linear problem had been more accurate.

In the case of the Newton based non-linear solver we would have to associate

E = HDist + 2βI+ αA F = V a = −2βs−1. (5.37)

Here, the formulation is computationally even more disadvantageous as HDist and
therefore E change in every step. This makes a reuse of E−1FT in the next iteration
impossible.

5.2.3 PCA Curvature Regularization

A different approach to a translation invariant deformation model is to generate the
model not on the deformations themselves but instead on their derivatives. The
first derivative of a deformation is already invariant to translations. As discussed
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in Section 3.4.2 the Laplacian of the deformation field ∆u is invariant against all
affine transforms. This makes the model completely robust to inconsistencies in the
rigid alignment. As one of our standard regularizers is already based on Laplacian
term we also use the Laplacians of the deformation fields as the basis for the PCA
model. Please note that the invariance to rotation and translations in the model, does
not altogether eliminate the need for a rigid pre-registration. The pre-registration is
still required in order to give a good starting position to the non-rigid registration.
However, if there is a need during the optimization of the non-rigid registration for a
rigid component in the transform u it is not penalized by the model.

With the mean and the Eigenmodes vi computed on the Laplacians of the learning
data ∆w, the PCA becomes

v̂i(x) = argmax
vi

m∑

j=1

〈vi,∆wj −∆w̄〉2U (maximum variation) (5.38)

with w̄(x) =
1

n

n∑

i=1

wi(x) (mean) (5.39)

subject to (5.40)

‖vi‖
2
U = 〈vi,vi〉U = 1 (normal length) (5.41)

〈vi,vj〉U = 0 ∀i 6= j (orthogonality). (5.42)

The resulting regularization energy is defined similarly to (5.21) as

u∗ = argmin
u

E(F,M,u) = D(F,Mu) + αRCurv(u) + βP∆(u) (5.43)

P∆(u) =

∥
∥
∥
∥
∥
∆u(x)−

(

∆w̄ +
m∑

i=1

vi(x)〈vi,∆u−∆w̄〉U

)
∥
∥
∥
∥
∥

2

U

=
1

|Ω|

∫

Ω

(

∆u(x)−
(

∆w̄ +
m∑

i=1

vi(x)〈vi,∆u−∆w̄〉U

)
)2

dx. (5.44)

For this approach we only consider the curvature regularizer as standard regularizer,
as this will allow some simplifications later on. For the calculation of the derivative,
we again make the simplifying assumption that the model has a zero mean, i. e. w̄ =
∆w̄ = 0. For the application of the PCA to the Laplacian of the deformation function
we will see during the calculation of the Gâteaux derivative that it is necessary
to impose von Neumann type boundary condition (3.44)(3.56) on the functions of
U , similarly to what is needed for the curvature regularizer. Note that as the vi

are composed of Laplacians of the training data wj, generated with a curvature
regularizer based registration method, these deformations also have the von Neumann
boundary condition (3.44) imposed on them. It therefore holds that

n(x)T ∇v(x) =
(
n(x)T ∇v1(x), . . . ,n(x)

T ∇vd(x)
)T

= 0 ∀x ∈ ∂Ω. (5.45)

To derive the Euler-Lagrange equations it is again necessary to consider the vari-
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ation of P∆ with respect to ǫη.

d

dǫ
P∆(u+ ǫη)

∣
∣
∣
∣
ǫ=0

=

=
2

|Ω|

∫

Ω

(

∆η(x)−
m∑

i=1

vi(x)〈vi,∆η〉U

)T

(

∆u(x)−
m∑

i=1

vi(x)〈vi,∆u〉U

)

dx

=
2

|Ω|

∫

Ω

(∆η(x))T
(

∆u(x)−
m∑

i=1

vi(x)〈vi,∆u〉U

)

dx

−
2

Ω

∫

Ω

(
m∑

i=1

vi(x)〈vi,∆η〉U

)T (

∆u(x)−
m∑

i=1

vi(x)〈vi,∆u〉U

)

dx (5.46)

Before the test function η can be isolated its derivatives have to be eliminated. This
is done similarly to the derivation of the curvature regularizer (see Section 3.4.2), by
applying Green’s theorem and making use of the boundary conditions imposed on η,
u and vi. First the inner product of the second summand is treated this way. With
vi = (vi,1, . . . , vi,d), we get

〈vi,∆η〉U =
1

|Ω|

∫

Ω

d∑

j=1

vi,j(y)∆ηj(y) dy

=
1

|Ω|

d∑

j=1

(
∫

∂Ω

vi,j(y) (∇ηj(y))
Tn(y)

︸ ︷︷ ︸

=0 by (3.44)

dy −

∫

Ω

(∇vi,j(y))
T∇ηj(y) dy

)

=
1

|Ω|

d∑

j=1

(

−

∫

∂Ω

ηj(y) (∇vi,j(y))
Tn(y)

︸ ︷︷ ︸

=0 by (5.45)

dy +

∫

Ω

(∆vi,j(y))ηj(y) dy

)

= 〈∆vi,η〉U . (5.47)

In a second step, the same is applied to the first part of the summand.

∫

Ω

(∆η(x))T
(

∆u(x)−
m∑

i=1

vi(x)〈vi,∆u〉U

)

dx

=
d∑

j=1

∫

Ω

(∆ηj(x))

(

∆uj(x)−
m∑

i=1

vi,j(x)〈vi,∆u〉U

)
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=
d∑

j=1

(
∫

∂Ω

(∇ηj(x))
Tn(x)

︸ ︷︷ ︸

=0 by (3.44)

(

∆uj(x)−
m∑

i=1

vi,j(x)〈vi,∆u〉U

)

dx

−

∫

Ω

(∇ηj(x))
T

(

∇∆uj(x)−
m∑

i=1

∇vi,j(x)〈vi,∆u〉U

)

dx

)

=
d∑

j=1

(

−

∫

∂Ω

ηj(x)
(

(∇∆uj(x))
Tn(x)

︸ ︷︷ ︸

=0 by (3.56)

−
m∑

i=1

(∇vi,j(x))
Tn(x)

︸ ︷︷ ︸

=0 by (5.45)

〈vi,∆u〉U

)

dx

+

∫

Ω

ηj(x)

(

∆2uj(x)−
m∑

i=1

∆vi,j(x)〈vi,∆u〉U

)

dx

)

=

∫

Ω

η(x)T

(

∆2u(x)−
m∑

i=1

∆vi(x)〈vi,∆u〉U

)

dx (5.48)

Substituting the results of (5.47) and (5.48) into (5.46) we can now continue to isolate
the test function η.

d

dǫ
P∆(u+ ǫη)

∣
∣
∣
∣
ǫ=0

=
2

|Ω|

∫

Ω

(η(x))T
(

∆2u(x)−
m∑

i=1

∆vi(x)〈vi,∆u〉U

)

dx

−
2

|Ω|

∫

Ω

(
m∑

i=1

vi(x)〈∆vi,η〉U

)T (

∆u(x)−
m∑

i=1

vi(x)〈vi,∆u〉U

)

dx

= 2
〈
η,∆2u

〉

U −

(
m∑

i=1

〈η,∆vi〉U〈vi,∆u〉U

)

− 2

(
m∑

i=1

〈∆vi,η〉U〈∆u,vi〉U

)

+2

(
m∑

i=1

m∑

j=1

〈vi,vj〉U
︸ ︷︷ ︸

=1 if i = j,
=0 otherwise

〈vi,∆u〉U〈η,∆vj〉U

)

= 2

〈

η,∆2u−
m∑

i=1

∆vi〈vi,∆u〉U

〉

U

(5.49)

As a last step, it is necessary to substitute u by u− w̄ to return to a non-zero mean
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PCA model.

d

dǫ
P∆(u+ ǫη)

∣
∣
∣
∣
ǫ=0

=

〈

η, 2

(

∆2(u− w̄)−
m∑

i=1

∆vi〈vi,∆(u− w̄)〉U

)〉

U

=

〈

η, 2

(

∆2u−
m∑

i=1

∆vi〈vi,∆u〉U

)

− 2

(

∆2w̄ −
m∑

i=1

∆vi〈vi,∆w̄〉U

)〉

U

=

〈

η, 2

(

∆2u−
( m∑

i=1

∆vi〈vi,∆u〉U

)

− w̃

)〉

U

(5.50)

w̃ = 2
(

∆2w̄ −
m∑

i=1

∆vi〈vi,∆w̄〉U

)

Finally, with this simplified version of the Gâteaux derivative, we can identify ∇uP∆

by making use of the inner product.

∇uP∆(u)(x) = 2
(

∆2u(x)−
m∑

i=1

∆vi(x)〈vi,∆u〉U − w̃
)

. (5.51)

Discretization and Optimization

The measure and its derivative is discretized by replacing the differential operators
∆ and ∆2 with their respective discrete versions A∆ (3.48) and A∆2 (3.61) that were
introduced in Section 3.4. Combined with the discretized inner product this yields

P∆(u) =

(

A∆(u− w̄)− s−1
∑

i

vvTA∆(u− w̄)

)2

=
(
(I− s−1VVT )A∆(u− w̄)

)2
(5.52)

∇uP∆(u)(x) = 2

(

A∆2u− s−1
(∑

i

A∆vv
TA∆u

)

− w̃

)

= 2
(
A∆2u− s−1A∆VVTA∆u− w̃

)

= 2
(

A∆2u− s−1ṼṼTu− w̃
)

(5.53)

w̃ = (I− s−1VVT )A∆(u− w̄).
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where V = (v1, . . . ,vn) and accordingly Ṽ = A∆V = (A∆v1, . . . ,A∆vn). If A∆2 is
realized as A∆2 = A∆A∆, then (5.53) can also be rewritten as

∇uP∆(u)(x) = 2A∆

(
I− s−1VVT

)
A∆u− 2w̃ (5.54)

The integration into the optimization algorithms is performed, to some extent,
analogously to the integration of the PCA regularizer. For the semi-implicit gradi-
ent descent, with the PCA curvature regularizer added explicitly, this leads to the
following formulation.

(I+ ταA∆2)u(t+1) = u(t) − τ
(

∇uD(F,Mu(t)) + 2β(A∆2 − s−1ṼṼT )u(t) − w̃
)

.

(5.55)

The same can be applied for the Newton type methods

u(t+1) = u(t) − τ
(

HD(F,M
u
(t) ) + βHP∆

+ αA
)−1

(

∇uD(F,Mu(t)) + αAu(t) + (A∆2 − s−1ṼṼT )u(t) − w̃
)

, (5.56)

where

HP∆
= 2

(

A∆2 − s−1ṼṼT
)

. (5.57)

For the formulation of the semi-implicit gradient descent that handles the curvature
PCA term implicitly, we get

(

I+ τ(αA∆2 + 2β(A∆2 − s−1ṼṼT ))
)

u(t+1) = u(t) − τ(∇uD(F,Mu(t))− w̃)
(

I+ τ(α + 2β)A∆2 − 2τβs−1ṼṼT
)

u(t+1) = u(t) − τ(∇uD(F,Mu(t))− w̃).

(5.58)

As far as the optimization algorithms are concerned this is qualitatively equivalent
to the formulations presented for the PCA regularization. The same is true for the
approach making use of the Sherman-Morrison-Woodbury formula (5.35) to solve
for the matrices incorporating the PCA core matrix ṼṼT . For the semi-implicit
algorithm we would associate

E = I+ τα(α + 2β)A∆2 F = ṼT a = −2τβs−1, (5.59)

for the Newton based methods

E = HDist + (α + 2β)A F = Ṽ a = −βs−1. (5.60)

Especially in the case of a regularization term that, analogously to the curvature
regularizer, is based on the Laplacians of the vector field, it is a reasonable expectation
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that an implicit treatment of this term is advantageous.



Chapter 6

Application: MR/PET Attenuation
Correction

The introduction of hybrid scanners, for example the combination of PET and CT
imaging within one machine, has brought many new possibilities to the field of medical
imaging, such as the invention of highly specific tumor markers. However, the superior
tissue contrast and the large variety of different sequences offered by MR imaging
make it desirable to have such hybrid systems with an MR scanner instead of the CT.
Although there are technical difficulties to overcome, combined MR/PET scanners
for the human head have been studied for a while now and currently the first full
body scanners are undergoing clinical trials.

One of the problems posed by the combination of PET and MR is the attenuation
correction of the PET image (see Section 2.3 and 2.4). In PET the aim is to measure
the concentration of a radioactive tracer within the patient body. However, the
quantity that the machine can actually measure is the radiation emitted by the tracer
and attenuated by the patient body. In order to correct for the attenuation of the
measured radiation it is necessary to provide an attenuation map for each acquisition.
The map can be created, for instance, from a CT, where the relation between the
energy dependent Hounsfield units and the tissue densities is known.

The values measured by MR, however, are not related to the attenuation or the
tissue density, therefore, no straightforward solution is currently available for the at-
tenuation correction in case of a hybrid MR/PET scanner. To generate attenuation
maps from MR images there are two main categories of approaches. Segmentation
based approaches try to segment the MR image into different tissue classes (usu-
ally air, soft tissue and bone) with known attenuation values. Registration based
approaches non-rigidly register an atlas CT to the patient MR image, thus creating
a pseudo CT for the patient. A survey of MR/PET attenuation techniques can be
found in [Hofm 09]. In addition, combined methods can be applied that first perform
an atlas registration and use the knowledge from the registered atlas as an additional
input to the classification step to get overall improved results [Hofm 08].

Some recent methods instead focus on ultra short echo (UTE) sequences for the
MR/PET attenuation correction, as these are to some extent able to image bone in
MR. For instance, Keereman et al. [Keer 10] use two UTE sequences with different
echo times to generate air, bone and soft tissue masks by an approach composed of

105
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thresholding and combinations of the resulting masks. They compare their results to
also thresholded ground truth CT data and report a sensitivity of 89% for bone, 91%
for soft tissue and 82% for air on phantom data. On real patient data they achieve a
(quote) “overall accuracy of between 85% and 95% for all patients”, which we assume
refers to the sensitivity to all tissue classes.

In this work we will concern ourselves only with an improvement of the atlas
registration. The multi-modal, non-rigid registration, which is used to perform such
an atlas registration, offers many degrees of freedom in the spatial domain and also in
the mapping of corresponding intensities, which is not known a priori. We therefore
employ the statistical regularization of the deformation field presented in Section 5.2.
The model we use in this application is generated from gold standard deformation
fields computed on mono-modal CT registrations. The model trained on these mono-
modal registration results is then used to constrain the more difficult multi-modal
registration problem. The training CT data is also used to generate good atlas image
for use during the atlas registrations.

In the following two sections we first present the generation of the atlas, the model
and the choice of parameters during their generation, followed by an evaluation of
the atlas registration approach using a standard, a PCA constrained and a curvature
PCA constrained registration method.

6.1 Model Generation

6.1.1 Data

For this evaluation data of 34 different patients is used. Data from 9 patients is taken
from the RIRE database [West 97]. The remaining patient data is of epilepsy patients
who had a PET/CT scan and a varying number and type of MR sequences taken. All
in all, 34 CT scans, 25 T1 weighted and 17 T2 weighted MR scans are used during
the evaluation.

All the scans (CT and MR) are downsampled to an isotropic resolution of 1.95mm
and volume size of 128× 128× 71. The downsampling is performed in order to keep
computation times down, safe memory during the later application of the PCA model
for the multi-modal registration and to make additional resampling during the ap-
plication of the PCA model unnecessary. The used resolution is sufficient for the
application in MR/PET attenuation correction, as PET images that were acquired
together with the CT image used in this evaluation had an isotropic spatial resolu-
tion of 2mm. Additional structures in the images, like the table in CT images, are
masked and ignored during processing (template image generation, model generation,
evaluation).

6.1.2 Template Image Generation

The first step in the generation of a model is the computation of the image that
will be registered to the patient MR images, which we will refer to as template
image. In [Daum 09] we simply used another patients CT image. However, this is
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not ideal as, even though CT offers the normed Hounsfield unit (HU) for denoting
image intensities, there are significant differences of the values in similar tissue types
between different patients. For example the Hounsfield value of bone varies between
800 and 1200 HU in our data, depending on the general bone density of the patients.
In order to generate a good template from the available data we therefore register
(mono-modal) all datasets to one manually picked reference that is used as the fixed
image in the non-rigid registration. All non-rigid registrations are preceded by a rigid
pre-registration. The fixed image and the resulting deformed moving images from all
other datasets are averaged in this common frame of reference. This mean image is
then used as the template for the MR/PET attenuation correction.

As side note, it has to be mentioned that in contrast to the generation of the
PCA model, the template image is not generated in a leave-one-out manner. The
ground-truth CT image of the patient for most of our datasets is thus included in
the averaging of the template image. This choice has been made to reduce some
of the workload in the leave-one-out evaluation as it means that the gold-standard
mono-modal registrations have to be performed only once as long as the template
image does not change. As it is only one of 34 images that are averaged and the
main aim of this evaluation is to compare the registration with and without the PCA
regularizer, the effects should be minimal.

The result of the averaging naturally depends on the stiffness used during the non-
rigid registrations. If the stiffness is chosen high, bad matches and therefore blurry
averaged template images are generated. If the stiffness is chosen low, the registration
has too much freedom and the reference image is more or less just replicated. In
Figure 6.1 the registration energies for different choices of the stiffness parameter
κ are shown, together with a plot of the mean squared gradient magnitude in the
resulting template image, which is supposed to give an idea of the sharpness of the
edges in the image. Figure 6.2 depicts slices of the generated template along with a
sample deformation field for one of the registrations performed during its generation.
The sample images show the progression from very local and non-smooth deformation
fields that result in very good matches and therefore a very sharp average image to
very smooth deformation fields and a blurry average image. The main intent behind
the averaging is to get average values for structures that can vary in the Hounsfield
unit they are represented in, like bones and to get rid of anatomical details that
are not present in a majority of the scans. However, if the non-rigid registration is
given too much freedom, details present in the dataset used as fixed image can be
generated from unrelated structures in the other images. As is usually the case in
non-rigid registration a compromise has to be found between the aim of a good match
and a match that identifies unrelated structures with each other. For the very low
stiffness value κ = 15 the deformation field is exceedingly local and in some slices
even exhibits edges. The resulting template image accordingly looks almost the same
as the reference used during the registrations. As a good compromise for this work
we identified a stiffness of κ = 25 by manual inspection of the data.
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Figure 6.1: Average registration energies for different choices of the stiffness κ in the
generation of the template image. (a) shows the average, squared, gradient magnitude
in the atlas image as in indicator of image contrast and (b) the corresponding average
value of the distance measure, (c) regularizer and (d) overall registration energy.
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(a) Reference CT (b) κ = 15 (c) κ = 25

(d) κ = 40 (e) κ = 80 (f) κ = 150

Figure 6.2: Different results for the averaged image used as the template for different
choices of the stiffness κ. (a) shows the CT image used as fixed image F for the reg-
istrations. The remaining columns show the resulting template image (top row) and
a sample deformation field of one of the registration performed during the template
image generation. The higher the stiffness the smoother the deformations and the
blurrier and less detailed the template image.
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Figure 6.3: The plots show the average registration energies over all training data
used for the gold standard generation, with respect to the chosen stiffness parameter
κ. This illustrates nicely that, the lower κ is chosen, the better the distance measure
can be minimized.

6.1.3 PCA Generation

The next step is the generation of the PCA model. As we later want to register the
template image onto the patient data, the training data also has to be generated
by registering the template onto the patient CT images i. e. the template is used
as moving image M in these mono-modal registrations. Again the unknown in this
process is the stiffness parameter κ that should be used during the non-rigid regis-
trations. If the stiffness is chosen low the deformation field will be very fine grained
and local and a PCA decomposition will not find too many meaningful major axes.
If it is chosen high the final match will not be good and the determined major axes
will describe deformation fields yielding bad matches. To get an intuition about the
effects of the stiffness κ several experiments are run with a stiffness parameter of
κ ∈ {25, 30, 4050, 60, 80, 110, 150}. These can be analyzed with respect to the qual-
ity of the numerical match i. e. the registration energies (see Figure 6.3) and the
variances along the axes of the PCA model (see Figure 6.4) and the curvature PCA
model (see Figure 6.5).

The average resulting registration energies after the non-rigid registration (see
Figure 6.3) show a steady decrease with decreasing κ, i. e. the lower the stiffness,
the better the match, which does not indicate a specific value for κ as a good value.
The second criterion we have to keep in mind is how well the results of these gold
standard registrations can be captured by the PCA models. This is characterized by
the number of Eigenmodes necessary to capture a certain percentage of the variation
in the data. This naturally improves the higher the stiffness during the training
registrations was set as this will lead to generally smoother results, which are more
likely to coincide between different datasets. This behavior is illustrated in Figure 6.4
and 6.5. The plots show the percentage of the overall variation in the training data
covered by a number of principal components. It is interesting to see that in general
the PCA model indicates a larger coverage of the variance in the learning data, than
the curvature PCA model. It would be rash, however, to judge from this that the
PCA model is superior. For example the curvature training data does not contain any
rotational information as this is lost in calculating the derivatives and similar things
will be true for relatively stiff local motions. This kind of information is therefore not
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(a) stiffness κ = 25 (log-plot)
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(b) stiffness κ = 25
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(c) stiffness κ = 30 (log-plot)
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(d) stiffness κ = 30
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(e) stiffness κ = 50 (log-plot)
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(f) stiffness κ = 50
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(g) stiffness κ = 80 (log-plot)
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(h) stiffness κ = 80
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(i) stiffness κ = 150 (log-plot)

5 10 15 20 25 30
0

50

100

principal components

%
co

ve
ra

ge

(j) stiffness κ = 150

Figure 6.4: Plots showing the model variation for different stiffness values used during
the gold standard generation for the PCA model. Left: Log-plots of the variance σ2

along the major axes of the PCA model. Right: Ratio of the cumulative variance to

the overall variance contained in the model i. e.
∑k

i=1 σ
2
i

σ2 . An 80% and a 90% coverage
respectively are indicated by the light gray lines.
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(a) stiffness κ = 25 (log-plot)
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(b) stiffness κ = 25
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(c) stiffness κ = 30 (log-plot)
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(d) stiffness κ = 30
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(e) stiffness κ = 50 (log-plot)
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(f) stiffness κ = 50
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(g) stiffness κ = 80 (log-plot)
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(h) stiffness κ = 80
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(i) stiffness κ = 150 (log-plot)
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Figure 6.5: Plots showing the model variation for different stiffness values used
during the gold standard generation for the curvature PCA model. Left: Log-plots
of the variance σ2 along the major axes of the PCA model. Right: Ratio of the

cumulative variance to the overall variance contained in the model i. e.
∑k

i=1 σ
2
i

σ2 . An
80% and a 90% coverage respectively are indicated by the light gray lines.
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or only to a small extent present in the learning data of the curvature PCA, while
it might contribute a significant variance to the plain PCA model. As this kind of
information is easy to represent in the PCA model, it will bias the indicated coverage.

Another noteworthy observation concerning the curvature PCA is that not only
the coverage increases, but also the model variation itself decreases steadily with an
increasing value for the stiffness κ. This behavior is a consequence of the standard
regularizer used in the registrations penalizing exactly the thing that we are trying
to learn in the curvature PCA model.

For the final evaluation a stiffness of κ = 50 was used as a compromise between
match quality and model coverage, which gives us a coverage of 90% with 15 compo-
nents for the plain PCA model, and 80% with 19 components in the curvature PCA
model. To give an impression of the resulting model the first three components of the
standard PCA model are depicted in Figure 6.6. These first components show very
smooth and global deformations mostly related to changes in size (mostly component
1) and shape of the skull.

As a final step it is worth to consider the integration of the PCA model mean,
into the template image. This could either be done by directly applying the mean
deformation w̄ to the template image or by combining it with the current estimated
transform u during the registration. The second approach generates more overhead
during the registration, but has the advantage that we circumvent one additional
resampling step on the template. If the mean is treated in this way this has two
consequences: First, the mean transform does not generate a penalty energy in the
standard regularizer, as it has been incorporated into the template image and second,
the PCA model can be treated as having a zero-mean, thus simplifying the PCA
regularization terms.

6.2 Evaluation

The basic registration algorithm used for the evaluation uses the mutual information
as distance measure in conjunction with the curvature regularizer. This algorithm is
run with the additional PCA regularizer, the curvature PCA regularizer or with no
additional regularization. The used optimization algorithm is the Newton formula-
tion (4.3). For the treatment of the Hessian both the choices presented in Section 5.2.2
and Section 5.2.3 are employed: Either the Hessian of the PCA is treated together
with the Hessian of the distance measure and estimated numerically via the secant
condition according to (4.7) and (4.10) or it is handled individually and therefore
exactly, by making use of the Sherman-Morrison-Woodbury formula (5.35) for the
PCA regularizer (5.37) or for the curvature PCA regularizer (5.60). There are thus
five different algorithms to compare:

• standard – standard registration (no model regularization)

• PCA approximate – registration with PCA regularization and a numerical es-
timate for the application of the inverse Hessian of the PCA term

• PCA exact – registration with PCA regularization, with the Hessian solved
exactly for the PCA
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(a) component 1, lateral (b) component 2, lateral (c) component 3, lateral

(d) component 1, frontal (e) component 2, frontal (f) component 3, frontal

(g) component 1, axial (h) component 2, axial (i) component 3, axial

Figure 6.6: Frontal, axial and lateral views of the gradient magnitude of the first
three principal components of the standard PCA regularizer model.
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• curvature PCA approximate – registration with curvature PCA regularization
and a numerical estimate for the application of the inverse Hessian of the PCA
term

• curvature PCA exact – registration with curvature PCA regularization, with
the Hessian solved exactly for the PCA

The quality of the atlas registrations is evaluated by comparison with the CT
scans available for the patients. The CT images are aligned with the MR images
used during the atlas registration by a rigid registration. As the skull is a rigid
object and the rigid registration we employ has an accuracy of about 0.7mm - 1.2mm
target registration error for CT to MR registrations (see [Hahn 10] for a presentation
of the used rigid registration algorithm and an evaluation of its accuracy; the used
method is KCR), the aligned CT images can be treated as a reasonable ground truth
for the evaluation. The scanner table visible in the ground truth CT is masked and
ignored. For the comparison of the ground truth CT with the registered template
CT image several measures are employed.

• RMSE – root mean square error (in Hounsfield units (HU))

• MAE – mean absolute error (in HU)

• BDICE – Dice’s coefficient of thresholded bone areas (thresholded at 600 HU)

• STDICE – Dice’s coefficient of thresholded bone and soft tissue areas (thresh-
olded at -200 HU)

Mathematically these are defined as follows: Let R be the ground truth reference
image, T the deformed template image and the points in the discretized image domain
Ω given by xi ∈ Ω with i = 1, ..., n, then they can be written as

RMSE(R, T ) =

√
√
√
√

1

n

n∑

i=1

(R(xi)− T (xi))2 (6.1)

MAE(R, T ) =
1

n

n∑

i=1

|R(xi)− T (xi)|. (6.2)

For the DICE measures we additionally, introduce N(I, t) = |{xi | I(xi) > t}| and
N(I, J, t) = |{xi | I(xi) > t ∧ J(xi) > t}| i. e. N counts the number of pixels above
a threshold in one or two images. The two DICE scores we use in our evaluation are
therefore

BDICE(R, T ) =
2N(R, T, 600)

N(R, 600) +N(T, 600)
(6.3)

STDICE(R, T ) =
2N(R, T,−200)

N(R,−200) +N(T,−200)
. (6.4)
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None of these measures alone is perfect for an evaluation of this sort, but together
they give a good impression of the quality of the registrations. The main problem
of RMSE and MAE as a quality measure is their dependence on the size of the
background area. The larger the background area, the lower the mean values will
be as the registration of air to air will obviously always yield good results. They
are, therefore, not well suited for a comparison between different works that employ
different datasets, as these may contain more or less large background areas, which
would bias the results. However, a comparison of our different methods, which are all
evaluated on the same datasets will work fine. RMSE and MAE allow a fine grained
comparison on the actual HU, which are after all, what we try to recover by the
atlas registration. The Dice measures BDICE and STDICE do not have a problem
with a varying background area. In exchange they can only be applied on masks,
thus ignoring the actual HU units. This is most prominent in the results for the
bone masks BDICE. The low values achieved there by all registrations is, in part,
due to the template image we use. Especially in the facial area i. e. around the nasal
cavity, sinuses etc. there are a lot of rather thin bone structures. These already have
a somewhat lower HU in the reference CT images we use. In the template image
this is compounded, as it is a mean of these CT images, and the registrations in the
template image generation do not yield identical images. The averaging thus leads
to a smoothing of the bone structures in this area and therefore to lower HU values.
Many of these structures are therefore not captured by the thresholding used to
generate the bone masks used for BDICE. In the original CT images however some of
these structures are included in the bone mask and consequently lead to mismatches
in the masks that no registration algorithm can compensate.

The evaluation is split for the 25 T1 and 17 T2 weighted MR scans, as the distance
measure might give slightly different energies for the different MR sequences (the
normalization introduced in Section 3.5.2 is not used here). Otherwise results for the
different patient data is averaged and presented with the resulting mean and variance
for the individual measures.

A problem in the application of the registration algorithm is the parameter choice
for the stiffness κ, the weighting β of the PCA regularizer and the number of PCA
components used. Even though one can reason about the amount of morphological
variation covered by a particular model and the number of components used (compare
Section 6.1.3) this does not directly suggest for which number of components used in
a regularization term we will get the best results. It is possible to limit the range of
reasonable values, but eventually experimentation or simply a brute force parameter
search is necessary to determine a good parameter set. In our case a brute force search
on the complete evaluation data is rather prohibitive due to runtime constraints.
Especially in the case of the “exact” application of the PCA regularizers the runtime
of a single registration is already rather high, as one has to solve several times for the
standard regularizer in each iteration step. Therefore, a brute force search of many
parameter combinations is performed on a small subset of the evaluation data. The
most promising candidates are then applied to the full data. All the evaluations are
performed in a leave-one-out manner i. e. the dataset that the atlas registration is
applied to is excluded from the model generations process.
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The results for the standard approach not using a PCA regularizer are given in
table 6.2. As this method only requires the stiffness parameter κ it is possible to give
results for the whole range of reasonable values. The best results (highlighted in each
column) show that for the T2 weighted MR scans a somewhat lower stiffness of κ = 4
gave the best results compared with the best parameter setting of κ = 6 for the T1
weighted scans. Overall we have a mean absolute error of about 76 HU with a rather
high standard deviation of 19 HU and a root mean square error of about 189 HU for
the T1 weighted MR data as reference. As these values include the background the
actual deviation in the foreground pixels is higher. Nonetheless, we get a very good
agreement in the STDICE i. e. soft-tissue and bones to air match. The BDICE value
is substantially lower which is in part due to the used template image, as discussed
above. The results for the T2 weighted reference data is overall a bit worse than
the results for the T1 weighted reference MR images in the measures comparing HU
directly (RMSE, MAE) and comparable in the Dice measures.

Table 6.2 shows the result for the PCA regularizer applied with the “approximate”
optimization. Both the MAE and RMSE decrease with the decrease being much more
noticeable for the T2 weighted reference MR images. For these we also see a large
decrease in the variance of the measures, indicating a higher robustness of the model
constrained registration. The Dice measures also improve. The largest improvement
can been seen in the BDICE. As the bones are relatively fine structures by comparison
this indicates a better match in the details. The “exact” version shows similar results,
although with slightly different parameters.

The results of the curvature PCA regularizer presented in table 6.4 for the “approx-
imate” and in table 6.5 for the “exact” optimization, give a very similar impression.

Whether any of these improvements are significant is difficult to say, as the vari-
ance for the results given not only depends on the quality of the registration, but also
on the quality of the atlas. As our atlas is not perfect, even a perfect registration
would likely not be able to generate a result with no distance in any of our measures.
This would incur a “base” variance even for a perfect registration algorithm. The
variances for the measures given are therefore not suited to judge the significance of
the results. We can however see that we get general improvements in all measures and
usually also their variances, for the model constrained approaches. This means the
average result improves and the likelihood of a really bad (outlier) result decreases.

Overall the results give the impression that the type of model (plain or curva-
ture) or its “approximate” or “exact” solution only make a minor difference in the
real application. The main difference seems to be that plain wrong deformations are
inhibited enough to nudge the registration towards the correct match. Usually, a bad
result that matches unrelated parts with each other will constitute a local minimum
in the landscape of the registration energy. The deformation models help to elimi-
nate these undesirable local minima, while leaving the local minima of the desired
solutions intact. Hence, the relatively minor influence of the actual formulation of
the constraining model term.

We can therefore conclude that the “approximate” implementation, which requires
far less computational overhead, is sufficient to improve the results of our atlas reg-
istration. This implementation only requires the computation of a few addition dot-
products and vector additions. In exchange we get a higher combined robustness
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and accuracy of the registration application if we have an application case that has
a limited variability in the kind of deformations that can occur.
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κ
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

1.5 1.943·102 3.282·101 8.414·101 1.894·101 6.234·10−1 8.962·10−2 9.544·10−1 1.600·10−2

2 1.894·102 3.455·101 8.196·101 2.036·101 6.172·10−1 9.882·10−2 9.611·10−1 1.125·10−2

3 1.815·102 3.487·101 7.875·101 2.084·101 6.418·10−1 1.069·10−1 9.685·10−1 6.134·10−3

4 1.775·102 3.476·101 7.643·101 2.075·101 6.544·10−1 1.166·10−1 9.696·10−1 5.467·10−3

6 1.771·102 3.169·101 7.575·101 1.904·101 6.660·10−1 1.060·10−1 9.697·10−1 4.861·10−3

10 1.888·102 3.211·101 8.027·101 1.908·101 6.524·10−1 9.572·10−2 9.648·10−1 5.632·10−3

15 2.146·102 3.687·101 9.083·101 2.086·101 5.978·10−1 9.329·10−2 9.531·10−1 1.094·10−2

(a) MR T1 weighted reference images (mean and variance over 25 datasets)

κ
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

1.5 2.159·102 7.800·101 8.873·101 3.502·101 6.178·10−1 1.722·10−1 9.513·10−1 2.992·10−2

2 2.000·102 7.322·101 8.345·101 3.287·101 6.511·10−1 1.504·10−1 9.584·10−1 2.438·10−2

3 1.846·102 6.121·101 7.709·101 2.480·101 6.826·10−1 1.123·10−1 9.662·10−1 1.387·10−2

4 1.827·102 5.273·101 7.629·101 2.214·101 6.805·10−1 1.029·10−1 9.675·10−1 1.082·10−2

6 1.886·102 5.966·101 7.945·101 2.643·101 6.661·10−1 1.078·10−1 9.670·10−1 1.308·10−2

10 2.078·102 8.205·101 8.812·101 3.787·101 6.271·10−1 1.377·10−1 9.601·10−1 2.291·10−2

15 2.340·102 8.537·101 9.890·101 4.073·101 5.801·10−1 1.410·10−1 9.471·10−1 2.665·10−2

(b) MR T2 weighted reference images (mean and variance over 17 datasets)

Table 6.1: Results of the atlas registration using the standard registration approach (no PCA regularization).
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κ β comp
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

2.5 10−8 23 1.687·102 3.331·101 7.452·101 1.870·101 6.824·10−1 8.339·10−2 9.681·10−1 7.769·10−3

3.5 10−8 23 1.714·102 3.702·101 7.602·101 2.082·101 6.757·10−1 1.191·10−1 9.686·10−1 6.869·10−3

5.0 10−10 10 1.702·102 3.693·101 7.530·101 2.087·101 6.789·10−1 1.305·10−1 9.701·10−1 6.111·10−3

5.0 10−9 26 1.691·102 3.565·101 7.471·101 2.012·101 6.844·10−1 1.196·10−1 9.703·10−1 5.920·10−3

6.0 10−10 10 1.687·102 3.429·101 7.422·101 1.928·101 6.873·10−1 1.126·10−1 9.709·10−1 5.575·10−3

6.0 10−10 20 1.685·102 3.364·101 7.409·101 1.902·101 6.879·10−1 1.096·10−1 9.710·10−1 5.481·10−3

6.0 10−11 10 1.690·102 3.423·101 7.436·101 1.933·101 6.857·10−1 1.164·10−1 9.708·10−1 5.511·10−3

6.0 10−11 20 1.693·102 3.461·101 7.449·101 1.950·101 6.850·10−1 1.170·10−1 9.707·10−1 5.557·10−3

6.0 10−11 23 1.692·102 3.465·101 7.445·101 1.952·101 6.852·10−1 1.175·10−1 9.708·10−1 5.478·10−3

(a) MR T1 weighted reference images (mean and variance over 25 datasets)

κ β comp
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

2.5 10−8 23 1.810·102 6.020·101 7.757·101 2.476·101 6.845·10−1 1.105·10−1 9.669·10−1 1.425·10−2

3.5 10−8 23 1.768·102 4.365·101 7.583·101 1.825·101 6.902·10−1 9.300·10−2 9.695·10−1 9.909·10−3

5.0 10−10 10 1.693·102 2.619·101 7.341·101 1.302·101 7.086·10−1 8.142·10−2 9.715·10−1 6.679·10−3

5.0 10−9 26 1.723·102 3.175·101 7.439·101 1.452·101 7.015·10−1 8.383·10−2 9.710·10−1 7.463·10−3

6.0 10−10 10 1.676·102 2.100·101 7.284·101 1.197·101 7.105·10−1 7.878·10−2 9.723·10−1 7.387·10−3

6.0 10−10 20 1.679·102 2.136·101 7.295·101 1.209·101 7.098·10−1 7.801·10−2 9.722·10−1 7.613·10−3

6.0 10−11 10 1.679·102 2.118·101 7.298·101 1.208·101 7.096·10−1 7.833·10−2 9.721·10−1 7.434·10−3

6.0 10−11 20 1.679·102 2.129·101 7.296·101 1.209·101 7.099·10−1 7.836·10−2 9.721·10−1 7.627·10−3

6.0 10−11 23 1.678·102 2.100·101 7.291·101 1.200·101 7.100·10−1 7.823·10−2 9.722·10−1 7.556·10−3

(b) MR T2 weighted reference images (mean and variance over 17 datasets)

Table 6.2: Results of the atlas registration using the PCA regularizer and the “approximate” optimization scheme.
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κ β comp
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

5.0 10−10 10 1.701·102 3.566·101 7.528·101 2.013·101 6.812·10−1 1.215·10−1 9.700·10−1 6.115·10−3

5.0 10−10 16 1.703·102 3.624·101 7.539·101 2.046·101 6.794·10−1 1.279·10−1 9.701·10−1 5.981·10−3

5.0 10−12 16 1.708·102 3.728·101 7.567·101 2.097·101 6.777·10−1 1.320·10−1 9.699·10−1 6.268·10−3

6.0 10−10 10 1.684·102 3.313·101 7.418·101 1.866·101 6.908·10−1 1.062·10−1 9.712·10−1 5.561·10−3

6.0 10−10 16 1.683·102 3.296·101 7.413·101 1.859·101 6.916·10−1 1.054·10−1 9.712·10−1 5.654·10−3

6.0 10−10 20 1.682·102 3.294·101 7.405·101 1.858·101 6.917·10−1 1.060·10−1 9.714·10−1 5.467·10−3

6.0 10−12 16 1.698·102 3.456·101 7.485·101 1.942·101 6.845·10−1 1.203·10−1 9.705·10−1 5.574·10−3

6.0 10−12 20 1.697·102 3.438·101 7.476·101 1.932·101 6.851·10−1 1.186·10−1 9.706·10−1 5.612·10−3

(a) MR T1 weighted reference images (mean and variance over 25 datasets)

κ β comp
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

5.0 10−10 10 1.683·102 2.324·101 7.328·101 1.218·101 7.097·10−1 7.974·10−2 9.718·10−1 6.717·10−3

5.0 10−10 16 1.689·102 2.480·101 7.348·101 1.260·101 7.082·10−1 8.008·10−2 9.719·10−1 6.487·10−3

5.0 10−12 16 1.690·102 2.467·101 7.351·101 1.251·101 7.092·10−1 8.019·10−2 9.717·10−1 6.558·10−3

6.0 10−10 10 1.682·102 2.149·101 7.322·101 1.202·101 7.091·10−1 7.802·10−2 9.724·10−1 7.425·10−3

6.0 10−10 16 1.684·102 2.163·101 7.334·101 1.205·101 7.087·10−1 7.863·10−2 9.723·10−1 7.509·10−3

6.0 10−10 20 1.683·102 2.154·101 7.327·101 1.207·101 7.089·10−1 7.792·10−2 9.724·10−1 7.350·10−3

6.0 10−12 16 1.678·102 2.101·101 7.307·101 1.193·101 7.108·10−1 7.700·10−2 9.723·10−1 7.451·10−3

6.0 10−12 20 1.676·102 2.080·101 7.298·101 1.191·101 7.111·10−1 7.667·10−2 9.724·10−1 7.264·10−3

(b) MR T2 weighted reference images (mean and variance over 17 datasets)

Table 6.3: Results of the atlas registration using the PCA regularizer and the “exact” optimization scheme.



122
C

h
ap

ter
6.

A
p
p
lication

:
M

R
/P

E
T

A
tten

u
ation

C
orrection

κ β comp
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

4.0 10−07 26 1.742·102 3.913·101 7.763·101 2.207·101 6.614·10−1 1.433·10−1 9.687·10−1 6.883·10−3

5.0 10−09 20 1.709·102 3.701·101 7.570·101 2.087·101 6.772·10−1 1.326·10−1 9.699·10−1 6.169·10−3

5.0 10−09 26 1.710·102 3.726·101 7.576·101 2.099·101 6.767·10−1 1.328·10−1 9.698·10−1 6.214·10−3

5.0 10−11 26 1.710·102 3.704·101 7.574·101 2.085·101 6.772·10−1 1.316·10−1 9.698·10−1 6.210·10−3

6.0 10−09 20 1.694·102 3.421·101 7.468·101 1.922·101 6.859·10−1 1.190·10−1 9.707·10−1 5.474·10−3

6.0 10−09 26 1.694·102 3.422·101 7.468·101 1.922·101 6.859·10−1 1.191·10−1 9.707·10−1 5.483·10−3

6.0 10−11 20 1.694·102 3.421·101 7.468·101 1.923·101 6.859·10−1 1.190·10−1 9.707·10−1 5.475·10−3

6.0 10−11 26 1.694·102 3.416·101 7.464·101 1.920·101 6.862·10−1 1.193·10−1 9.708·10−1 5.502·10−3

6.0 10−13 26 1.695·102 3.427·101 7.472·101 1.927·101 6.856·10−1 1.188·10−1 9.707·10−1 5.538·10−3

(a) MR T1 weighted reference images (mean and variance over 25 datasets)

κ β comp
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

4.0 10−07 26 1.693·102 2.699·101 7.343·101 1.256·101 7.104·10−1 8.474·10−2 9.710·10−1 6.012·10−3

5.0 10−09 20 1.679·102 2.247·101 7.316·101 1.204·101 7.097·10−1 8.030·10−2 9.721·10−1 6.004·10−3

5.0 10−09 26 1.681·102 2.315·101 7.317·101 1.218·101 7.105·10−1 7.965·10−2 9.720·10−1 6.262·10−3

5.0 10−11 26 1.678·102 2.242·101 7.308·101 1.203·101 7.110·10−1 7.947·10−2 9.720·10−1 6.163·10−3

6.0 10−09 20 1.676·102 2.092·101 7.296·101 1.188·101 7.118·10−1 7.801·10−2 9.724·10−1 7.322·10−3

6.0 10−09 26 1.676·102 2.089·101 7.297·101 1.188·101 7.114·10−1 7.770·10−2 9.724·10−1 7.404·10−3

6.0 10−11 20 1.676·102 2.084·101 7.299·101 1.188·101 7.113·10−1 7.747·10−2 9.724·10−1 7.383·10−3

6.0 10−11 26 1.676·102 2.095·101 7.299·101 1.190·101 7.111·10−1 7.782·10−2 9.723·10−1 7.537·10−3

6.0 10−13 26 1.679·102 2.120·101 7.308·101 1.196·101 7.107·10−1 7.764·10−2 9.722·10−1 7.632·10−3

(b) MR T2 weighted reference images (mean and variance over 17 datasets)

Table 6.4: Results of the atlas registration using the curvature PCA regularizer and the “approximate” optimization scheme.
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κ β comp
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

5.0 10−09 16 1.712·102 3.730·101 7.586·101 2.104·101 6.765·10−1 1.326·10−1 9.696·10−1 6.170·10−3

5.0 10−13 16 1.709·102 3.726·101 7.571·101 2.099·101 6.773·10−1 1.326·10−1 9.698·10−1 6.255·10−3

6.0 10−09 16 1.701·102 3.485·101 7.497·101 1.960·101 6.839·10−1 1.201·10−1 9.704·10−1 5.467·10−3

6.0 10−09 26 1.701·102 3.486·101 7.498·101 1.960·101 6.838·10−1 1.202·10−1 9.704·10−1 5.476·10−3

6.0 10−11 16 1.696·102 3.433·101 7.475·101 1.930·101 6.856·10−1 1.190·10−1 9.707·10−1 5.555·10−3

6.0 10−11 26 1.690·102 3.420·101 7.430·101 1.928·101 6.868·10−1 1.184·10−1 9.709·10−1 5.429·10−3

6.0 10−13 16 1.698·102 3.452·101 7.484·101 1.938·101 6.850·10−1 1.186·10−1 9.706·10−1 5.705·10−3

6.0 10−13 26 1.697·102 3.457·101 7.480·101 1.941·101 6.851·10−1 1.187·10−1 9.706·10−1 5.672·10−3

(a) MR T1 weighted reference images (mean and variance over 25 datasets)

κ β comp
RMSE MAE BDICE STDICE

E σ E σ E σ E σ

5.0 10−09 16 1.692·102 2.540·101 7.354·101 1.268·101 7.090·10−1 8.003·10−2 9.718·10−1 6.802·10−3

5.0 10−13 16 1.672·102 2.097·101 7.287·101 1.165·101 7.127·10−1 7.882·10−2 9.720·10−1 6.539·10−3

6.0 10−09 16 1.685·102 2.169·101 7.335·101 1.207·101 7.087·10−1 7.741·10−2 9.722·10−1 7.829·10−3

6.0 10−09 26 1.684·102 2.161·101 7.328·101 1.205·101 7.093·10−1 7.751·10−2 9.722·10−1 7.853·10−3

6.0 10−11 16 1.678·102 2.103·101 7.308·101 1.194·101 7.107·10−1 7.754·10−2 9.723·10−1 7.513·10−3

6.0 10−11 26 1.671·102 2.126·101 7.249·101 1.222·101 7.124·10−1 7.792·10−2 9.722·10−1 7.625·10−3

6.0 10−13 16 1.677·102 2.074·101 7.299·101 1.185·101 7.108·10−1 7.756·10−2 9.725·10−1 7.215·10−3

6.0 10−13 26 1.681·102 2.127·101 7.314·101 1.197·101 7.102·10−1 7.780·10−2 9.722·10−1 7.694·10−3

(b) MR T2 weighted reference images (mean and variance over 17 datasets)

Table 6.5: Results of the atlas registration using the curvature PCA regularizer and the “exact” optimization scheme.
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Chapter 7

Summary

Image registration is a standard task in medical image processing. The retrospective
combination of images from different modalities, time points or even different patients
is used directly for visualization, as well as indirectly as the basis for numerous ap-
plications, such as difference imaging, atlas registration, the training of shape models
and many more. Accordingly, this field has sparked a lot of research interest and lead
to numerous different registration approaches that differ from each other in the type
of transform they employ, such as rigid, affine and non-rigid non-rigid, whether they
model it parametric or non-parametric and how they calculate it. An overview over
the most commonly employed is given in Section 3.1.

This work focuses on a non-rigid, non-parametric registration scheme. Especially
in non-rigid registration approaches the general usability and the evaluation of the
registration results is a problem. Many registration approaches require the user to
specify numerical parameters necessary for the optimization algorithm. Additionally,
in non-rigid registration, it is always necessary for the user to specify how non-
rigid the desired result may be, as this is purely problem dependent. Finally, if
a visually appealing registration result is achieved it is still not completely clear if
it only looks good or actually makes medical and physiological sense. The aim of
this work is therefore to ease the use of non-rigid registration by providing a solid
standard registration approach that makes parameter selection as easy as possible,
and integrating additional prior information into the registration that can make the
registration more robust and the output more predictable.

The registration scheme used in this work assigns a vector to each individual
position in the fixed image that describes its corresponding location in the moving
image’s frame of reference. If the images are represented as continuous functions
this is therefore a vector valued function over the image domain. The registration
is now concerned with finding such a transform that leads to a good match and is
regular in some sense. The quality of the match is defined by a similarity measure.
In this work we employ the sum of squared differences (Section 3.3.1) between the
images and the mutual information (Section 3.3.2) which measures the statistical
information shared by the images. The required regularity of the transform is usually
a requirement pertaining its smoothness. In our case we work most of the time
with the so-called curvature regularizer (Section 3.4.2) which penalizes variations in
the second order derivative of the deformation function. We also shortly introduce
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the somewhat simpler diffusion regularizer (Section 3.4.1) which penalizes first order
derivatives instead.

These two terms, the distance measure and the regularizer, have to be weighted
against each other by the so-called stiffness parameter, to decide whether a better
match or a smoother transform is more important. The weighting depends on the
scaling and value range of both terms which themselves depend on the input data.
By examining the behavior of the registration result with respect to the stiffness
parameter and the input data we propose some rescalings that make a choice of this
parameter better predictable and more intuitive for the user.

As the type of optimization algorithm has a significant influence on the registration
result we compare several methods. The most important aspect in the optimization
seems to be how the regularizer is integrated into the formulation. Due to its global
influence the regularizer can pose problems in the non-linear optimization, however,
the regularization terms considered in this work are only quadratic terms which can
be solved directly. The non-linear optimization schemes explored here, therefore, are
a semi-implicit gradient descent method, which treats the regularizer implicitly, and
several variants of Newton type methods that all work with the correct Hessian matrix
for the regularizer. The Newton type methods differ mainly in the way they treat
the Hessian of the distance measure. In the case of the sum of squared differences an
analytically derived approximation can be used. For a more general applicability that
also works with the mutual information distance measure, numeric approximations
like an L-BFGS scheme are applied. All methods are evaluated in a single- and
multi-level context. The more generally applicable L-BFGS scheme proves to perform
almost on par with the analytical approximation for the distance measure. In very
seldom cases the numerical estimation of the Hessian causes problems that degrade
the results. As an alternative we propose a similar scheme that only approximates the
Hessian of the distance measure with a scaled identity matrix. While the single-level
performance is not quite as good as the L-BFGS it is very close in the multi-level
environment and was a bit more robust in our experiments.

But even for the best non-rigid registration, some problems offer just too many
ambiguities to yield a robust and good result. To improve these situations we incor-
porate additional prior information into the registration formulation. The first kind
of additional information we use are known point-to-point correspondences. These
landmarks specify a priori known parts of the deformation. Consequently, we propose
to remove these regions from the domain over which the registration is computed and
instead treat them as boundary regions. This way the computational effort actually
gets less, if more known correspondences are specified. The additional information
is shown to be able to constrain the registration in a way that improves registration
results to agree better with user expectations.

The second approach for integrating prior information presented in this work,
is a bit more involved. If gold standard deformations for a certain application are
available these can be used to build statistical models of the most common kinds of
deformations. In our case we examine two types of model. A PCA model computed
directly on the deformation fields and a PCA model computed on the Laplacian of the
deformation fields. The first approach is susceptible to rigid transforms contained in
the learning data. These are the result of misalignments in the rigid registration that
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is performed before the gold standard registrations are computed. This is to some
extent fixed by adding additional translational components to the PCA model. As the
second approach generates the model only on second derivatives of the deformation
fields it is robust to rigid motions in the learning data by default. The models are
added to the registration formulation as additional energy terms. Any part of a
deformation that cannot be represented by the model is quadratically penalized. In
the optimization algorithm these terms can be either treated similarly to the distance
measure, or we can make use of the linear nature of a PCA transform to solve for
them similarly to the regularization term. While the second approach is numerically
better it also demands a lot more computational effort and does not yield significant
advantages in our experiments.

The model based regularization is applied in the practical application scenario
of MR/PET attenuation correction. In PET there exists the necessity of perform-
ing attenuation correction, which requires an attenuation map of the patient. In
PET/CT scanners the CT can be used as the source of the attenuation map. In a
MR/PET hybrid scanner, however, the MR data cannot be used directly to compute
an attenuation map, as the values measured by the MR scanner are not related to
attenuation in any way. One possible way to derive an attenuation map from the
MR image nonetheless is to perform an atlas registration by registering a template
CT image to the MR image and use the deformed CT as attenuation map. This
multi-modal inter patient CT to MR registration is quite difficult. Allowing large
deformations in the non-rigid registration can lead to numerous mis-registrations.
A more constrained non-rigid registration, however, will often be too inflexible to
match the atlas sufficiently to the patient dataset. We alleviate this by adding the
model based regularizers. These allow large deformations that coincide with deforma-
tions learned from mono-modal registration data and inhibit deformations deviating
from this learned information. Experiments show an increase in overall accuracy and
robustness of the atlas registrations.

The algorithm presented in this work is therefore suited to numerous medical
applications. For standard registration problems the user can specify the desired
smoothness of the result in a simple and intuitive way. If the result does not agree
with the users expectations it can be refined by manually adding landmarks that
constrain the registration. In specific application scenarios the algorithm can be
additionally constrained with information from gold standard training data, to yield
robust and reliable results.
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Appendix A

Matrix Properties

In this appendix the properties of the linear system matrices resulting from the dis-
cretization of the regularizers from Section 3.4.1 and 3.4.2 and, depending on the
optimization method, the distance measures are discussed. The main point of inter-
est here is the positive definiteness as it is this property that decides whether most
of the standard iterative linear solver schemes like the Krylov subspace methods or
Multigrid can be applied.

Let A ∈ R
n×n be the system matrix as indicated above. We want to show that A

is positive definite (PD) under certain, easy to check conditions. A common definition
for positive definiteness is

xTAx > 0 ∀‖x‖ 6= 0 (A.1)

A necessary and sufficient condition for A being PD is that there exist n real valued,
positive Eigenvalues for A, i. e.

λi ∈ R ∧ λi > 0 ∀ Avi = λivi ‖vi‖ = 1 i = 1, . . . , n. (A.2)

This is a sufficient condition for (A.1), as

xTAx = xT (v1, . . . ,vn)
T diag(λ1, . . . , λn)(v1, . . . ,vn)x

= yT diag(λ1, . . . , λn)y

=
n∑

i=1

λiy
2
i

> 0 ∀‖y‖ = ‖(v1, . . . ,vn)x‖ = ‖x‖ 6= 0.

The converse, i. e. that (A.1) implies (A.2) is also true, but requires are more elaborate
proof, and is not necessary for the work presented here. A weaker requirement than
PD, is the positive semi-definiteness

xTAx ≥ 0. (A.3)

A matrix being positive semi-definite (PSD) is thus either PD or singular. Simi-

129



130 Appendix A. Matrix Properties

larly to (A.2) a necessary and sufficient condition for A being PSD, are real valued
Eigenvalues ≥ 0, i. e.

λi ∈ R ∧ λi ≥ 0 ∀ Avi = λivi i = 1, . . . , n. (A.4)

The proof relating (A.4) to (A.3) is identical to (A) with > replaced by ≥.

It also holds that adding a PD matrix A and a PSD matrix B will yield a PD
matrix in turn, as

xT (A+B)x = xTAx
︸ ︷︷ ︸

>0

+xTBx
︸ ︷︷ ︸

≥0

> 0 ∀‖x‖ > 0 (A.5)

Assuming that A has n real valued Eigenvalues, it can be shown that A is PD if
it is diagonally dominant, i. e.

aii ≥
n∑

j=1
j 6=i

|aij| ∀ 1 ≤ i ≤ n (A.6)

We now consider an arbitrary Eigenvalue λ and its associated Eigenvector v. Without
loss of generality it is possible to choose a scaling of v and an index i such that

vi ≥ |vj| > 0 ∀ 1 ≤ j ≤ n (A.7)

Using this maximum entry i in the Eigenvector and the diagonal dominance (A.6) it
is possible to show that

λvi =
n∑

j=1

aijvj ≥ aiivi −
n∑

j=1
j 6=i

|aij||vj|

≥ aiivi −
n∑

j=1
j 6=i

|aij|vi =
(

aii −
n∑

j=1
j 6=i

|aij|
)

vi by (A.7)

and therefore

λ ≥ aii −
n∑

j=1
j 6=i

|aij| ≥ 0 by (A.6). (A.8)

where aij is the element in the i-th row and j-th column of the matrix A. As this can
be shown for each of the n Eigenvalues, we have shown that (A.4) holds and therefore
A is at least PSD.

Additionally, if it is possible to prove that A is non-singular i. e. λi 6= 0 for all
Eigenvalues, then we can conclude that A is PD. This is, for example necessary for
the random walker system matrix. In this case the non-singularity of the diagonally
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dominant matrix can be shown by requiring two more properties (the following proof
is similar to [Schw 06] pp. 499). The first is the strict diagonal dominance in one line,
i. e.

∃i aii >
n∑

j=1
j 6=i

|aij|. (A.9)

Additionally, it is necessary to require that A is not reducible. A reducible matrix is
defined as

∃N1 6= ∅, N2 6= ∅ N1 ∪N2 = N, N1 ∩N2 = ∅

aij = 0 ∀ i ∈ N1, j ∈ N2, (A.10)

where N = {1, . . . , n} is the set of all row/column indices of A. In other words there
exists a permutation matrix P such that

PTAP =

[
A11 A12

0 A22

]

. (A.11)

The non-singularity of A is then proven by contradiction. Suppose that there exists
an Eigenvalue λ = 0. It follows that, for a single row of Av = λv

n∑

j=1

aijvj = λvi = 0

aiivi = −
n∑

j=1
j 6=i

aijvj

|aii||vi| = |
n∑

j=1
j 6=i

aijvj| ≤
n∑

j=1
j 6=i

|aij||vj|.

(A.12)

Furthermore choose v such that ‖v‖∞ = 1, i. e. |vj| ≤ 1 with 1 ≤ j ≤ n. For
N1 := {i ∈ N : |vi| = 1} 6= ∅ and i ∈ N1 results

n∑

j=1
j 6=i

|aij| ≤ |aii| by (A.6)

= |aii||vi|

≤
n∑

j=1
j 6=i

|aij||vj| by (A.12) (A.13)
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If N1 = N , then |vj| = 1 ∀ 1 ≤ j ≤ n and equation (A.13) implies that

n∑

j=1
j 6=i

|aij| = |aii| ∀1 ≤ i ≤ n, (A.14)

which contradicts (A.9). Therefore N1 6= N and we define

N2 := N \N1 6= ∅. (A.15)

From equation (A.13) it can be derived that

n∑

j=1
j 6=i

|aij| ≤
n∑

j=1
j 6=i

|aij||vj| and
n∑

j=1
j 6=i

|aij|(1− |vj|) ≤ 0 (A.16)

From (A.15) it follows that for all indices j ∈ N2 and therefore j /∈ N1 the inequality
1 − |vj| > 0 holds. In order to satisfy (A.16) it is therefore necessary that |aij| =
0 ∀ j ∈ N2. As this contradicts the irreducibility (A) the assumption that λ = 0
has to be wrong.

These results can now be applied to the regularizer matrices used in this work.
The discretized system matrices of the diffusion (see Section 3.4.1) and the curvature
(see Section 3.4.2) regularizer are both diagonally dominant and symmetric. They are
thus PSD. In the semi-implicit gradient descent optimization scheme (Section 4.2),
they are added to a (positive) multiple of an identity matrix. As the combination of
a PSD matrix (regularizer) and a PD matrix (identity) yields a PD matrix according
to (A.5), the system matrix of the semi-implicit gradient descent scheme is indeed
PD. The same is true for the inexact newton approaches (Section 4.3) as each of the
approximations of the Hessian of the distance measure H presented there is PD.



Appendix B

Stencil Notation

The system matrices of the registration methods presented in this work have in com-
mon that they are very large and sparse. For this type of matrix it is impractical
to put them down as a whole. In fact as most of the matrix is filled with 0 anyway,
giving every entry explicitly would be very redundant. Instead this kind of matrix,
resulting from discretizing a local operator on a regular grid is usually given in the
so-called stencil notation (see e. g. [Brig 00]). Basically the stencil is a direct repre-
sentation of the discrete local operator, much like a filter mask. For example, let us
consider a 2-D problem of dimension n × m to which an operator described by the
stencil





s1 s2 s3
s4 s5 s6
s7 s8 s9



 (B.1)

is applied. If the variables on the discrete grid on which this operation takes place are
sorted first column- and then row-wise, then the rows i of the corresponding matrix
A ∈ R

nm,nm with elements aij are defined as

ai,i−m−1 = s1 ai,i−m = s2 ai,i−m+1 = s3

ai,i−1 = s4 ai,i = s5 ai,i+1 = s6 (B.2)

ai,i+m−1 = s7 ai,i+m = s8 ai,i+m+1 = s9

However, this is only applicable for the rows not corresponding to a point in the
2-D domain not lying on a boundary. For example on the lower boundary of the first
dimension the assignment of a1,1−m−1 = a1,−m would be invalid. At the boundaries the
stencil therefore has to be deformed according to the specified boundary conditions.
For example at the “left” boundary of the domain and with von Neumann boundary
conditions the stencil





0 s2 + s1 s3
0 s5 + s4 s6
0 s8 + s7 s9



 (B.3)
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would result. If Dirichlet boundary conditions were chosen s1, s4 and s7 would simply
be set to 0, i. e.





0 s2 s3
0 s5 s6
0 s8 s9



 (B.4)

These deformed stencils are applied as specified by equation (B.2), except for the
zero entries in the stencil.

The stencil from (B.1) with Dirichlet boundary conditions would therefore de-
scribe the matrix depicted in Figure B.
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s5 s6 0 · · · 0 s7 s8 s9 0 · · ·
s4 s5 s6 0 · · · 0 s7 s8 s9 0 · · ·
0 s4 s5 s6 0 · · · 0 s7 s8 s9 0 · · ·

s3 0 · · · 0 s4 s5 s6 0 · · · 0 s7 s8 s9 0 · · ·
s2 s3 0 · · · 0 s4 s5 s6 0 · · · 0 s7 s8 s9 0 · · ·
s1 s2 s3 0 · · · 0 s4 s5 s6 0 · · · 0 s7 s8 s9 0 · · ·
0 s1 s2 s3 0 · · · 0 s4 s5 s6 0 · · · 0 s7 s8 s9 0 · · ·

· · · 0 s1 s2 s3 0 · · · 0 s4 s5 s6 0 · · · 0 s7 s8 s9
· · · 0 s1 s2 s3 0 · · · 0 s4 s5 s6 0 · · · 0 s7 s8

· · · 0 s1 s2 s3 0 · · · 0 s4 s5 s6 0 · · · 0 s7

· · · 0 s1 s2 s3 0 · · · 0 s4 s5 s6 0
· · · 0 s1 s2 s3 0 · · · 0 s4 s5 s6

· · · 0 s1 s2 s3 0 · · · 0 s4 s5
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Appendix C

Notation

a scalar
v vector
A matrix
v(x) a vector valued function
x a continuous vector valued variable
KL(p1, p2) the Kullback-Leibler divergence
diag(A) a matrix consisting of the main diagonal of the matrix A

f ◦ g function composition
R real numbers
∇f gradient of function f
∆f the Laplacian of function f
f ⋆ g convolution of function f with g
df(u;η) Gâteaux derivative of f with respect to the function u using the

testfunction η

Ω computational domain for a registration
|Ω| the size of the domain Ω
∂Ω the boundary of the domain Ω
U Hilbert space of functions Ω 7→ Ω
‖u‖U norm for u ∈ U
〈u,v〉U inner product for u,v ∈ U
Φ registration transform
I identity matrix
F fixed image
M moving image
u deformation
Mu deformed moving image i. e. Mu = M(x− u(x))
E(F,M,u) registration energy
D(F,Mu) distance measure
DMI(F,Mu) mutual information distance measure
DSSD(F,Mu) SSD distance measure
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R(u) regularizer energy
RDiff(u) diffusion regularizer energy
RCurv(u) curvature regularizer energy
P(u) PCA model regularizer energy
P∆(u) curvature PCA model regularizer energy
HSSD Hessian of the sum of squared differences distance measure
HMI Hessian of the mutual information distance measure
A∆ system matrix of the discretized diffusion regularizer
A∆2 system matrix of the discretized curvature regularizer
τ step size in optimization algorithms
s number of pixels in the discretized domain Ω
d dimensionality of the problem
κ weighting factor for the standard regularizer (see Section 3.5.1)
iF gray value in the fixed image F
iM gray value in the moving image M
i combined/overlaid gray value i = (iF , iM)
E [x] expectation of the random variable x
Var [x] variance of the random variable x
p probability density function
pF probability density function of the fixed image gray value distribu-

tion
pM probability density function of the moving image gray value distri-

bution
pF,M joint probability density function



Appendix D

Abbreviations

1-D one-dimensional
2-D two-dimensional
3-D three-dimensional
AX C-arm X-ray angiographic imaging
BFGS quasi-Newton method due to Broyden, Fletcher, Goldfarb and

Shanno
CG conjugate gradient
CR correlation ratio
CT computed tomography
DICOM digital imaging and communications in medicine
DOF degrees of freedom
DSA digital subtraction angiography
FFT fast fourier transform
GPU graphics processing unit
HU Hounsfield unit
KL Kullback-Leibler
MAE mean absolute error
MI mutual information
MR magnetic resonance
MSE mean squared error
PCA principal component analysis
PD positive definite
PDE partial differential equation
PDF probability density function
PET positron emission tomography
PSD positive semi-definite
SDM statistic deformation model
SE sensitivity
SPECT single photon emission computed tomography
SSD sum of squared differences
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SVD singular value decomposition
TPS thin-plate splines
TRE target registration error
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