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Abstract. Glaucoma is associated with axonal degeneration of the op-
tic nerve leading to visual impairment. This impairment can progress to
a complete vision loss. The transsynaptic disease spread in glaucoma ex-
tends the degeneration process to different parts of the visual pathway.
Most of glaucoma diagnosis focuses on the eye analysis, especially in the
retina. In this work, we propose a system to classify glaucoma based
on visual pathway analysis. The system utilizes diffusion tensor imaging
to identify the optic radiation. Diffusion tensor-derived indices describ-
ing the underlying fiber structure as well as the main diffusion direction
are used to characterize the optic radiation. Features are extracted from
the histograms of these parameters in regions of interest defined on the
optic radiation. A support vector machine classifier is used to rank the
extracted features according to their discrimination ability between glau-
coma patients and healthy subjects. The seven highest ranked features
are used as inputs to a logistic regression classifier. The system is ap-
plied to two age-matched groups of 39 glaucoma subjects and 27 normal
controls. The evaluation is performed using a 10-fold cross validation
scheme. A classification accuracy of 81.8% is achieved with an area un-
der the ROC curve of 0.85. The performance of the system is competi-
tive to retina based classification systems. However, this work presents
a new direction in detecting glaucoma using visual pathway analysis.
This analysis is complementary to eye examinations and can result in
improvements in glaucoma diagnosis, detection, and treatment.
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1 Introduction

More than 60 million people around the world suffer from glaucoma. Bilateral
blindness caused by glaucoma is estimated to affect more than 8 million peo-
ple [1]. Glaucoma is accompanied by neurodegeneration of the axonal fibers
in the optic nerve along with visual impairment. The development of glaucoma
can result in complete blindness. The vision loss can not be restored. However, if
glaucoma is detected in an early stage, its progression can be delayed or stopped.
Therefore, early detection of glaucoma is necessary as well as novel treatment
methods.

The conventional trend in glaucoma diagnosis is through eye examinations.
Intraocular blood pressure, retinal nerve fiber layer thickness measured by optical
coherence tomography (OCT), fundus images, and optic disc topography evalu-
ated by Heidelberg retina tomograph (HRT) are examples of glaucoma relevant
data examined by ophthalmologists to evaluate the glaucoma severity. Moreover,
systems were developed based on the aforementioned data among others using
various eye imaging modalities to screen, detect, and diagnose glaucoma [2, 3].
Despite the efficiency and high performance of the developed systems, they focus
on the eye, specifically the retina, ignoring the largest part of the visual system
represented by the cerebral visual pathway fibers within the brain. In addition,
the mechanism of glaucoma progression and the functional or structural dam-
age precedence [4] are still unresolved issues. Therefore, exploring the recently
discovered possibilities offered by diffusion tensor imaging (DTI) [5] to recon-
struct and characterize the fiber structure of the human white matter [6] can be
a valuable addition to the glaucoma examination flow.

Recent studies addressed the visual system changes due to glaucoma. Garaci
et al. [7] showed that a reduction in fiber integrity affecting different parts of
the visual pathway as the optic nerve and optic radiation is correlated with
glaucoma. Another study showed axonal loss along the visual pathway from the
optic nerve through the lateral geniculate nucleus till the visual cortex in the
presence of glaucoma [8]. These results suggest that the visual pathway analysis
can be significant in detecting and diagnosing glaucoma.

In this article, we investigate the significance of DTI-derived parameters in
the optic radiation for glaucoma detection. We propose a classification system
based on statistical features derived from the histograms of the DTI indices.
The optic radiation is first identified automatically using the authors’ developed
algorithm [9]. A specific region of interest (ROI) on the optic radiation is then
manually delineated. The histograms of the DTI measures are calculated. The
histograms’ statistical features are extracted from the histograms of the DTI
indices in the specified ROI. The features are evaluated using a support vector
machine classifier for dimensionality reduction and the highest ranked features
are used for classification. The system is trained and tested using 10-fold cross
validation. Finally, the ability of the system to differentiate between normal
subjects and glaucoma patients is evaluated.



2 Classification System

2.1 Diffusion Tensor Imaging

Diffusion-weighted imaging (DWI) brain scans were acquired using a 3T-MRI
high field scanner (Magnetom Tim Trio, Siemens, Erlangen, Germany). The
diffusion weighting gradients were applied along 20 non-collinear directions with
a maximal b-factor of 1,000 s/mm2. The scans were repeated four times and
averaged to increase the signal to noise ratio (SNR) and to improve the quality
of the images. The axial resolution was 1.8 × 1.8 mm2 with 5 mm slice thickness.
The corresponding acquisition matrix size was 128 × 128 on a field of view (FoV)
of 23 × 23 cm2. The acquisition sequence protocol was a single-shot, spin echo,
echo planar imaging (EPI) with parameters: TR = 3400 ms, TE = 93 ms, and
partial Fourier acquisition = 60%. The scans were complemented by a non-
weighted diffusion scan with b-factor equals zero. The Gaussian modeling of
the diffusion process within a voxel is represented by a 3 × 3 diffusion tensor.
The diffusion tensors were calculated from the DWI-datasets. The eigenvalue
decomposition of the diffusion tensors contained information about the principal
diffusion direction and aspects of the diffusion process (degree of anisotropy,
mean diffusion, etc). The diffusion tensors were spectrally decomposed. The
obtained eigenvalues were used to calculate the mean (MD), radial (RD), and
axial (AD) diffusivities in addition to the fractional anisotropy (FA) [10]. The
eigenvector corresponding to the largest eigenvalue was regarded as the principal
diffusion direction (PDD).

2.2 Optic Radiation Segmentation

The identification of the optic radiation was performed using the authors’ pre-
viously developed algorithm [9]. The algorithm operated on the interpolated
DTI-images to produce an automatic segmentation of the optic radiation. The
drawbacks of the Euclidean space interpolation and analysis of diffusion ten-
sors were avoided by the utilization of the Log-Euclidean framework [11]. The
DTI-images were enhanced by applying an anisotropic diffusion filtering to the
individual elements of the diffusion tensors. This increased the coherency within
the fiber bundles while preserving their edges. Based on neurophysiological facts
of the dominant diffusion direction in the optic radiation and its anatomical size
relative to other fibers, the optic radiation was initially identified using a thresh-
olding and connectivity analysis. Similarly, the mid brain was approximately
identified to be used later for segmentation enhancement. A region-based seg-
mentation with the initialization of the optic radiation from the previous step
was performed by a statistical level set engine [12]. The level set segmentation
was adjusted to work with the Log-Euclidean metric for extending the framework
to Riemannian operations while maintaining the computational efficiency. The
framework optimized the posterior probabilities of partitioning the brain image
space into the optic radiation and the remaining parts of the brain. The proba-
bilities were modeled by normal distributions of the diffusion tensors within each



of the two division parts. Finally, the outcome of the level set segmentation was
adjusted based on the relative anatomical position between the optic radiation
and the mid brain. This was done to remove the tracts anteriorly connected
to the optic radiation (i.e., optic tracts). Further details on the segmentation
system can be found in [9].

2.3 Region of Interest Selection

In this step, a region of interest defined on the segmented optic radiation was
configured. The slice containing the optic radiation and clearly identifying the
termination of the optic tracts in the lateral geniculate nucleus (LGN) region
was located in all subjects. The automatic segmentation on the selected slice
was examined by two DTI experts and the segmentation errors were manually
corrected. Moreover, the connection of the optic radiation to the primary vi-
sual cortex was manually eliminated. This region is characterized by misleading
reduced fractional anisotropy due to the limitation of the diffusion tensor in
modeling the branching and crossing fibers [13]. The final processed optic radi-
ation on the selected slice was the ROI used in the remaining analysis. Figure 1
shows an example of a selected ROI on a sample subject.

Fig. 1. The semi-automatically identified region of interest (ROI) representing the optic
radiation shown on a fractional anisotropy image (left). The diffusion direction coded
image (right) of the ROI-slice demonstrates the dominant anterior-posterior diffusion
direction in the optic radiation. The selected slice indicates clearly the termination of
the optic tracts at the lateral geniculate nuclei (LGN) as indicated by the white arrows
on the right image.



2.4 Histogram Analysis and Feature Extraction

The histograms of the four DTI-derived parameters (FA, MD, RD, and AD) in
the specified ROI were computed. A number of bins for each parameter were
predetermined and the number of voxels corresponding to a certain bin range
was calculated. The PDD has a unity length with three components representing
the three coordinate axes. The PDD was converted to the spherical coordinate
system. The histograms of the azimuth and inclination angles were measured by
binning them in 0.2 radians bins. Since the sign of the PDD is not representative,
the range of the azimuth angle was restricted between zero and 180 degrees while
the inclination angle range was retained between zero and 180 degrees. That was
simply done by inverting the direction of the PDD if it falls outside these ranges.
Six first order statistical features (Mean, variance, skewness, kurtosis, energy,
and entropy) of the DTI-indices and the PDD were derived from the histograms
using the following equations:

Mean : µ =
N∑

i=1

param(i) × hist(i) (1)

V ariance : σ2 =

N∑

i=1

(param(i) − µ)2 × hist(i) (2)

Skewness : µ3 = σ−3

N∑

i=1

(param(i) − µ)3 × hist(i) (3)

Kurtosis : µ4 = σ−4

N∑

i=1

(param(i) − µ)4 × hist(i) − 3 (4)

Energy : E =

N∑

i=1

[hist(i)]2 (5)

Entropy : H = −

N∑

i=1

hist(i) log(hist(i)) (6)

where N is the number of bins in the corresponding DTI-parameter his-
togram, hist is the normalized histogram (i.e. probability distribution which
is the histogram divided by the total number of voxels within the ROI), i is
the index of the ith bin, and param(i) is the mean value of the corresponding
parameter (param) in the ith bin.

2.5 Feature Selection and Classification

A support vector machine classifier [14] was used to rank the 36 histogram fea-
tures by recursive feature elimination. This procedure works as follows: The
support vector machine classifier was trained using the complete feature set and



the features’ weights were determined. Then, the feature with the lowest squared
weight was considered as the least ranked feature. The feature with the lowest
rank was removed from the feature set. The previous steps were repeated it-
eratively with the remaining features until all the features were ranked. The
highest seven ranked features provided the best classification performance and
were, therefore, selected as features for the classifier. For classification, the se-
lected seven features were the input to a logistic regression classifier. The training
and testing were performed using a 10-fold cross validation analysis. The soft-
ware implementation in Weka [15] was used for the feature selection and the
classification.

3 Results

The proposed system was applied to two groups of subjects: A group of 27
healthy controls with a mean age of 58.52 ± 10.10 years (17 females and 10
males) and 39 patients with primary open angle glaucoma (POAG) with a mean
age of 61.74 ± 8.32 years (19 females and 20 males). The two groups were age
matched and the two-sided Wilcoxon ranksum test which is equivalent to the
Mann-Whiteny U-test gave a p-value of 0.17 indicating the correlation between
the ages of the two groups. The subjects underwent MRI and DTI brain scans.
The brains were examined by experienced neuroradiologists and did not show
any indications of neuronal diseases or lesions affecting the visual pathway. The
optic radiations of all subjects were segmented and the ROIs were selected. The
statistical features were extracted from the histograms of the four DTI-derived
indices as well as the azimuth and inclination angles of the PDD. The features
were ranked by a support vector machine classifier. The seven most discrimi-
nating features were: MD Kurtosis, RD Skewness, FA Entropy, MD Skewness,
Azimuth Energy, Azimuth Entropy, and FA Mean, respectively. A logistic re-
gression classifier was trained and tested using these seven features in a 10-fold
cross validation setup.

The classification accuracy of the system was 81.82%. This rate corresponded
to the correct recognition of 54 subjects’ classes. Out of these 54 subjects, 36 were
glaucoma patients and 18 were control subjects. Three glaucoma patients and 9
normal subjects were wrongly diagnosed. The receiver operating characteristic
(ROC) curve was calculated and plotted in Figure 2. The area under the ROC
curve was 0.853. A sensitivity of 92.31% for glaucoma detection and specificity
of 70.37% were obtained. Additional values from the ROC curve at a different
threshold showed a sensitivity of 71.79% at a fixed specificity of 85.19%.

4 Discussion and Conclusion

This paper proposed a new approach in glaucoma detection using visual pathway
analysis. Utilizing the capabilities of the diffusion tensor imaging, the system
identified and characterized the fiber structure of the optic radiation. First order
statistical features extracted from the histograms of the DTI-derived measures
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Fig. 2. The Receiver Operating Characteristic (ROC) curve of the glaucoma classifi-
cation system based on DTI measures. The area under the ROC curve is 0.85.

were used to detect glaucoma. The classification performance obtained by the
proposed system is comparable to systems based on eye imaging modalities [3].
Nevertheless, the significance of the DTI-parameters and the histogram features
is evident from the limited number of features used.

Diffusion tensor-derived indices characterize different aspects of the under-
lying fiber structure. For example, FA indicates the degree of intravoxel fiber
alignment and coherency while MD is related to the fiber integrity. Thus, these
parameters were shown to correlate with the cerebral fiber damage caused by
neuronal diseases such as Alzheimer and glaucoma. Four classification features
among the highest ranked features were derived from the FA and the MD his-
tograms demonstrating the sensitivity of these parameters to glaucoma. Frac-
tional anisotropy and MD were shown to correlate with glaucoma [7] and such
an influence can be expected.

The proposed classification method based on visual pathway analysis presents
a new perspective in detecting diseases affecting the visual system such as
glaucoma. Diffusion tensor imaging provides valuable information regarding the
white matter microstructure allowing for the identification, characterization, and
pathological diagnosis of fiber tracts. The high classification rates are indicators
of the sensitivity of the features derived from the DTI-measures to glaucoma. It
also emphasizes the effect of glaucoma on the entire visual system. This analysis
is complementary to retina-based diagnosis. The integration of features from tra-
ditional eye imaging modalities and diffusion tensor imaging covers the complete
visual system. Thus, it can enhance the detection of glaucoma significantly, the
understanding of its pathophysiology, and consequently the treatment methods.
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[3] Bock, R., Meier, J., Nyúl, L.G., Hornegger, J., Michelson, G. : Glaucoma risk index:
Automated glaucoma detection from color fundus images. Medical image analysis
14(3), 471–481 (2010)

[4] Hood, D.C., Kardon, R.H.: A framework for comparing structural and functional
measures of glaucomatous damage. Prog Retin Eye Res 26(6), 688–710 (2007)

[5] Basser, P.J., Mattiello, J., Lebihan, D.: MR diffusion tensor spectroscopy and imag-
ing. Biophysical Journal 66(1), 259-267 (1994)

[6] Staempfli, P., Rienmueller, A., Reischauer, C., Valavanis, A., Boesiger, P., Kollias,
S.: Reconstruction of the human visual system based on DTI fiber tracking. Journal
of Magnetic Resonance Imaging 26(4), 886-893 (2007)

[7] Garaci, F.G., Bolacchi, F., Cerulli, A., Melis, M., Spanó, A., Cedrone, C., Floris,
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