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Using DTI in Healthy Subjects and Patients with
Glaucoma
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Hornegger, and Georg Michelson

Abstract The complexity of the diffusion tensor imaging (DTI) data and the inter-
personal variability of the brain fiber structure make the identification of the fibers a
difficult and time consuming task. In this work, an automatedsegmentation system
of the optic radiation using DTI is proposed. The system is applicable to normal
subjects and glaucoma patients. It is intended to aid futureglaucoma studies. The
automation of the system is based on physiological and anatomical information to
produce robust initial estimates of the optic radiation. The estimated optic radia-
tion initializes a statistical level set framework. The optic radiation is segmented by
the surface evolution of the level set function. The system is tested using eighteen
DTI-datasets of glaucoma patients and normal subjects. Thesegmentation results
were compared to the manual segmentation performed by a physician experienced
in neuroimaging and found to be in agreement with the known anatomy with 83%
accuracy. The automation eliminates the necessity of medical experts’ intervention
and facilitates studies with large number of subjects.
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1 Introduction

Glaucoma is the second leading cause of blindness in the world. The damage
caused by glaucoma is irreversible. The progression of glaucoma can be delayed
significantly if glaucoma is detected in early stages. Therefore, methods for screen-
ing, early diagnosis and better understanding of glaucoma and its progression are
needed.

Most of the existing eye imaging modalities focus on imagingthe eye in general
and the retina in particular. Many studies were performed toinvestigate the corre-
lation between glaucoma and retinal changes such as retinalnerve fiber atrophy,
retinal vessels, and optic disk changes [24, 16, 33]. The human visual system does
not only consist of the eye but it extends through the optic nerve into the brain till it
reaches the visual cortex. The visual pathway consists of four neurons. The first neu-
ron (photoreceptors) and the second neuron (amacrine and bipolar cells) lie within
the retina in the eye. The third neuron (retinal ganglion cells) connects the retina
with the brain. The axons of the third neuron leave the eye andend in the lateral
geniculate nucleus where the fourth neuron begins. The axons of the fourth neuron
neuronal cells carry the visual information and end up in thevisual cortex V1. The
intracerebral part of the fourth neuron is called the optic radiation. Correlation has
been shown between glaucoma and parts of the visual system such as the optic nerve
and the optic radiation [18, 13]. Nevertheless, the effect of glaucoma on the visual
system is not fully addressed yet.

In this work we aim to provide a system for the automatic identification of the
optic radiation in normal subjects and glaucoma patients. DTI is used to segment
the optic radiation as it is the only imaging modality that allows for the identifica-
tion of white matter fiber structure non-invasively. This isa step towards a better
understanding of the changes caused by glaucoma in this partof the human visual
system.

In the last two decades, diffusion tensor imaging has received a lot of attention
due to its clinical applications [39, 11]. Diffusion weighted imaging (DWI) is proven
to be effective in the early diagnosis and investigation of cerebral diseases such as
acute stroke [28, 21] and abscesses [7]. Diffusion tensor derived parameters such as
the degree of anisotropy and the diffusivity parameters areused to evaluate certain
neural pathologies and were found to be sensitive to white matter abnormalities.
Axonal degeneration evaluated by diffusion tensor derivedparameters were evident
in the temporal lobe for mild cognitive impairment and Alzheimer disease patients
[8, 17]. In relapsing-remitting multiple sclerosis, reduced anisotropy accompanied
by increased isotropic apparent diffusion were observed correlating to the signature
of Wallerian degeneration [15]. The process of normal humanbrain maturation and
aging affecting the structure of myelin were monitored using DTI [34, 19]. Fur-
thermore, DTI is the only imaging modality that allows tracking the white matter
fibers in-vivo and non-invasively [3, 29], and it enables theconstruction of an atlas
of white matter fibers in the human brain [36, 27].

As the basis of the DTI, diffusion weighted imaging (DWI) is based on magnetic
resonance signal attenuation due to restricted diffusion of water molecules along the
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diffusion weighting gradient field [23, 26]. The cell membranes and myelin sheaths
surrounding the axons act as a guided tube for the diffusion process within the ax-
ons. Thus, they limit the diffusion in the direction perpendicular to the axons while
increasing the average diffusion along the axons resultingin a highly anisotropic
diffusion. The diffusion of water like molecules can be usedto identify fiber orien-
tation which coincide with the average diffusion directionand so for to depict the
microstructure of the brain white matter. The diffusion tensor relies on modeling the
diffusion process within a specified volume by a Gaussian process with a zero mean.
The tensor corresponds to the inverse of the covariance matrix of the diffusion pro-
cess and is calculated from the diffusion weighted images. Analyzing the diffusion
tensor gives significant diffusion related information such as the main diffusion di-
rection within the specified volume and the degree of anisotropy. This information
is used to identify the white matter structure within the brain.

Many algorithms were proposed for the identification of white matter tracts using
DTI. The dominant category is tractography which is based onfollowing the fiber
tracts using the principal diffusion direction [9, 4, 35, 22]. Tractography suffers
from accumulated tracking errors during the tracking process. Connectivity maps
were suggested [38, 30, 20] to explore the probability of connectivity between a se-
lected seed point and the surrounding neighborhood which can be the whole brain.
Connectivity maps have the main disadvantage that they do not provide a straight-
forward plausible visualization of the results. The split and merge technique [6]
attempts to avoid the accumulated errors of tractography byidentifying short tracts.
This is done by limiting the tracking process to a certain number of steps. Then
it provides a degree of membership of the extracted tracts belonging to the same
fiber. The practicality of the split and merge technique is limited because it does not
describe the complete fiber pathway. Segmentation approaches of DTI [37, 40, 14]
are more suitable for identifying coherent densely packed bundles of axons. The
segmentation avoids the drawbacks from both connectivity maps and tractography
such as tracking accumulation errors and the need to merge the individual tracts to
obtain fiber bundles. Furthermore, it relies on the coherency within the fiber bundle
of interest. Therefore, the segmentation approach is adopted in this work.

Most of the proposed white matter identification algorithmsdid not address the
problem of algorithm initialization. They rely on the interaction of medical experts
to select the seed points or the region of interest of the desired fiber tracts in trac-
tography algorithms or the initialization of the segmentation engines to include the
desired fiber bundle. This is a rather time consuming processand might limit the
number of subjects in clinical studies that involves DTI. The proposed segmenta-
tion system utilizes the physiological properties of the optic radiation to produce a
robust initialization of the proposed segmentation systemin both healthy and patho-
logical subjects with glaucoma.

The proposed segmentation system utilizes the complete tensor information in a
statistical level set frame work that takes into account theRiemannian nature of the
tensor space. It consists of the following steps: First the diffusion tensor and related
anisotropy measures are calculated from the diffusion weighted images. The cal-
culated diffusion tensor data is transformed into the Log-Euclidean framework and
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interpolated as presented in Sect. 2. In Sect. 3, DTI-data isregularized to increase
the coherency of the optic radiation fiber bundle before obtaining an initial estimate
of the optic radiation using thresholding and connectivityanalysis. The midbrain is
initially identified using a similar analysis to that of the optic radiation. The sys-
tem extends the statistical level set framework for DTI segmentation developed by
Lenglet et al. [25] to be used in conjunction with the Log-Euclidean dissimilarity
distance as detailed in Sect. 4. The optic radiation is obtained by iteratively evolving
the level set function. Finally, the output from the level set framework is adjusted
based on the relative location of the optic radiation and themidbrain. Section 5
contains the results and discussion. The conclusion and future work are stated in
Sect. 6.

2 Interpolation in the Space of Diffusion Tensors

The diffusion tensors are 3 x 3 symmetric positive definite matrices. The space of
diffusion tensors is a convex subset of the vector spaceR

(3)2
and does not form a

vector space using a Euclidean metric [12, 31]. Thus, the decomposition of the dif-
fusion tensors could result in non-physical negative eigenvalues. Moreover, the Eu-
clidean framework is not appropriate for dealing with tensors because the swelling
effect where the average of diffusion tensors with the same determinant could result
in a mean tensor with a larger determinant [10]. Thus, the Riemannian nature of the
tensor space should be taken into account when handling the diffusion tensors.

Dissimilarity metrics has been proposed to overcome the limitations of the Eu-
clidean framework. An information theoretic measure called the J-divergence is pro-
posed [37] based on the symmetric Kullback-Leibler divergence between two Gaus-
sian probability densities. The J-divergence distance between two diffusion tensors
is given by Eq. 1 and is affine-invariant. i.e. the distance between tensors are inde-
pendent from affine transformation of the coordinate system.

dJ (DT1,DT2) =
1
2

√

tr
(

DT
−1

1
DT2 +DT

−1

2
DT1

)

−2n (1)

wheretr(.) is the matrix trace operator, n is the size of the diffusion tensorsDT1

andDT2.
Fletcher and Joshi [12] deal with the space of diffusion tensors as a curved mani-

fold called Riemannian symmetric space. They derived a Riemannian metric on the
space of diffusion tensors. The proposed metric accounts for the positive definite-
ness constraint ensuring that the eigenvalues of the diffusion tensors are positive.

The Log-Euclidean framework proposed by Arsigny et al. [2] provides a Rie-
mannian framework to deal with the diffusion tensors. Usingthis framework, the
diffusion tensor space of positive semi definite matrices can be transformed into
the space of symmetric matrices, i.e. a vector space. Additionally, all operations
performed on vectors can be used on the vector form of the diffusion tensor in the
Log-Euclidean framework. Despite the similar properties of the Log-Euclidean met-
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ric compared to other dissimilarity distances such as the J-divergence distance or the
Riemannian metric by Fletcher and Joshi, the Log-Euclideanframework has a sim-
ilar behavior but at a significantly lower computational cost as it involves vector
operations.

The Log-Euclidean distancedLE between tensorsDT1 andDT2 is defined by

dLE (DT1,DT2) =‖ log(DT1)− log(DT2) ‖ (2)

where log is the matrix logarithm.
The interpolation of the DTI-data is necessary in order to obtain a volumetric

identification of the optic radiation. Interpolation of diffusion tensors in the Eu-
clidean framework results in the non-physical swelling effect. This effect is also
evident in interpolating two tensors, where it is possible to get an interpolated ten-
sor that has a larger determinant than the original tensors.Interpolation in the Log-
Euclidean framework avoids the swelling effect at a computationally attractive cost.
The diffusion tensorDT is interpolated trilinearly at non-grid positionx as the Log-
Euclidean weighted sum ofN tensors in a neighborhood of the non-grid positionx.
The weights are inversely proportional to the spatial distance between the non-grid
position and the locations of the tensors in the neighborhood. The used interpolation
formula is

DT(x) = exp











N

∑
i=1

wi (x) log(DT(xi))

N

∑
i=1

wi (x)











(3)

where exp and log are the matrix exponential and logarithm respectively.

3 Initial Estimation of the Optic Radiation and the Midbrain

In this step, the optic radiation and the midbrain are initially identified. The diffusion
tensor data is first regularized by applying Perona-Malik diffusion filtering [32].
Perona and Malik proposed an anisotropic diffusion filtering technique based on
controlling the heat flow according to the presence of edges.The edges are estimated
by the magnitude of the image gradient. The diffusivity is non-linearly inversely
proportional to the magnitude of the image gradient, i.e. the diffusion is limited
at large image gradients indicating the presence of an edge with high probability.
Conversely, the diffusion is increased at small image gradients. The evolution of the
image f (x,y,z) : Ω ⊂ R3 → R is governed by the following diffusion equation

∂ f
∂ t

= div(ρ(‖∇ f‖)∇ f ) (4)

whereρ = e−
‖∇ f‖2

k or ρ = 1
1+‖∇ f‖2/k

.
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The diffusion filtering is applied to the transformed Log-Euclidean vector form
of the diffusion tensors componentwise. Regularization isperformed to reduce the
noise and to increase the coherency inside the fiber bundles while preserving the
boundaries of the fiber bundles.

The initial estimation of the optic radiation is based on thefact that the main
fiber bundle of the optic radiation is dominated by diffusionin the anterior-posterior
direction. Moreover, the optic radiation is a massive fiber bundle which occupies a
significant part of the brain white matter. This physiological information regarding
the diffusion direction and the size of the optic radiation gives a unique discrimina-
tion of the optic radiation from other fiber bundles.

The diffusion tensor is analyzed using eigen-decomposition as given by Eq. 5
to determine the principal diffusion direction (PDD) whichis the eigenvector of
the tensor corresponding to the largest eigenvalue. The degree of anisotropy is de-
termined by the fractional anisotropy (FA) [5] and is calculated from the diffusion
tensor eigenvalues using Eq. 6.

DT =
[

e1 e2 e3
]

·





λ1 0 0
0 λ2 0
0 0 λ3



 ·
[

e1 e2 e3
]T

(5)

wheree1, e2 ande3 are the diffusion tensor eigenvectors corresponding toλ1, λ2

andλ3 which are the diffusion tensor eigenvalues in a descending order.

FA =

√

3
2

√

(λ1−λ )2 +(λ2−λ )2 +(λ3−λ )2

√

λ 2
1 +λ 2

2 +λ 2
3

(6)

whereλ = (λ1+λ2+λ3)
3 .

The image is analyzed on a voxel by voxel basis to create a binary mask repre-
senting the initial optic radiation. The vector corresponding to principal diffusion di-
rection has three components: the anterior-posterior component (AP), the left-right
component (LR) and the superior-inferior (SI) component. The three components at
each voxel are compared and the foreground voxels of the binary mask are selected
to have a dominant AP component. The foreground voxels satisfies the inequali-
ties given by Eq. 7 that is the AP-component is greater than a user specified factor
(APthres) of the sum of the other two components and a fractional anisotropy value
greater than 0.2. The fractional anisotropy threshold is used to ensure the coherency
of the fiber bundle and that the partial volume effects [1] areavoided. In DTI the
partial volume effects are the result of the limitation of the tensor model to de-
scribe complex fiber situations such as fiber crossing or branching situations within
a voxel. This results in a reduced fractional anisotropy anda misleading principal
diffusion direction. The remaining voxels that do not satisfy the selection criteria
are set as the background of the binary image.
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AP > APthres × (LR+SI) and FA > 0.2 (7)

A three dimensional 6-neighborhood connectivity analysisis performed on the
binarized image. Connected objects are determined and the optic radiation is ini-
tially identified as the largest object dominated by diffusion in the anterior-posterior
direction. This estimation will be used in the segmentationstep as an initialization
of the level set.

The analysis applied to estimate the optic radiation is similarly applied to identify
the midbrain. The analysis takes into account that the midbrain is characterized by
diffusion in the superior-inferior direction and is located in the neighborhood of the
centers of the axial brain slices. The relative position of the estimated midbrain to
the optic radiation will be used in a later step to refine the segmentation of the optic
radiation.

4 Segmentation Using a Statistical Level Set Framework

The segmentation is performed in two steps. First, the DTI issegmented using a
statistical level set framework. The initially estimated optic radiation as described in
Sect. 3 is used as the initial surface. Second, the results from the level set framework
are adjusted based on anatomical information between the midbrain and the optic
radiation.

We extend the surface evolution framework developed by Lenglet et al. [25] to
work with the Log-Euclidean dissimilarity measure given inEq. 2. In the follow-
ing we present briefly the mathematical formulation of the level set framework in
the case of the Log-Euclidean framework. For further details see [25, 2]. The dif-
fusion tensorDT(x) at voxelx is mapped to the space of symmetric matrices and
transformed into a vector formβ (x) using the following mapping:

β (x) = vec(log(DT(x))) (8)

wherevec is the mapping of the 3 x 3 symmetric matrices to the corresponding
6-dimensional vectors.

Using the notation in Eq. 8, the mean, covariance matrix and Gaussian distribu-
tion between diffusion tensors can be defined as :

µLE =
1
N

N

∑
i=1

β (xi) (9)

CovLE =
1

N −1

N

∑
i=1

(β (xi)−µLE)(β (xi)−µLE)T (10)
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PLE (β (xi)) =
1

√

(2π)6|CovLE |

×exp

(

−
(β (xi)−µLE)T Cov−1

LE (β (xi)−µLE)

2

) (11)

The spatial gradient of the diffusion tensor in the vector space is given by

|∇β (x)|2 =
1
2

3

∑
k=1

∑
s=±1

tr
(

(β (x)−β (x+ s× ik))

×(β (x)−β (x+ s× ik))
T
)

(12)

whereik, k=1, 2 ,3 denotes the canonical basis ofR3. s ∈ {1,−1} and denotes the
forward and backward approximations of the gradient,tr is the trace of a matrix.

The idea of the statistical surface evolution is to seek the optimal partitioning of
the tensor image (β in the Log-Euclidean case) by maximizing a posteriori frame
partition probability for the diffusion tensor image with image domainΓ . This is
done in a level set framework, where the image is partitionedinto three regions
based on a level set functionφ : insideΓin, outsideΓout or on the boundaryΓB. The
boundary is defined as the zero-crossing ofφ . The probability distributions of the
tensors inside (pin) and outside (pout) regions are modeled by Gaussian distributions
on tensors using Eq. 11. The partition probability is given by

P(β |φ) = ∏
x∈Γin

pin(β (x)) ∏
x∈Γout

pout(β (x)) ∏
x∈ΓB

pb(β (x)) (13)

The boundary probability distributionpb is selected to have a value of approx-
imately one for high gradients of the diffusion tensors (using Eq. 12 for gradient
calculations) and a value of approximately zero for low gradients as the following
relation indicates.

pb (β (x)) ∝ exp(−g(|∇β (x) |)) (14)

whereg(u) = 1/(1+u2).

This leads to the energy minimization formulation:

E(φ ,µLEin/out
,CovLEin/out

)

= ν
∫

Γ
δ (φ)|∇φ |dx+

∫

Γ
δ (φ)|∇φ |g(|∇β (x) |)dx

−
∫

Γin

log(pin(x))dx−
∫

Γout

log(pout(x))dx

(15)

whereδ is the Dirac delta function.
The following Euler-Lagrange equation is used to evolve thelevel set function
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∂φ
∂ t

= δ (φ)

(

(ν +g(|∇β (x) |))div

(

∇φ
|∇φ |

)

+
∇φ
|∇φ |

·∇g(|∇β (x) |)+ log

(

pin

pout

)

) (16)

The level set function in Eq. 16 is evolved iteratively to obtain the desired seg-
mentation and the statistics are updated after each iteration.

The output from the level set framework contains the fiber bundle of the optic
radiation and additional bundles connected to it such as traces of the optic tract.
The reason for this is that the optic tract is connected to theoptic radiation and the
diffusion direction is also anterior-posterior in the connection area so traces of the
optic tract are segmented as well. The lateral geniculate nucleus (LGN) connects the
optic radiation to the optic tract and is located laterally to the midbrain. Therefore,
the LGN position can be used to separate the optic tract from the optic radiation.
Based on this anatomical information, the segmented regionis automatically ad-
justed in order to confine the segmentation results to the part representing the optic
radiation. The relative position of the segmented optic radiation to the midbrain is
used instead of the relative position to the LGN because the midbrain is larger, more
reliable to identify and in turn more robust. The midbrain ispreviously identified in
the initialization step. The plane corresponding to the anterior boundary of the seg-
mented midbrain is selected as the separation level betweenthe optic radiation and
the optic tract. The segmentation results anterior to the selected plane are eliminated
leaving the optic radiation and approximately eliminatingthe part corresponding to
the optic tract.

5 Results and Discussion

Eighteen subjects were examined by ophthalmologists and categorized into two age
matched groups. The first group represents the subjects thatwere diagnosed with
primary open angle glaucoma and the other group represents the normal subjects.
The glaucoma group contains 9 subjects with a mean±standard deviation age of
66±11.8 years with 7 females and 2 males, while the normal group contains 9 sub-
jects with a mean±standard deviation age of 67.1±8.1 years with 6 females and
3 males. Further ophthalmological and neuroradiological examinations were per-
formed and did not provide indications of microangiopathy or irregularly developed
optic radiation.

The subjects were scanned using a 3T-MRI scanner. The diffusion weighted im-
ages were acquired using a single-shot, spin echo, echo planar imaging (EPI) as an
imaging sequence with repetition time (TR) 3400 ms, echo time (TE) 93 ms, field
of view (FoV) 230 x 230 mm2, acquisition matrix size of 128 x 128 reconstructed to
256 x 256, seven signal averages, and partial Fourier acquisition of 60%. The axial
slices have a thickness of 5 mm and 1 mm interslice spacing. Diffusion weighting



10 Ahmed El-Rafei et al.

were applied with a maximal b-factor of 1000 s/mm2 along 15 icosahedral directions
complemented by one scan with b = 0. The diffusion tensors were calculated from
the measured diffusion weighted images along with fractional anisotropy, eigenvec-
tors and eigenvalues on a voxel by voxel basis.

The segmentation system is applied to the DTI-datasets and the optic radiation
in the two groups is identified. The left side of Fig. 1 shows the final segmented
optic radiation on non-diffusion weighted axial slices with b = 0 from two sample
subjects. The color coded fractional anisotropy representation of the DTI-data is
demonstrated on the right side of the figure.

(a)

(b)

Fig. 1 Segmentation of the optic radiation in two sample subjects shown on a non-diffusion
weighted image (b=0) on the left side. The color coded fractional anisotropy image is shown on the
right side. The main fiber bundle of the optic radiation and the lateral geniculate nucleus (LGN) of
the visual pathway are clearly identified.
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The segmentation results were evaluated by comparing them with a manual seg-
mentation of the optic radiation main fiber bundle performedby a physician expe-
rienced in neuroimaging. The accuracy of the segmentation system is calculated as
the percentage of the overlap volume between the automatic segmentation results
and the manual segmentation to the total volume of the manually segmented op-
tic radiation. The segmentation accuracy is summarized in Table 1. The accuracy
of the segmentation results is 82.71% for the normal subjects and 82.76% for the
glaucoma group.

Table 1 The segmentation accuracy of the normal subjects and glaucoma patients

Subjects’ Class Number of Subjects Segmentation Accuracy

Normal Subjects 9 82.71%
Glaucoma patients 9 82.76%

The analysis of the segmentation errors showed that the errors typically occur in
the region where the optic radiation branches in the proximity of the visual cortex.
Due to the branching of the optic radiation in this region, the incoherency increases
and the anterior-posterior direction is no longer the dominating diffusion direction
which is the principal segmentation assumption for the proposed algorithm. Another
source of errors is the relatively small coherent fiber bundles intersecting the optic
radiation and sharing the anterior-posterior diffusion direction near the intersection
location. Figure 2 shows the mentioned classes of errors on asample subject as
indicated by arrows.

Fig. 2 The errors of segmentation of the optic radiation demonstrated on a sample subject as
indicated by arrows
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The effect of glaucoma on the visual system specifically the optic nerve and
the optic radiation was investigated in [13]. The correlation between glaucoma and
diffusion tensor derived parameters such as fractional anisotropy and mean diffu-
sivity was studied. The fractional anisotropy was found to be significantly lower in
the glaucoma group when compared to the normal subjects. On the other hand, the
mean diffusivity was significantly higher in glaucoma patients than in the normal
subjects. This yields that the diffusion tensors within theoptic radiation are gen-
erally affected by the presence of the neurologic pathologyof glaucoma. Despite
these findings, the proposed automated segmentation algorithm has approximately
the same accuracy for normal subjects and glaucoma patients. This robustness is
due to the dependence of the system on the physiological and anatomical properties
which are slightly affected by glaucoma.

The high individual variability of the brain fiber structureand the special na-
ture of DTI-data require great attention when dealing with the segmentation of
major fiber bundles. The diffusion tensor contains information about the diffusion
direction and the degree of diffusion anisotropy. So, the segmentation based on
anisotropy measures or diffusion directions only results in a loss of information
and inaccuracy in segmentation. Employing a Euclidean metric for measuring the
similarity between diffusion tensors ignores the Riemannian nature of the tensor
space and does not represent adequately the dissimilarity between tensors. Most of
the proposed segmentation algorithms do not address the problem of system ini-
tialization which is usually done by a medical expert or roughly. This leads to an
increased number of system iterations and the necessity foran experienced med-
ical user. The proposed segmentation system overcomes the mentioned problems
reducing the variations of the human initialization.

6 Conclusion and Future Work

A system has been proposed for the automatic segmentation ofthe optic radiation
using DTI based on dissimilarity measure and the coherency property within the op-
tic radiation fiber bundles. The automation eliminates medical-experts’ intervention
for identifying the optic radiation and allows the processing of large number of sub-
jects. The system initialization problem is addressed by utilizing prior knowledge
about the physiological and anatomical properties of the optic radiation to auto-
matically provide robust estimation of the optic radiation. The incorporation of the
Log-Euclidean framework in the statistical level set framework is suitable and ef-
ficient for DTI segmentation because it accounts for the Riemannian nature of the
tensor space and incorporates the whole tensor informationin a probabilistic frame-
work. The system is implemented and tested using real DTI-data. The experimental
results indicate that the system shows high efficiency in determining the main fiber
bundle of the optic radiation for normal subjects as well as pathological subjects
with glaucoma.
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The automated identification of the optic radiation will be utilized in a following
study to investigate the correlation between glaucoma and the quantification of the
changes occurred in the optic radiation. This aims to give further insight into the
glaucoma disease and its effect on the various parts of the human visual system. The
identification of the optic radiation connectivity on the visual cortex is another future
goal. This requires the development of a robust tractography algorithm to be able to
accurately identify the highly variable branches of the optic radiation while taking
into consideration the complex fiber situations (e.g. crossing, branching, etc. . . ) and
the uncertainties in the diffusion tensor data.
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