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Automatic Segmentation of the Optic Radiation
Using DTI in Healthy Subjects and Patients with
Glaucoma

Ahmed El-Rafei, Tobias Engelhorn, Simone Waerntges, Aradriler, Joachim
Hornegger, and Georg Michelson

Abstract The complexity of the diffusion tensor imaging (DTI) datadahe inter-
personal variability of the brain fiber structure make themitification of the fibers a
difficult and time consuming task. In this work, an automategmentation system
of the optic radiation using DTI is proposed. The system igliagble to normal
subjects and glaucoma patients. It is intended to aid fujlaecoma studies. The
automation of the system is based on physiological and ame&binformation to
produce robust initial estimates of the optic radiatione Estimated optic radia-
tion initializes a statistical level set framework. Theiopadiation is segmented by
the surface evolution of the level set function. The systetested using eighteen
DTl-datasets of glaucoma patients and normal subjects.ségmentation results
were compared to the manual segmentation performed by acpdrygxperienced
in neuroimaging and found to be in agreement with the knovatany with 83%
accuracy. The automation eliminates the necessity of rakdiperts’ intervention
and facilitates studies with large number of subjects.
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1 Introduction

Glaucoma is the second leading cause of blindness in thedwdHe damage
caused by glaucoma is irreversible. The progression ofcglaa can be delayed
significantly if glaucoma is detected in early stages. Tloeeg methods for screen-
ing, early diagnosis and better understanding of glaucamdaita progression are
needed.

Most of the existing eye imaging modalities focus on imagimgeye in general
and the retina in particular. Many studies were performeittestigate the corre-
lation between glaucoma and retinal changes such as regmeaé fiber atrophy,
retinal vessels, and optic disk changes [24, 16, 33]. Thedmwisual system does
not only consist of the eye but it extends through the optiee@to the brain till it
reaches the visual cortex. The visual pathway consistaufrfeurons. The first neu-
ron (photoreceptors) and the second neuron (amacrine aothbicells) lie within
the retina in the eye. The third neuron (retinal ganglionsgelonnects the retina
with the brain. The axons of the third neuron leave the eyeeatin the lateral
geniculate nucleus where the fourth neuron begins. Thesagbtine fourth neuron
neuronal cells carry the visual information and end up invisaal cortex V1. The
intracerebral part of the fourth neuron is called the opitiation. Correlation has
been shown between glaucoma and parts of the visual syst#mastthe optic nerve
and the optic radiation [18, 13]. Nevertheless, the efféclaucoma on the visual
system is not fully addressed yet.

In this work we aim to provide a system for the automatic idf@ation of the
optic radiation in normal subjects and glaucoma patientd. i® used to segment
the optic radiation as it is the only imaging modality thdbaik for the identifica-
tion of white matter fiber structure non-invasively. Thisaistep towards a better
understanding of the changes caused by glaucoma in thisfodne human visual
system.

In the last two decades, diffusion tensor imaging has redeavlot of attention
due toits clinical applications [39, 11]. Diffusion weigittimaging (DWI) is proven
to be effective in the early diagnosis and investigationerebral diseases such as
acute stroke [28, 21] and abscesses [7]. Diffusion tensoreteparameters such as
the degree of anisotropy and the diffusivity parametersuaes to evaluate certain
neural pathologies and were found to be sensitive to whitdkemabnormalities.
Axonal degeneration evaluated by diffusion tensor derpa@meters were evident
in the temporal lobe for mild cognitive impairment and Alzher disease patients
[8, 17]. In relapsing-remitting multiple sclerosis, reédcanisotropy accompanied
by increased isotropic apparent diffusion were observeeklziing to the signature
of Wallerian degeneration [15]. The process of normal hubram maturation and
aging affecting the structure of myelin were monitored gsi»ir| [34, 19]. Fur-
thermore, DTI is the only imaging modality that allows traxck the white matter
fibers in-vivo and non-invasively [3, 29], and it enables tbastruction of an atlas
of white matter fibers in the human brain [36, 27].

As the basis of the DTI, diffusion weighted imaging (DWI) isskd on magnetic
resonance signal attenuation due to restricted diffusievater molecules along the
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diffusion weighting gradient field [23, 26]. The cell membes and myelin sheaths
surrounding the axons act as a guided tube for the diffusiongss within the ax-
ons. Thus, they limit the diffusion in the direction perpeudar to the axons while
increasing the average diffusion along the axons resuitiray highly anisotropic
diffusion. The diffusion of water like molecules can be useientify fiber orien-
tation which coincide with the average diffusion directimmd so for to depict the
microstructure of the brain white matter. The diffusiongenrelies on modeling the
diffusion process within a specified volume by a Gaussiangs® with a zero mean.
The tensor corresponds to the inverse of the covariancéxnadtthe diffusion pro-
cess and is calculated from the diffusion weighted imagesilyxing the diffusion
tensor gives significant diffusion related informationisas the main diffusion di-
rection within the specified volume and the degree of arepgtrThis information
is used to identify the white matter structure within theitra

Many algorithms were proposed for the identification of whitatter tracts using
DTI. The dominant category is tractography which is basedbtiowing the fiber
tracts using the principal diffusion direction [9, 4, 35,]22ractography suffers
from accumulated tracking errors during the tracking pssc&€onnectivity maps
were suggested [38, 30, 20] to explore the probability ohemtivity between a se-
lected seed point and the surrounding neighborhood whictbeahe whole brain.
Connectivity maps have the main disadvantage that they tiprowide a straight-
forward plausible visualization of the results. The splidanerge technique [6]
attempts to avoid the accumulated errors of tractographigidntifying short tracts.
This is done by limiting the tracking process to a certain hamof steps. Then
it provides a degree of membership of the extracted tradtsping to the same
fiber. The practicality of the split and merge techniquerstied because it does not
describe the complete fiber pathway. Segmentation appesadftDTI [37, 40, 14]
are more suitable for identifying coherent densely packatdles of axons. The
segmentation avoids the drawbacks from both connectivapsrand tractography
such as tracking accumulation errors and the need to meegadividual tracts to
obtain fiber bundles. Furthermore, it relies on the cohegrevithin the fiber bundle
of interest. Therefore, the segmentation approach is adaptthis work.

Most of the proposed white matter identification algorithaics not address the
problem of algorithm initialization. They rely on the in&stion of medical experts
to select the seed points or the region of interest of theekddiber tracts in trac-
tography algorithms or the initialization of the segmeiotaiengines to include the
desired fiber bundle. This is a rather time consuming proaagsmight limit the
number of subjects in clinical studies that involves DTIeTproposed segmenta-
tion system utilizes the physiological properties of théi®padiation to produce a
robust initialization of the proposed segmentation systeboth healthy and patho-
logical subjects with glaucoma.

The proposed segmentation system utilizes the compleserté@mformation in a
statistical level set frame work that takes into accounfRie@mannian nature of the
tensor space. It consists of the following steps: First iffaslon tensor and related
anisotropy measures are calculated from the diffusion me@jimages. The cal-
culated diffusion tensor data is transformed into the LagiiElean framework and
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interpolated as presented in Sect. 2. In Sect. 3, DTI-datagislarized to increase
the coherency of the optic radiation fiber bundle beforeiobtg an initial estimate

of the optic radiation using thresholding and connectiaitalysis. The midbrain is
initially identified using a similar analysis to that of thetr radiation. The sys-
tem extends the statistical level set framework for DTI segtation developed by
Lenglet et al. [25] to be used in conjunction with the Log-Eidean dissimilarity

distance as detailed in Sect. 4. The optic radiation is nbthby iteratively evolving

the level set function. Finally, the output from the level 8amework is adjusted
based on the relative location of the optic radiation andrt@brain. Section 5
contains the results and discussion. The conclusion amdefwtork are stated in
Sect. 6.

2 Interpolation in the Space of Diffusion Tensors

The diffusion tensors are 3 x 3 symmetric positive definitériv@s. The space of
diffusion tensors is a convex subset of the vector spiéé)ez and does not form a
vector space using a Euclidean metric [12, 31]. Thus, thermposition of the dif-
fusion tensors could result in non-physical negative eigkres. Moreover, the Eu-
clidean framework is not appropriate for dealing with tesdeecause the swelling
effect where the average of diffusion tensors with the sa@terchinant could result
in a mean tensor with a larger determinant [10]. Thus, thenRimian nature of the
tensor space should be taken into account when handlingfthsidn tensors.

Dissimilarity metrics has been proposed to overcome thédtrons of the Eu-
clidean framework. An information theoretic measure chifee J-divergence is pro-
posed [37] based on the symmetric Kullback-Leibler divamgebetween two Gaus-
sian probability densities. The J-divergence distancevden two diffusion tensors
is given by Eqg. 1 and is affine-invariant. i.e. the distancevieen tensors are inde-
pendent from affine transformation of the coordinate system

dy (DTy,DT,) = %\/tr (DT;'DT2+DT,'DT;) —2n 1)

wheretr(.) is the matrix trace operator, n is the size of the diffusiamstesDT;
andDT».

Fletcher and Joshi [12] deal with the space of diffusiondemas a curved mani-
fold called Riemannian symmetric space. They derived a Rigtnian metric on the
space of diffusion tensors. The proposed metric accounthépositive definite-
ness constraint ensuring that the eigenvalues of the diffusnsors are positive.

The Log-Euclidean framework proposed by Arsigny et al. [&}vides a Rie-
mannian framework to deal with the diffusion tensors. Uding framework, the
diffusion tensor space of positive semi definite matrices loa transformed into
the space of symmetric matrices, i.e. a vector space. Aadiliy, all operations
performed on vectors can be used on the vector form of thasiliff tensor in the
Log-Euclidean framework. Despite the similar propertiethe Log-Euclidean met-
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ric compared to other dissimilarity distances such as tiigekgence distance or the
Riemannian metric by Fletcher and Joshi, the Log-Euclidemmework has a sim-
ilar behavior but at a significantly lower computational tcas it involves vector
operations.

The Log-Euclidean distanak g between tensol®T; andDT, is defined by

dLE (DTl, DT2) :H |Og(DT1) — |Og(DT2) || (2)

where log is the matrix logarithm.

The interpolation of the DTI-data is necessary in order ttaimba volumetric
identification of the optic radiation. Interpolation of fili§ion tensors in the Eu-
clidean framework results in the non-physical swellingeeff This effect is also
evident in interpolating two tensors, where it is possiblgét an interpolated ten-
sor that has a larger determinant than the original tensteypolation in the Log-
Euclidean framework avoids the swelling effect at a comipanally attractive cost.
The diffusion tensoDT is interpolated trilinearly at non-grid positioras the Log-
Euclidean weighted sum &f tensors in a neighborhood of the non-grid position
The weights are inversely proportional to the spatial distebetween the non-grid
position and the locations of the tensors in the neighbath®be used interpolation
formulais

N
ZWi (x)log (DT (%))
DT (x) =exp| = 3)

N
;Wi (%)

where exp and log are the matrix exponential and logarittepeaetively.

3 Initial Estimation of the Optic Radiation and the Midbrain

In this step, the optic radiation and the midbrain are ithtidentified. The diffusion
tensor data is first regularized by applying Perona-Malfkugion filtering [32].
Perona and Malik proposed an anisotropic diffusion filigriachnique based on
controlling the heat flow according to the presence of edfesedges are estimated
by the magnitude of the image gradient. The diffusivity is1dimearly inversely
proportional to the magnitude of the image gradient, i.e. diffusion is limited
at large image gradients indicating the presence of an edfehigh probability.
Conversely, the diffusion is increased at small image @rdi The evolution of the
imagef(x,y,z) : Q C Rz — R is governed by the following diffusion equation

of ,
= =div(p(|0f)Of) (4)
|of)2

- 1
wherep =€~k orp= B2k
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The diffusion filtering is applied to the transformed Logelidean vector form
of the diffusion tensors componentwise. Regularizatiopeidormed to reduce the
noise and to increase the coherency inside the fiber bundide preserving the
boundaries of the fiber bundles.

The initial estimation of the optic radiation is based on thet that the main
fiber bundle of the optic radiation is dominated by diffusiothe anterior-posterior
direction. Moreover, the optic radiation is a massive fihemdie which occupies a
significant part of the brain white matter. This physiol@jimformation regarding
the diffusion direction and the size of the optic radiatidreg a unique discrimina-
tion of the optic radiation from other fiber bundles.

The diffusion tensor is analyzed using eigen-decompaosii® given by Eq. 5
to determine the principal diffusion direction (PDD) whichthe eigenvector of
the tensor corresponding to the largest eigenvalue. Theedeag anisotropy is de-
termined by the fractional anisotropy (FA) [5] and is caiteld from the diffusion
tensor eigenvalues using Eq. 6.

A0 0 g
DT=[e1ee3]-| 042 0 |- [erepes] (5)
0 0As

wheree;, & andes are the diffusion tensor eigenvectors corresponding;to\,
andA3 which are the diffusion tensor eigenvalues in a descendidgro

. 2 . 2 _ 2
FA:\/E\/(M A2+ (Aa—A)2+(Aa—A) ©

(
\AEHAZ A2

_ (M1tA2+A3)
whereA = 3 .

The image is analyzed on a voxel by voxel basis to create aybmask repre-
senting the initial optic radiation. The vector correspiogdo principal diffusion di-
rection has three components: the anterior-posterior coent (AP), the left-right
component (LR) and the superior-inferior (SI) componeht Three components at
each voxel are compared and the foreground voxels of theybinask are selected
to have a dominant AP component. The foreground voxelsfigatithe inequali-
ties given by Eq. 7 that is the AP-component is greater thasea specified factor
(ARnres) Of the sum of the other two components and a fractional &gy value
greater than 0.2. The fractional anisotropy thresholdéslis ensure the coherency
of the fiber bundle and that the partial volume effects [1]areided. In DTI the
partial volume effects are the result of the limitation oé ttensor model to de-
scribe complex fiber situations such as fiber crossing ordhiiag situations within
a voxel. This results in a reduced fractional anisotropy amdisleading principal
diffusion direction. The remaining voxels that do not datihie selection criteria
are set as the background of the binary image.
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AP > ARpres X (LR+9) and FA>0.2 @)

A three dimensional 6-neighborhood connectivity analysigerformed on the
binarized image. Connected objects are determined andptie radiation is ini-
tially identified as the largest object dominated by diftusin the anterior-posterior
direction. This estimation will be used in the segmentatitap as an initialization
of the level set.

The analysis applied to estimate the optic radiation islaigiapplied to identify
the midbrain. The analysis takes into account that the raidbs characterized by
diffusion in the superior-inferior direction and is locdt@& the neighborhood of the
centers of the axial brain slices. The relative positionhef éstimated midbrain to
the optic radiation will be used in a later step to refine thgmsentation of the optic
radiation.

4 Segmentation Using a Statistical L evel Set Framework

The segmentation is performed in two steps. First, the DBeigmented using a
statistical level set framework. The initially estimatqatio radiation as described in
Sect. 3is used as the initial surface. Second, the resaitstfie level set framework
are adjusted based on anatomical information between ttbrain and the optic
radiation.

We extend the surface evolution framework developed by letreg al. [25] to
work with the Log-Euclidean dissimilarity measure givengq. 2. In the follow-
ing we present briefly the mathematical formulation of theeleset framework in
the case of the Log-Euclidean framework. For further detséle [25, 2]. The dif-
fusion tensoDT(x) at voxelx is mapped to the space of symmetric matrices and
transformed into a vector fori(x) using the following mapping:

B(x) = vec(log(DT(x))) (8)

wherevec is the mapping of the 3 x 3 symmetric matrices to the corredipon
6-dimensional vectors.

Using the notation in Eqg. 8, the mean, covariance matrix aadsSian distribu-
tion between diffusion tensors can be defined as :

1 N
HEe = i;ﬁ (%) 9)

z

1

Covie = 3 > (B(x)— i) (B(X) — Hie)" (10)
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1
(27T)6|COV|_E|

Xexp<_(l3 (x) — pie)" Covi (B m)—uLE))

Re(B(x)) =
(11)

2

The spatial gradient of the diffusion tensor in the vect@cspis given by

13 )
I0B(%) ék;g( —B(x+sxik)) W

X (B~ B(x+sx k)" )

whereiy, k=1, 2 ,3 denotes the canonical basisRaf s € {1,—1} and denotes the
forward and backward approximations of the gradiemis the trace of a matrix.

The idea of the statistical surface evolution is to seek gtemal partitioning of
the tensor image} in the Log-Euclidean case) by maximizing a posteriori frame
partition probability for the diffusion tensor image witimage domair. This is
done in a level set framework, where the image is partitioinéal three regions
based on a level set functiagn inside i, outsidely: or on the boundaryg. The
boundary is defined as the zero-crossingpofThe probability distributions of the
tensors insideff,) and outsidefo) regions are modeled by Gaussian distributions
on tensors using Eg. 11. The partition probability is givgn b

P(Bl@) = [] Pin(BX) [] Pou(B npb (13)

XElin xel’out

The boundary probability distributiop, is selected to have a value of approx-
imately one for high gradients of the diffusion tensorsrfgskq. 12 for gradient
calculations) and a value of approximately zero for low ggats as the following
relation indicates.

Po (B (X)) O exp(—g(|HB (x)|)) (14)
whereg(u) = 1/(1+4u?).

This leads to the energy minimization formulation:

E(o, IJLEin/out ) COV'-Ein/OUT )

-y [ s@)0gidx+ /r 5(@)|09lg(B () |)dx a5
_/_ 'Og(pin(x))dx—/r log(pout (x))dx

whered is the Dirac delta function.
The following Euler-Lagrange equation is used to evolvel¢iel set function
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a0 . Qo
% _s(9) <<v+g<|mfs wav( )

Ul (16)
Uo Pin
+ g Cal0p <X>'”'°9<pout)>

The level set function in Eq. 16 is evolved iteratively toahtthe desired seg-
mentation and the statistics are updated after each @iarati

The output from the level set framework contains the fiberdbeiof the optic
radiation and additional bundles connected to it such azsraf the optic tract.
The reason for this is that the optic tract is connected t@{ie radiation and the
diffusion direction is also anterior-posterior in the cention area so traces of the
optic tract are segmented as well. The lateral geniculatkena (LGN) connects the
optic radiation to the optic tract and is located lateratlytte midbrain. Therefore,
the LGN position can be used to separate the optic tract fl@roptic radiation.
Based on this anatomical information, the segmented regi@utomatically ad-
justed in order to confine the segmentation results to thierepresenting the optic
radiation. The relative position of the segmented optid¢atamh to the midbrain is
used instead of the relative position to the LGN because ttibrain is larger, more
reliable to identify and in turn more robust. The midbraipisviously identified in
the initialization step. The plane corresponding to therdot boundary of the seg-
mented midbrain is selected as the separation level betthesvptic radiation and
the optic tract. The segmentation results anterior to thext plane are eliminated
leaving the optic radiation and approximately eliminatihg part corresponding to
the optic tract.

5 Resultsand Discussion

Eighteen subjects were examined by ophthalmologists aedadzed into two age
matched groups. The first group represents the subjectsvérat diagnosed with
primary open angle glaucoma and the other group repredamtsormal subjects.
The glaucoma group contains 9 subjects with a medandard deviation age of
66+11.8 years with 7 females and 2 males, while the normal groapams 9 sub-
jects with a meaittstandard deviation age of 678.1 years with 6 females and
3 males. Further ophthalmological and neuroradiologigah@nations were per-
formed and did not provide indications of microangiopathyrieegularly developed
optic radiation.

The subjects were scanned using a 3T-MRI scanner. The idiffugeighted im-
ages were acquired using a single-shot, spin echo, echarptaaging (EPI) as an
imaging sequence with repetition time (TR) 3400 ms, eche §{ifE) 93 ms, field
of view (FoV) 230 x 230 mrf, acquisition matrix size of 128 x 128 reconstructed to
256 x 256, seven signal averages, and partial Fourier atiqnisf 60%. The axial
slices have a thickness of 5 mm and 1 mm interslice spacirf(udiin weighting
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were applied with a maximal b-factor of 1000 s/fmafong 15 icosahedral directions
complemented by one scan with b = 0. The diffusion tensorg waliculated from
the measured diffusion weighted images along with fraetiamisotropy, eigenvec-
tors and eigenvalues on a voxel by voxel basis.

The segmentation system is applied to the DTI-datasetstendgtic radiation
in the two groups is identified. The left side of Fig. 1 shows fimal segmented
optic radiation on non-diffusion weighted axial slicesiwit = 0 from two sample
subjects. The color coded fractional anisotropy represgiemt of the DTI-data is
demonstrated on the right side of the figure.

(b)

Fig. 1 Segmentation of the optic radiation in two sample subjects shawa aon-diffusion
weighted image (b=0) on the left side. The color coded fraefianisotropy image is shown on the
right side. The main fiber bundle of the optic radiation and &terkl geniculate nucleus (LGN) of
the visual pathway are clearly identified.
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The segmentation results were evaluated by comparing thémawnanual seg-
mentation of the optic radiation main fiber bundle perforrbgda physician expe-
rienced in neuroimaging. The accuracy of the segmentatistes is calculated as
the percentage of the overlap volume between the autonegimentation results
and the manual segmentation to the total volume of the mnsedjmented op-
tic radiation. The segmentation accuracy is summarizecabileT1. The accuracy
of the segmentation results is 82.71% for the normal subjectl 82.76% for the
glaucoma group.

Table1 The segmentation accuracy of the normal subjects and glaucoieatpat

Subjects’ Class Number of Subjects Segmentation Accuracy
Normal Subjects 9 82.71%
Glaucoma patients 9 82.76%

The analysis of the segmentation errors showed that thesdgically occur in
the region where the optic radiation branches in the prayiofi the visual cortex.
Due to the branching of the optic radiation in this regiow, itcoherency increases
and the anterior-posterior direction is no longer the datiiny diffusion direction
which is the principal segmentation assumption for the psegd algorithm. Another
source of errors is the relatively small coherent fiber besdhtersecting the optic
radiation and sharing the anterior-posterior diffusioreciion near the intersection
location. Figure 2 shows the mentioned classes of errors ssn@le subject as
indicated by arrows.

Fig. 2 The errors of segmentation of the optic radiation demonstrated sample subject as
indicated by arrows
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The effect of glaucoma on the visual system specifically thécanerve and
the optic radiation was investigated in [13]. The correlatbetween glaucoma and
diffusion tensor derived parameters such as fractionaoarmpy and mean diffu-
sivity was studied. The fractional anisotropy was foundécslgnificantly lower in
the glaucoma group when compared to the normal subjectsh@®aother hand, the
mean diffusivity was significantly higher in glaucoma patgethan in the normal
subjects. This yields that the diffusion tensors within tipgic radiation are gen-
erally affected by the presence of the neurologic patholaigglaucoma. Despite
these findings, the proposed automated segmentationthlgonas approximately
the same accuracy for normal subjects and glaucoma patiEmits robustness is
due to the dependence of the system on the physiologicalreatdraical properties
which are slightly affected by glaucoma.

The high individual variability of the brain fiber structuasd the special na-
ture of DTI-data require great attention when dealing wiik segmentation of
major fiber bundles. The diffusion tensor contains infoioragbout the diffusion
direction and the degree of diffusion anisotropy. So, thgnmentation based on
anisotropy measures or diffusion directions only resuits iloss of information
and inaccuracy in segmentation. Employing a Euclideanionfer measuring the
similarity between diffusion tensors ignores the Riemanmature of the tensor
space and does not represent adequately the dissimilatityebn tensors. Most of
the proposed segmentation algorithms do not address ttéeproof system ini-
tialization which is usually done by a medical expert or rolyg This leads to an
increased number of system iterations and the necessignf@xperienced med-
ical user. The proposed segmentation system overcomesehgomed problems
reducing the variations of the human initialization.

6 Conclusion and Future Work

A system has been proposed for the automatic segmentatiiwe afptic radiation
using DTI based on dissimilarity measure and the cohereragpepty within the op-

tic radiation fiber bundles. The automation eliminates redeexperts’ intervention
for identifying the optic radiation and allows the procegsdf large number of sub-
jects. The system initialization problem is addressed lizimg prior knowledge

about the physiological and anatomical properties of thticapdiation to auto-
matically provide robust estimation of the optic radiati@he incorporation of the
Log-Euclidean framework in the statistical level set fravoek is suitable and ef-
ficient for DTl segmentation because it accounts for the Rigman nature of the
tensor space and incorporates the whole tensor informati@probabilistic frame-
work. The system is implemented and tested using real D#-ddne experimental
results indicate that the system shows high efficiency ierdeining the main fiber
bundle of the optic radiation for normal subjects as well aghplogical subjects
with glaucoma.
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The automated identification of the optic radiation will ligized in a following
study to investigate the correlation between glaucoma lamdjtiantification of the
changes occurred in the optic radiation. This aims to givehé&r insight into the
glaucoma disease and its effect on the various parts of timahwisual system. The
identification of the optic radiation connectivity on thewal cortex is another future
goal. This requires the development of a robust tractograjyorithm to be able to
accurately identify the highly variable branches of theodiation while taking
into consideration the complex fiber situations (e.g. dnggdranching, etc...) and
the uncertainties in the diffusion tensor data.
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