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Abstract

In this paper, a method is described to automatically estimate the visible body region of a computed tomography (CT) volume
image. In order to quantify the body region, a body coordinate (BC) axis is used that runs in longitudinal direction. Its origin and
unit length are patient-specific and depend on anatomical landmarks. The body region of a test volume is estimated by registering
it only along the longitudinal axis to a set of reference CT volume images with known body coordinates. During these 1-D
registrations, an axial image slice of the test volume is compared to an axial slice of a reference volume by extracting a descriptor
from both slices and measuring the similarity of the descriptors. A slice descriptor consists of histograms of visual words. Visual
words are code words of a quantized feature space and can be thought of as classes of image patches with similar appearance. A
slice descriptor is formed by sampling a slice on a regular 2-D grid and extracting a Speeded Up Robust Features (SURF) descriptor
at each sample point. The codebook, or visual vocabulary, is generated in a training step by clustering SURF descriptors. Each
SURF descriptor extracted from a slice is classified into the closest visual word (or cluster center) and counted in a histogram. A
slice is finally described by a spatial pyramid of such histograms. We introduce an extension of the SURF descriptors to an arbitrary
number of dimensions (N-SURF). Here, we make use of 2-SURF and 3-SURF descriptors. Cross-validation on 84 datasets shows
the robustness of the results. The body portion can be estimated with an average error of 15.5mm within 9s. Possible applications
of this method are automatic labeling of medical image databases and initialization of subsequent image analysis algorithms.
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1. Introduction

This paper addresses the problem of determining which por-
tion of the body is shown by a stack of axial CT image slices.
For example, given a small stack of slices containing the heart
region, one may want to automatically determine where in the
human body it belongs.

Such a technique can be used in various applications such as
attaching text labels to images of a database. A user may then
search the database for volumes showing the heart. The DI-
COM protocol already specifies a flag “Body part examined”,
but this is imprecise as it only distinguishes 25 body parts.
Moreover, the flag can often be wrong as reported by Gueld
et al [1]. Or alternatively, our method may be used to reduce
traffic load on medical image databases. Often physicians are
only interested in a small portion of a large volume stored in the
database. If it is known which parts of the body the large image
shows, the image slices of interest showing e. g. the heart can
be approximately determined and transferred to the user. An-
other possible application is the pruning of the search space of
subsequent image analysis algorithms, like organ detectors.

The problem of estimating the body portion of a volume im-

age is closely related to inter-subject image registration as it
can be solved by registering the volume to an anatomical atlas.
This is typically solved in two ways: By detection of anatomical
landmarks in the volume image, or by intensity based non-rigid
image registration. Landmark based registration may also be
used as an initialization for non-rigid registration. However, a
set of landmarks is required that covers all regions of the body
and can be robustly detected. Intensity based registration tends
to be slow, and because it is prone to getting stuck in local op-
tima, it requires a good initialization. In many cases one is only
interested in registration along the longitudinal (z) axis and a
complete 3-D registration is not necessary.

Dicken et al. [2] proposed a method for recognition of body
parts covered by CT volumes. An axial slice is described by a
Hounsfield histogram with bins adapted to the attenuation co-
efficient of certain organs. Derived values such as the spatial
variance within the slice of voxels of a certain bin are also in-
cluded into the descriptor. The stack of the N-dimensional axial
slice descriptors is interpreted as a set of N 1-D functions whose
domain is the (vertical) z level. Then five handcrafted rules are
used to decide which of eight different body parts are visible.

Preprint submitted to Computerized Medical Imaging and Graphics January 3, 2011



Figure 1: The proposed system for body portion estimation. The axial slices of a CT volume are first processed separately. sample positions are generated on a
regular grid. For each sample position inside the patient, a SURF descriptor is computed from the local neighborhood called “patch”. The descriptors are classified
into visual words and accumulated in a histogram. The stack of histograms from the axial slices is registered with prototype histogram stacks to find the body
portion.

However, the results are imprecise because no quantitative esti-
mation of the covered body region is performed. Furthermore,
Dicken et al. report problems with short scan ranges.

In scene classification, it has recently become popular to
measure the similarity of two images by extracting a bag of
features from both images. Grauman and Darrell [3] proposed
a distance measure for feature bags that builds a pyramid of
histograms of features. They then compare the two histogram
pyramids. Lazebnik [4] adapted this distance measure by first
classifying the feature vectors into visual words. The vocabu-
lary is generated in advance by clustering feature vectors that
have been extracted from a set of training images. Thus, a vi-
sual word corresponds to a class of image patches that have a
similar descriptor and similar appearance. For example, a vi-
sual word may correspond to blobs, curved edges, or homo-
geneous regions. Then a spatial pyramid of histograms of the
visual words is generated and used in comparing two images.

In [5], we introduced the use of histograms of visual words
to register stacks of CT image slices. Only the z axis of the
volume is considered as it is sufficient for many applications
and it leads to a small search space that even allows exhaus-
tive search. The body region of a test volume is estimated by
1-D registration along the longitudinal axis to a set of prototype
volumes with known body regions. In order to quantify body
regions, patient-specific 1-D “body coordinates” (BC) are in-
troduced. The origin is defined to be at the level of a landmark
in the pelvis, and the unit length is set to the distance between
a landmark at the clavicle and the pelvis landmark.

In this work we propose an extension of [5]. We introduce
an extension of the SURF descriptor to higher dimensions. We
also present two methods for making such a descriptor rotation
invariant.

Figure 1 shows an overview of the proposed system. For an
incoming volume, first the skin of the patient is detected. In-
dependent of this, the axial slices of the volume are regularly
divided into small quadratic or cubic patches that also cover
neighboring slices. In the next step, a feature vector is extracted
from each patch, which is used to classify the patch into a visual
word belonging to a predefined vocabulary. The feature vector
is a combination of a 2-D or 3-D SURF descriptor and a his-
togram of the image values. Only patches inside the patient’s
skin are considered so as to avoid getting confused by the envi-
ronment, e.g. the table the patient lies on, or the air surrounding
the patient. A spatial pyramid of histograms is then generated
from the visual words detected in a slice of the volume. This
pyramid serves as a descriptor of the slice and it is computed
for all slices of the volume. Thus, the result is a stack of his-
tograms. A set of training volumes with known annotations
of the pelvis and clavicle landmarks are processed in the same
way, resulting in a set of prototype histogram stacks. The vo-
cabulary of visual words is generated in advance by clustering
the feature vectors extracted from the training volumes. In the
end, the body portion of the input volume is determined by 1-D
registration of its histogram stack with respect to the prototype
stacks with known body regions. Generally a single prototype
would be enough, but using more than one leads to more robust
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Figure 2: (a) The Haar filters for the 2-D case. (b) Sampling pattern for 2-
SURF-4 (2-D with four bins b per dimension). The scale s of the descriptor
equals the sample spacing and is half the size of the Haar-filter.

results.
The structure of the rest of this document is as follows: Sec-

tions 2 and 3 describe the extension of the SURF descriptor to
N dimensions and two approaches to make it rotation invariant.
In section 4 the extraction of visual words and the histogram
generation are explained. Section 5 is on the registration of the
histogram stacks. Section 6 describes experiments and presents
results, and section 7 concludes the paper.

2. N-SURF

2.1. Standard SURF
The “Speeded Up Robust Features” (SURF) [6, 7] have

gained popularity for computer vision applications because
they have good discriminative power, are robust and can be
made invariant to rotation. They are similar to SIFT fea-
tures which have been successfully used for scene classification
tasks [4, 8, 9] but can be computed faster.

To compute a standard SURF descriptor at a certain location
p = (p1, p2) in a 2-D image I(p), a regular sampling pattern of
size 20× 20 is placed on the image so that the center of the pat-
tern is located at p. For each point r of the pattern, the gradient
∇I(r) of the image is approximated with the responses (c1, c2)
of two Haar filters, which are weighted with a 2-D Gaussian
centered at p. Both the Haar filters and the sampling pattern
are shown in Figure 2. The sample spacing of the pattern is
1s, and the size of the Haar filters is 2s, where s is the scale of
the descriptor. The advantage of Haar filters is that they can be
computed very efficiently with the help of integral images [10]
(also known as Summed-area tables in the computer graphics
community [11]). The sampling pattern has 16 bins, each one
containing 5 × 5 sample points. For each bin, a feature vector v

v =
(∑

c1,
∑

c2,
∑
|c1|,

∑
|c2|

)
(1)

containing the summed and the summed absolute filter re-
sponses of the 25 samples of the bin is computed. The sum-
mation index is omitted here to keep the notation uncluttered.
The feature vectors of all 16 bins are concatenated into a 64
dimensional descriptor.
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Figure 3: Illustration of an image region with upper bounds p and lower bounds
q. The regions on which image I and its integral image II are defined for two
dimensions (N = 2) are also shown. Both p and q are pixel/voxel indices. The
origin of the image is (1, 1), while the origin of the integral image is (0, 0).

2.2. Extension to N dimensions

When dealing with 3-D volumetric images, it is desirable to
also use a 3-D descriptor. So far, SURF have only been defined
for two dimensions. We propose an N-SURF descriptor, which
is an extension of SURF to an arbitrary number N of dimen-
sions. For N = 2, N-SURF simplifies to standard SURF. The
formulation for an arbitrary N leads to a uniform notation and
enables application for N > 3, for instance in case of 3-D+t
temporal volumetric sequences.

2.2.1. N-D Haar filters

First, the concept of Haar-filters and rectangle filters is gen-
eralized to N dimensions. As Haar-filters are combinations
of rectangle filters, an N-D Haar filter becomes a combina-
tion of N-D (hyper)-cuboid filters. When applying a hyper-
cuboid-filter, we need to compute the integral C over an axis-
aligned (hyper)-cuboid which is described by its upper bounds
p = (p1 . . . pN) and its lower bounds q = (q1 . . . qN) with
pi ≥ qi, i = 1 . . .N. As we are dealing with discrete images,
pi and qi are voxel indices of the i-th dimension. See Figure 3
for an example of a box described by p and q for N = 2. In this
case, p is the upper right corner of the box and q is the lower left
corner. When I is an N-dimensional image, the sum of voxels
C inside the hyper-box is

C(p, q) =

p1∑
i1=q1+1

p2∑
i2=q2+1

. . .

pN∑
iN =qN +1

I(i) (2)

with i = (i1 . . . iN).
Just like in the 2-D case, the sum can be efficiently computed
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with the help of an integral image II

II(p) =

{ ∑p1
i1=1

∑p2
i2=1 . . .

∑pN
iN =1 I(i) if p j > 0∀ j ∈ {1 . . .N}

0 else
(3)

=

{
C(p, 0) if p j > 0∀ j ∈ {1 . . .N}
0 else. (4)

Each voxel p of this integral image contains the sum of voxels
of the original image I that lie inside the axis-aligned (hyper)-
cuboid that has the origin and p as two opposite corners.

Theorem 1. Let T (N, d)

T (N, d) =

t ∈ {0, 1}N
∣∣∣∣∣ N∑

i=1

ti = d

 (5)

denote the set of permutations of a N-dimensional vector that
contains d ones and N − d zeros. Let CN(t, p, q) be

CN(t, p, q) = II


(1 − t1)p1 + t1q1

...
(1 − tN)pN + tNqN

 , (6)

where II denotes the integral image of image I. Then the
sum C(p, q) of the image-values inside a hyper-box with upper
bounds p and lower bounds q is

C(p, q) =

N∑
d=0

(−1)d
∑

t∈T (N,d)

CN(t, p, q). (7)

Proof. Can be proven by complete induction over N.

Since the number of permutations is ‖T (N, d)‖ =
(

N
d

)
and

N∑
d=0

(
N
d

)
= 2N , (8)

the sum C(p, q) can be computed with a complexity of O(2N).
Though the sum grows exponentially in the number of dimen-
sions, it does not depend on the size of the rectangle filter and is,
therefore, very efficient for small N. The integral image II can
be precomputed efficiently by first computing the integral im-
ages of all (hyper)-slices and then summing over the outermost
dimension.

2.2.2. N-D descriptor
As in the 2-D case, the image is sampled on a regular grid

around an interest point. The samples are split into b bins per
dimension, resulting in bN bins. For each sample, the gradi-
ent is approximated with N Haar-filters c1 . . . cN , which are
weighted with an N-D Gaussian centered at the interest point
with σ = 10s. If σ is high, then the gradients computed at
different sample points have a similar influence, meaning that
there is no special focus on the center of the sampling pattern.
If σ is low, only the gradients extracted close to the center of
the sampling pattern have influence, and the remaining ones are

effectively not used. A value of 10s is a reasonable choice. For
each bin, a feature vector v

v =
(∑

c1, . . . ,
∑

cN ,
∑
|c1|, . . . ,

∑
|cN |

)
(9)

is extracted, and the final descriptor is generated by concatenat-
ing the vectors from all bins. Thus, the descriptor has a dimen-
sion l of

l = 2NbN . (10)

3. Rotation invariance

To make the descriptor invariant to rotation, standard SURF
first assignes a canonical orientation to the interest point where
the descriptor is extracted. The sampling pattern is rotated ac-
cording to this orientation. For each sample point, the gradient
is approximated using Haar filters. As the Haar filters can only
be extracted efficiently in an axis-aligned orientation, they are
computed upright, and the approximated gradient is rotated af-
terwards into the coordinate system of the sampling pattern. In
the 2-D case, the canonical orientation is determined by gener-
ating a 1-D angle-histogram from gradients extracted inside a
circular region around the interest point. This histogram is then
filtered with a rectangle filter (sliding window), and the mode
is used as dominant orientation.

This cannot be directly generalized to more than two dimen-
sions, because the mode of the gradient directions fixes only
N−1 degrees of freedom (DOF), which is not enough for N > 2.
In general, an N-D rotation has (N−1)N

2 DOF.
As a solution to this problem, we propose two methods for

obtaining rotation invariance in three or more dimensions. In
both cases, first gradient approximations c(i), i = 1 . . .G are
extracted inside a (hyper-)spherical region with radius r = 6s
around the interest point like in the 2-D case. The orientation is
then determined from this set of gradients. G is the number of
sample points with spacing s that fit into the (hyper-)spherical
region.

A convenient representation for an N-D rotation is a rotation
matrix. An N × N matrix R is a rotation matrix if and only if
det(R) = 1 and it is orthonormal, meaning that all columns have
unit length and are orthogonal to each other.

3.1. Variant 1
For the first variant, it is assumed that the gradient vectors

c(i), i = 1 . . .G are normal distributed. The principal compo-
nent analysis (PCA) is computed on the gradient vectors. The
resulting eigenvectors u(i), i = 1 . . .N are sorted in descending
eigenvalue order. The columns of the rotation matrix R are gen-
erated from the eigenvectors u(i). These are already orthogonal,
but an eigenvector can point in either of the two directions of its
principal axis. To standardize this direction, an eigenvector u(i)

is multiplied with −1 if the scalar product of u(i) with the mean
gradient c is below zero. The eigenvectors with canonical di-
rection are denoted as u(i)

a :

u(i)
a =

{
−u(i) if cT u(i) < 0
u(i) else

with c =
1
G

G∑
i=1

c(i). (11)
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They are normalized to unit length

u(i)
b =

u(i)
a∥∥∥u(i)
a

∥∥∥ . (12)

Now the matrix
R′ =

(
u(1)

b . . . u(N)
b

)
(13)

is orthonormal, but its determinant det(R′) can be either +1 or
−1. As a rotation matrix must have a determinant of +1, the last
column of R′ is multiplied with −1 if necessary. The result is
called R and is the final rotation matrix.

Note that R is always a valid rotation matrix for all possi-
ble gradients c(i), i = 1 . . .G because the covariance matrix is
real and symmetric. Thus, there are N orthogonal eigenvectors,
even if some or all of the eigenvalues are zero.

3.2. Variant 2
In variant 1, only the covariance matrix of the gradients is

used in determining the axes of the rotated coordinate system.
Since the gradients are converted to zero-mean as part of the
process, the absolute gradient values are not taken into account,
although they contain valuable information. For instance, if all
gradients c(i) happen to be the same, their covariance matrix is
the zero matrix, and the resulting rotation matrix is valid but
describes an arbitrary rotation, although different orientations
will in general result in different descriptors.

In the second variant, this is solved by taking the normalized
mean gradient vector c

‖c‖
into account. It is used as the first axis

of the rotated coordinate system and as the first column of the
rotation matrix R. Then, all gradient vectors c(i) are projected
onto the (N − 1)-D (hyper)-plane orthogonal to c. This cannot
be continued in the same way for the remaining dimensions be-
cause the projected (N − 1)-D gradient vectors, denoted by c(i)

p ,
always have zero mean. Therefore, they are now treated simi-
larly to variant 1: The (N − 1)-D PCA of the projected gradient
vectors c(i)

p is computed, and the principal axes are taken as the
remaining axes of the rotated coordinate system. The eigenvec-
tors are normalized to unit length. As before, the orientation of
the eigenvectors with respect to their principal axis can be pos-
itive or negative and must be standardized. We cannot use the
mean gradient as reference like in variant 1 because it is zero.
Instead, we use cr with

cr =

G∑
i=1

c(i)
∥∥∥c(i)

∥∥∥2
. (14)

The columns 2 . . .N of the rotation matrix R are formed by the
eigenvectors. Again, an eigenvector is multiplied with −1 if
its scalar product with cr is less than zero, except for the last
eigenvector, which is multiplied with −1 if the determinant of
the rotation matrix R was −1 otherwise. Variant 2 is illustrated
in Figure 4.

4. Histograms of visual words

The concept of describing images using a visual vocabulary
has been successfully used in the past in data mining, scene
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Figure 4: Gradient vectors (blue dots) extracted in a spherical image region
with assigned orientation according to variant 2 in red. The single red line is the
mean gradient vector. The gradients are projected onto the plane of the square.
The single red line and the square are axis-aligned to the rotated coordinate
system.

classification and object recognition. The visual vocabulary
consists of visual words, which are primitive patches used to
characterize an ensemble of images. In practical applications,
the visual words are learned from the image ensemble and often
include straight lines, corners, uniform patches, holes or certain
textures.

Bhattacharya et al. [12] described retina images using a vi-
sual vocabulary. This description was used to distinguish image
classes and to highlight parts of the image that are characteris-
tic for their class. Duygulu et al. [13] labeled image regions
with keywords from a predefined vocabulary of nouns in order
to automatically generate an image description and to recognize
objects.

In this paper, we also use visual words to describe an axial
CT slice in the form of a spatial pyramid of histograms of vi-
sual words. Two axial CT slices are compared by measuring
the similarity of the two descriptors. In the remainder of this
section, we explain how this descriptor is obtained from a CT
slice.

4.1. Sampling

In the first step, a slice is densely sampled on a regular grid
with a sample spacing of 10mm. An alternative to a fixed sam-
pling grid is to detect key locations in the image, for example
minima and maxima in scale space as suggested by Lowe [9].
However, according to Fei-Fei and Perona [8], better results
have been reported for a regular dense sampling.

4.2. Patient detection

Since we are only interested in the patient and not the sur-
rounding air or other objects like the table that is usually visible
in a CT slice, we first run a simple detector that segments the
patient in a slice. First, a binary mask that has the same dimen-
sions like the slice is initialized with ones. Then, each row and
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(a) 2-SURF-4 R2 150

(b) 2-SURF-4 U 400 (c) 3-SURF-3 R2 150 (d) 3-SURF-3 U 400

Figure 5: Example images shown for selected visual words taken from four different vocabularies. (a) and (b) show examples from 2-D vocabularies. Each row
corresponds to one visual word. The vocabulary (a) was generated using a 2-D SURF descriptor with rotation invariance of type 2. (b) shows example images for
five visual words with rotation invariance turned off (“upright”). (c) and (d) show each examples for four different visual words. Now the image patches are cubes
instead of 2-D regions. A cubic image region is visualized by three axis-aligned cross-sections, displayed in a row. For (c), rotation invariance of type 2 was turned
on. (d) was generated with an upright descriptor. The size of the vocabulary was 150 in the rotation invariant cases and 400 in the upright cases.

each column is scanned from outside to inside, from both direc-
tions. A pixel is assumed to be the skin if a certain number ns

of successors and the pixel itself are above a threshold of -600
HU. ns is set to 3mm divided by the voxel spacing for scans in
dorsal direction, and to 10mm divided by the voxel spacing for
scans in other directions. The reason for the difference is that
sometimes the chest wall is thinner than 10mm. Pixels outside
the skin are set to zero. The result is a mask that marks each
voxel either as “patient” (1) or “environment”(0). This simple
algorithm proved to be fast and effective for rejecting the air
surrounding the patient and also the table s/he lies on.

4.3. Feature extraction

For all sample points inside the patient, a feature vector
is computed, which consists of an eight bin histogram of the
Hounsfield units and a 2-SURF or a 3-SURF descriptor. In the
2-D case, the descriptor is computed from the axial slice. In the
3-D case, voxels from neighboring slices are also considered.

As SURF descriptors were designed to be invariant to illu-
mination changes that often cause problems in computer vi-
sion, they do not make use of absolute intensities. However,
in CT images absolute intensities are reliable. In order to use
this information, the N-SURF descriptor is extended with the
Hounsfield histogram, which is scaled to fit the mean values of
the N-SURF descriptor entries. Descriptors are computed at a
fixed scale of s = 1, which corresponds to a descriptor window
size of 20 × 20 pixel.

4.4. Visual words

The extracted feature vectors are now classified into a set
of visual words. The vocabulary is represented by a prototype
feature vector for each word. A nearest neighbor classifier is
used. The distance of two feature vectors is measured using the
`2 norm. To generate the vocabulary, a random subset of feature
vectors is extracted from a set of training images. The K-Means
algorithm is used in finding clusters. The cluster centers are
chosen as the vocabulary.

Figure 5 shows example images from four different vocabu-
laries, generated using a 2-D or 3-D descriptor with rotation in-
variance turned on or off. In the 2-D case, image patches from
five visual words are displayed for the rotation invariant case
(a) and the upright case (b). Image patches in one row belong
to the same visual word. With a rotation invariant descriptor
(a), the orientation of the patches within a word is arbitrary,
while in the upright case (b), patches of a word share a simi-
lar orientation. In Figure 5 (c,d), images patches from two 3-D
vocabularies are visualized. One 5 × 3 block of images cor-
responds to one word. Each row shows an axial, coronal and
sagittal cross-section of a cubic image patch. In (c) the descrip-
tor was made rotation invariant using method 2, and in (d) an
upright descriptor was used. Generally, the number of clusters
in features space, which equals the vocabulary size, needs to be
higher in the upright case in order to separate patches showing
different tissue types.
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Figure 6: Illustration of the spatial pyramid of histograms used to describe
an axial CT slice, here displayed with two levels. At the first level (left), a
histogram of quantized features (visual words) is generated for the whole slice.
Here, the vocabulary size is 100. At level two (right), the image slice is split into
four parts, and for each one, a histogram is generated. The quantized features
remain the same, meaning that the sum of the four right histograms equals the
left (red) one.

4.5. Histograms of visual words

A set of visual words can be characterized by a histogram.
The number of bins in the histograms equals the size of the vo-
cabulary. For each axial slice of the volume image, a spatial
pyramid of such visual word histograms is generated, which
serves as a description of the slice and is used to measure the
similarity between slices. This idea was introduced by Lazeb-
nik [4] where it was used for scene classification. Figure 6 il-
lustrates a spatial pyramid with two levels. At the root level, a
histogram of quantized features inside the patient body is com-
puted for the entire slice. At the next level, four histograms are
computed for different parts. Note that the features only need to
be computed and quantized once for each sample, independent
from the number of pyramid levels. A slice is finally described
by a concatenation of all the histograms. In the shown example,
the vocabulary size, which is the histogram length, is 100, and
the slice descriptor is therefore of dimension 500. In [4], his-
tograms of deeper pyramid levels are weighted higher, but the
weights for the first two levels are the same. In this work, we
use only two levels, therefore weighting is omitted. In Figure 7,
a stack of histograms of visual words is shown together with a
coronal section of the original volume (for only one pyramid
level).

5. Histogram matching

Consider two 2-D images k and l that are axial slices taken
from two 3-D volumes Ik and Il at level zk and zl

k(x, y) = Ik(x, y, zk) (15)
l(x, y) = Il(x, y, zl). (16)

The distance measure d between two slices k and l is based
on the sum of absolute differences (SAD) of the corresponding

concatenated histograms Hk and Hl

d(k, l) =

M−1∑
i=0

|Hk(i) − Hl(i)|. (17)

For a fixed number of samples per image, d is, up to a nor-
malizing factor, equivalent to using one minus the histogram
intersection h [14]

h(k, l) =

M−1∑
i=0

min(Hk(i),Hl(i)). (18)

Here, M denotes the number of histogram bins, which is equal
to the size of the vocabulary.

In the following subsection we compare two different meth-
ods for registering two slice stacks K = k0, . . . , kn−1 and L =

l0, . . . , lm−1 along the z axis, which is discretized with a 4mm
resolution.

5.1. Rigid matching

The first method is a rigid registration. An objective function
f (z) measures the average distance of the slices given a longi-
tudinal offset z:

f (z) =
1

imax − imin + 1

imax∑
imin

d(li, ki+z), (19)

where imax and imin are chosen so that there is at least 80% over-
lap between the two stacks K and L.

Because a single evaluation of the objective function f is
computationally inexpensive and the search space is only one-
dimensional, exhaustive optimization is feasible. Figure 8
shows f (z) for two test stacks L1,2 of different size and four
reference histogram stacks K1 . . . 4.

After exhaustive optimization, a set of candidates C =

{c1, c2, . . . , c||C||} is generated from f by finding local optima.
The reason is that especially for volumes with a small number
of slices, it occasionally happens that the global optimum is not
the right solution. However, the correct solution is almost ever
located in a valley. Thus, we associate a weight wi with each
candidate ci. The weight wi is computed from the objective
function at ci and its second derivatives:

wi = 2

 2∑
j=0

f (z − ci) ∗ g j(z)

 − f (ci). (20)

Here, ∗ denotes convolution, g0 is a filter kernel to compute the
second derivative, and g j+1(z) = g j( z

3 ) is scaled with a factor of
3 relative to g j.

In order to achieve robust results, a test volume is registered
with several prototype volumes. As final registration result, the
candidate with the best weight is selected. Note that, though the
described method does not explicitly handle scale variations, it
implicitly addresses the issue through the scale variations of the
training data. For instance, a test volume of a tall patient will
generally fit better to tall patients in the training set.
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Figure 7: Histograms of visual words along with a coronal section of the volume it was generated from. Salient are especially the visual words that correspond to
the lung region. The image is best viewed in color.
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Figure 8: The objective function f of four different prototype volumes. Left: Test volume with 114 slices. Right: Test volume with 10 slices from the abdomen. For
the large volume, one clear minimum exists. For the small stack identification of a minimum is more ambiguous. But still in 3 out of 4 cases, the global optimum is
close to the correct location (at approx. 0.2BC).

5.2. Non-rigid matching
For comparison, additionally to the rigid matching, non-rigid

matching based on dynamic time warping (DTW) was used for
registering a test volume with a prototype volume.

Now the objective function fd(z0, z1) takes two arguments,
which are the longitudinal coordinates of the lower and the up-
per slice of the test stack. In each evaluation of fd, the top
and bottom slice remains fixed and only the positions of the
intermediate slices of the test stack are varied. As before, the
similarity of two slices k, l is measured using the distance func-
tion d(k, l). The costs of the cheapest match of the intermediate
slices is computed using dynamic time warping and returned by
fd. The objective function fd is evaluated for every pair z0, z1 of
upper and lower z-coordinates of the test stack, which are inside
the z-range of the reference patient and satisfy∣∣∣∣∣ z1 − z0 − ∆z

∆z

∣∣∣∣∣ < 0.15, (21)

where ∆z is the height of the test stack, measured in mm. This
means that a test stack is never shrinked or enlarged more than
by 15%. In Figure 9, the cheapest warp is visualized in the
DTW cost matrix. The columns of the matrix are the slices
of the test stack, and the rows correspond to the slices of the
reference stack in the range between z0 and z1.

Figure 9: Example of a cost matrix for dynamic time warping. The horizontal
axis corresponds to the test stack, and the vertical axis to the section of reference
stack between z0 and z1. Black denotes low costs, red high costs. The cheapest
warp that registers two slice stacks is shown in green.
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U R1 R2
2-SURF-4 9.0 10.8 11.0
3-SURF-3 102.2 148.5 154.3

(a)

b 2 3 4
3-SURF-b U 53.7 102.2 236.2

(b)

Table 1: Computation times in seconds for different variants of the method.
Top: Comparison between a 2-D and 3-D descriptor computed either upright
(U), with rotation invariance of type 1 (R1) or type 2 (R2). Comparison of three
upright 3-D descriptors with a different number of sub-bins b per dimension.

Figure 10: Illustration of the error measure used. For a single registration, the
error was measured at the top and bottom of the test volume.

6. Results

Registration accuracy was evaluated using 84 CT volume
scans of the thoractic and abdominal region. For all datasets,
annotations of landmarks at the clavicle and the pelvis were
available. They served as ground truth for the body coordinate
system, marking the levels zero and one. In between, linear
interpolation was used to generate ground truth values for the
body coordinates. All datasets were resampled to an isotropic
resolution of 2 × 2 × 2 mm3 and descriptors were generated for
every second axial image slice.

Three fold cross validation was used to separate the datasets
in test and prototype volumes. Registration was performed with
slice stacks of five different sizes: A test stack was always par-
titioned into ten, five, three, two and one pieces, resulting in
10 + 5 + 3 + 2 + 1 = 21 registrations per fold and test volume.

The error of a single registration was measured at the top and
the bottom of the test volume (see Figure 10). The average of
the absolute error values

e =
1
2

(
|etop| + |ebottom|

)
(22)

was taken as the final error e. Table 2 shows the results of the
cross validation. The columns show the registration accuracy
for the five different test volume heights. Each row shows re-
sults for a different method. The mean error in mm is displayed
along with the standard deviation. Cross-validation was run for
2-D and 3-D descriptors with two, three and four sub-bins per
dimension (see Figure 2 (b)), with rotation invariance of type 1,
type 2 or with an upright descriptor, for 50, 100, 150, 200, 300,
400 and 800 clusters. In rows one to eight, the number of clus-
ters that gave best results is displayed. For example, a 2-SURF-
4 U descriptor worked best with 300 clusters. Results for 50

Figure 11: Example of a registration result. Middle: Sagittal slice through the
test sub volume of which the body region is to be determined. It consists of 10
axial slices with a slice thickness of 5mm and shows a portion of the abdomen.
Left: True position in the original volume from which the sub volume was
cropped. Right: Sagittal slice through a volume with known body coordinates.
The horizontal lines show the estimated body region covered by the test sub
volume.

and 800 clusters don’t show up in the table because they were
never among the best performers.

Comparing the 2-D with the 3-D descriptor, average accu-
racy was slightly better for 3-D in the upright case (15.50mm
for 3-SURF-4 U vs. 15.52mm for 2-SURF-4 U). While the 2-
D descriptor worked better for smaller test stacks of 4.4cm and
8.4cm, the 3-D descriptor performed better for larger test stacks
of 20.6cm and 42.7cm. A possible explanation is that the 3-
D descriptor takes into account the neighboring slices, which
makes it more descriptive but lowers the resolution in z direc-
tion. When rotation invariance was turned on, the 2-D descrip-
tor performed better.

The upright descriptors performed clearly better than the ro-
tation invariant ones (rows 1–2 vs. 3–8). The reason is proba-
bly that patients are almost always lying in the same position
on their back and thus the orientation of an image patch con-
tains valuable information which is lost when the descriptor is
made rotation invariant. But we see that the upright descriptors
require more clusters in the feature space: They performed best
with 300–400 clusters (rows 1–2), while the rotation invariant
descriptors performed best with 100–300 clusters (rows 3–8).
This means that the vocabulary of visual words is longer and
therefore also the concatenated histograms which describe an
image slice. Comparing the two approaches to make a descrip-
tor rotation invariant, the second one (R2) worked better in the
2-D case, and the first one (R1) was more accurate in 3-D. A
possible explanation is that in 2-D, a rotation has only one de-
gree of freedom, and therefore the mean gradient used by R2
suffices for determining the angle.

In rows 6–8, the number of bins b per dimension of the SURF
sampling pattern is varied (see Figure 2). For b = 2, 3, 4, ac-

9



Num. partitions/
size in mm∗ 10/44 5/86 3/140 2/206 1/427 average
2-SURF-4 U 300 18.08 ± 25.81 15.18 ± 15.16 15.30 ± 15.06 13.60 ± 9.06 15.46 ± 9.16 15.52 ± 14.85
3-SURF-3 U 400 18.74 ± 29.13 15.59 ± 14.82 15.57 ± 14.88 12.94 ± 8.95 14.68 ± 10.27 15.50 ± 15.61
2-SURF-4 R1 300 20.33 ± 33.95 17.18 ± 19.86 15.38 ± 14.30 13.30 ± 9.45 15.89 ± 10.65 16.42 ± 17.64
2-SURF-4 R2 150 20.13 ± 28.53 17.18 ± 20.11 15.14 ± 15.16 12.80 ± 9.47 15.20 ± 10.29 16.09 ± 16.71
3-SURF-3 R1 150 20.01 ± 28.74 16.70 ± 16.22 15.43 ± 14.56 12.99 ± 9.02 17.09 ± 12.12 16.44 ± 16.13
3-SURF-2 R2 100 21.79 ± 32.79 19.35 ± 23.10 15.12 ± 13.83 13.01 ± 9.48 16.50 ± 10.61 17.15 ± 17.96
3-SURF-3 R2 150 20.86 ± 34.09 17.13 ± 20.65 15.46 ± 15.00 13.58 ± 9.99 16.66 ± 11.49 16.74 ± 18.24
3-SURF-4 R2 200 19.44 ± 25.30 16.29 ± 16.35 14.55 ± 13.73 13.73 ± 9.49 17.12 ± 10.27 16.23 ± 15.03
3-SURF-3 U 200 F 23.38 ± 48.28 18.22 ± 26.00 15.53 ± 14.00 14.80 ± 12.88 15.07 ± 10.37 17.40 ± 22.30
3-SURF-3 U 200 19.69 ± 36.37 17.33 ± 28.14 14.61 ± 13.97 12.91 ± 9.34 15.57 ± 10.93 16.02 ± 19.75
3-SURF-3 U 100 DTW 21.43 ± 30.80 19.25 ± 22.94 18.31 ± 16.41 17.24 ± 10.71 20.12 ± 14.10 19.27 ± 18.99
3-SURF-3 U 100 19.79 ± 25.71 16.55 ± 16.21 15.42 ± 13.91 13.23 ± 8.00 15.94 ± 10.88 16.19 ± 14.94
Hounsfield 48.02 ± 82.39 38.64 ± 69.64 35.54 ± 76.64 28.99 ± 56.73 17.00 ± 10.43 33.64 ± 59.17

Table 2: Results of accuracy evaluation. Each row corresponds to a different method. 2-SURF-4 means 2-D SURF with 4 sub-bins b per dimension. U means
upright, R1 is the first approach for rotation invariance, R2 the second one. The final number is the number of clusters. A trailing F stands for a flat pyramid which
has only one level, and DTW means that dynamic time warping was used for the registration. ∗Size of partition in mm is an approximate value, averaged over
patients.

cording to (10), the length of the 3-D descriptor is 48, 162 and
384, respectively. The mean error decreased for higher b. While
the error was 17.15mm for b = 2, it dropped to 16.74mm for
b = 3 and to 16.23mm for b = 4. However, the time needed
to extract a descriptor is in O(bN), which means it is more
than twice as expensive to compute a 3-SURF-4 instead of a
3-SURF-3 descriptor.

The accuracy, depending on whether a spatial pyramid is
used for the matching or not, is shown in rows 9–10. In the
flat case, denoted with a trailing F, an image slice is not split
into four subregions. The average mean error dropped from
17.40mm to 16.02mm when a spatial pyramid was used. While
the difference is small and the flat approach is even slightly bet-
ter for larger test volumes of 42.7cm height, the spatial pyra-
mid based approach works considerably better for smaller test
volumes of 4.4cm height. Here, the mean error dropped from
23.28mm to 19.69mm. In the results presented so far, two vol-
ume images were always registered rigidly. Lines 11–12 com-
pare the rigid registration with the non-rigid version which is
based on dynamic time warping, denoted with DTW. In the
experiments, the rigid registration worked better than the non-
rigid independent of the test volume size. The problem with dy-
namic time warping is that it often generates unnatural warps in
order to match axial slices that happen to have similar descrip-
tors but belong to different body regions. For instance, only the
abdominal region is stretched, and the remaining regions are
unchanged. However, such nonlinear deformations are rare in
nature and the missing constraint leads to false matches.

For comparison, accuracy was also measured for an approach
that simply takes a 1024-bin histogram of the Hounsfield inten-
sities as a descriptor of an axial slice. The results are shown in
the last row of Table 2. The visual word based approach clearly
outperformed the intensity histogram.

Figure 11 shows an example of the algorithm’s output. The
input is a portion of the abdomen of 10cm height. To visualize
the result, another volume shown at the right side was annotated

with body coordinates. The horizontal lines on the right indi-
cate the estimated body region. The horizontal lines on the left
show the true position in the original volume.

As the proposed algorithm is deterministic, its computation
time was only benchmarked on a single dataset of 100 slices
and using 28 prototype volumes. Results measured on a stan-
dard PC with 2.2GHz CPU are shown in Table 1. Displayed is
the total time needed in seconds for different descriptors. The
values include 23ms needed for patient detection and 2.07s for
exhaustive optimization, which are both independent of the de-
scriptor. The 2-D descriptors can be computed fast. When us-
ing a 2-D upright descriptor, the algorithm takes 9s in total to
estimate the portion of the body. With a rotation invariant de-
scriptor, it takes 2s longer. The 3-D descriptors are considerably
more expensive to compute. Here, the algorithm takes between
102.2s and 154.3s, depending on whether rotation invariance is
turned on. In Table 1 (b), the computation time is shown for 3-D
upright descriptors of different dimensions, which depends on
the number b of sub bins per dimension. For a 48-dimensional
descriptor (b = 2), the algorithm takes 53.7s, while for 384 di-
mensions (b = 4), it takes more than four times longer (236.2s).
Parallelization of the algorithm is straightforward. We leave
this for future work.

7. Conclusion

This paper presents a method for estimating the body region
of a CT volume image. It is based on 1-D registration of his-
tograms of visual words, which serve as a description of a CT
slice.

As part of this work, the SURF descriptor was generalized to
N dimensions. It was used in generating the vocabulary of vi-
sual words. Different variants of the descriptor were compared.
Results show that upright descriptors perform better than rota-
tion invariant ones. 2-D and 3-D upright descriptors perform
equally well. As 2-D descriptors are simpler and can be more
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efficiently computed, we propose the use of 2-D upright SURF
descriptors for estimating the body region. In such a setup, an
estimation with an average error of 15.5mm can be computed
in 9s. This error can be considered as a good result. As we are
registering different subjects with each other, we have to deal
with considerable anatomical inter-patient variations that exist
in the thoracic and abdominal regions. This limits the accuracy
because finding a level along the longitudinal axis of a patient
that corresponds to a certain level in another patient may be-
come ambiguous.

Besides automatic initialization of further processing steps
such as organ detection, possible applications are also auto-
matic labeling of images for the purpose of semantic image
search. The 3-D descriptors as described here may also be used
for point matching tasks, which is the classical application for
SURF and SIFT features. 3-D and 4-D SURF descriptors may
be especially useful for finding point correspondences in 2-D
sequential data, volumetric data, or even sequential 3-D volu-
metric data.
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