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Abstract. Filtered backprojection is the basis for many CT reconstruction
tasks. It assumes constant attenuation values of the object during the acquisition
of the projection data. Reconstruction artifacts can arise if this assumption is
violated. For example, contrast flow in perfusion imaging with C-arm CT systems,
which have acquisition times of several seconds per C-arm rotation, can cause
this violation. In this paper, we derived and validated a novel spatio-temporal
model to describe these kinds of artifacts. The model separates the temporal
dynamics due to contrast flow from the scan and reconstruction parameters.
We introduced derivative-weighted point spread functions to describe the spatial
spread of the artifacts. The model allows prediction of reconstruction artifacts for
given temporal dynamics of the attenuation values. Furthermore, it can be used to
systematically investigate the influence of different reconstruction parameters on
the artifacts. We have shown that with optimized redundancy weighting function
parameters the spatial spread of the artifacts around a typical arterial vessel can
be reduced by about 70%. Finally, an inversion of our model could be used as
the basis for novel dynamic reconstruction algorithms that further minimize these
artifacts.
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(a) C-arm CT system. (b) Acquisition geometry.

Figure 1. (a) C-arm angiography system capable of CT-like imaging (Artis
zeego, Siemens AG, Healthcare Sector, Forchheim, Germany) and (b) illustration
of the acquisition geometry described in Section 2.

1. Introduction

1.1. Clinical background

Perfusion CT and MR imaging are used for stroke diagnosis. In perfusion CT an
iodinated contrast bolus is injected and the contrast is then tracked in reconstructed
images that are obtained at typically one image per second over 40–50 seconds.
Perfusion parameters such as cerebral blood flow and volume, mean transit time and
time-to-peak are computed by analyzing the local time-attenuation curves in each of
the reconstructed voxels (Shetty & Lev 2006). Following diagnosis, a catheter-guided
stroke therapy procedure, supported by 2-D images from a C-arm angiography system
(Figure 1(a)), can be performed in selected patients.

Nowadays, C-arm systems are also capable of CT-like imaging (C-arm CT).
During a typical rotation of the C-arm through 200∘, projections are acquired and
standard algorithms are used to reconstruct a 3-D volume data set (Strobel et al. 2009).
Similar to conventional perfusion CT, a C-arm CT system could be used for perfusion
imaging by generating a sequence of reconstructed CT volumes from multiple C-arm
rotations. The intra-procedural perfusion information could, for example, help to
determine the treatment progress and endpoint during a stroke intervention.

Wintermark et al. (2004) have shown that a sample period of one volume every
3 seconds, each acquired in about 0.5 seconds, can provide sufficient information for
perfusion measurement. However, in C-arm CT imaging both the sample period
and the acquisition time are typically 3–5 seconds due to the slow rotation of
a C-arm system. This leads to an inconsistent set of projections caused by the
(intentional) change of contrast concentration during the acquisition time and can
result in reconstruction artifacts. To date there have been very few approaches to
handle these inconsistencies. Neukirchen et al. (2010) have proposed an iterative
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reconstruction technique which, however, leads to a high computational complexity
and long reconstruction times. Since time is a critical factor in stroke therapy fast
reconstruction algorithms for the large-volume data sets are needed. Fieselmann et al.
(2010) have presented a reconstruction approach based on the filtered backprojection
(FBP) that can be computationally very fast if implemented using modern graphics
hardware (Rohkohl et al. 2009).

For the analysis and optimization of FBP-based reconstruction algorithms a good
understanding of artifacts due to time-varying attenuation values is essential. In
this paper, we present a novel spatio-temporal model for these kinds of artifacts.
This model can be applied to estimate the magnitude of artifacts and to optimize
reconstruction parameters. It can also be used to develop new FBP-based dynamic
reconstruction algorithms.

1.2. Previous work

There exists some previous work that concerns FBP reconstruction artifacts due
to time-varying attenuation values. Holden & Ip (1978) presented a mathematical
formalism to describe these artifacts in parallel-beam geometry CT scanning and
validated it using computer simulations. But their formalism assumes periodic
changes of contrast concentration and is therefore not suitable to describe artifacts in
perfusion imaging with time-attenuation curves that are non-periodic. The work of
Ip et al. (1983) and Garden et al. (1984) also show reconstructions using computer
simulation of objects with time-varying attenuations during the scanning but no
mathematical analyses of the artifacts were carried out. Similar reconstruction
problems as mentioned above arise in dynamic SPECT when the tracer concentration
changes during one camera rotation. Bok et al. (1987) and Nakajima et al. (1992)
used FBP reconstruction for dynamic SPECT and investigated the resulting artifacts
qualitatively and quantitatively but without derivation of a model. By using a C-
arm mounted X-ray image intensifier for 3-D imaging Fahrig (1999) investigated
FBP reconstruction artifacts due to the time-varying opacification of a vessel but
no mathematical model was developed. Recently, Montes & Lauritsch (2007) studied
artifacts due to time-varying contrast concentration in perfusion CT with a slowly
rotating CT scanner. Their formalism models the reconstruction error of a time-
attenuation curve as a low-pass filtering process. However, they did not study how
artifacts propagate into other reconstructed voxel attenuation values in the image,
which is the focus of this work.

2. Background of FBP reconstruction

In this section we will present our notation with a brief description of the direct 2-D
fan-beam FBP reconstruction. A more detailed description of these methods can be
found in Kak & Slaney (1988).

The X-ray source rotates with a constant angular velocity !s on a circular path
of radius R around the origin of the coordinate system (Figure 1(b)). The location
a(�(t)) of the source at time t is given by

a(�(t)) = (R cos(�(t)), R sin(�(t)))T (1)

�(t) = !s t+ �0 (2)
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where �(t) is the view-angle and �0 is the starting view-angle at t = 0. In this paper,
the variable � always depends explicitly on t although this is not always indicated for
simplicity. We define the unit vectors:

eu(�) = (− sin(�), cos(�))T (3)

ew(�) = (cos(�), sin(�))T . (4)

The function u∗(x, �) gives the coordinate where a ray from source location a(�)
passing through x intersects the detector. It can be computed as

u∗(x, �) =
Dx ⋅ eu(�)

R− x ⋅ ew(�)
(5)

where the dot denotes a scalar product and D is the source-to-detector distance. We
assume that the attenuation values �(x, �) at locations x = (x, y)T have view-angle-
dependent values. We further assume that no truncation of the projection images
occurs and that the attenuation values are zero in the region x2 + y2 ≥ R2.

The projection p(�, u), which is measured at the detector coordinate u, can be
written using the usual definition of the delta function:

p(�, u) =

∫∫

�(x, �) �(u∗(x, �)− u) dxdy . (6)

In this paper, all integrals without explicit integration endpoints should be interpreted
as the limit value when the lower and upper endpoints approach −∞ and
+∞, respectively. We can reconstruct the pixel value �rec(r, trec) at location r

corresponding to the state at time trec using the FBP reconstruction with an angular
sliding window function wΛ(�, ):

�rec(r, trec) =

∫

RD

(R− r ⋅ ew(�(t)))2

∫

p(�(t), u) ℎramp

(

u∗(r, �(t))− u
)

×
D

(u2 +D2)1/2
wΛ

(

�(t)− �(trec), arctan(u/D)
)

dudt . (7)

Here ℎramp(u) denotes the usual ramp filter kernel and  = arctan(u/D) is the fan-
angle. This reconstruction formula assumes a consistent data set of projection images,
i.e. there is no change of the attenuation values over time. The function wΛ(�, ) is
zero outside an angular interval of size Λ:

wΛ(�, ) =

{

mΛ(�+ Λ/2, ) if −Λ/2 ≤ � ≤ Λ/2

0 otherwise .
(8)

The minimum interval for Λ is the short-scan range � + m where m is the full
fan-angle. The function mΛ(�, ) compensates for redundant data inside the angular
interval due to the fan-beam acquisition geometry. An example for mΛ(�, ) is the
weighting function proposed by Silver (2000),

mΛ(�, ) =

⎧

















⎨

















⎩

sin2
(

�

4

�

Γ/2 + 

)

if 0 ≤ � < Γ + 2

1 if Γ + 2 ≤ � < � + 2

sin2
(

�

4

� + Γ− �

Γ/2− 

)

if � + 2 ≤ � < � + Γ

0 otherwise ,

(9)
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with Γ = Λ−�. With the definition of the FBP from Equation (7) that uses the window
wΛ(�, ) we can reconstruct an image corresponding to a certain time point trec. The
time point could be flexibly chosen if the C-arm system could perform continuous C-
arm rotations. With current C-arm systems the C-arm rotates in alternating directions
therefore the choice for trec is restricted to the time point at the center during one
short-scan rotation. The artifact model in Section 3 is applicable to both scenarios,
continuous and bi-directional C-arm rotations.

3. Spatio-temporal artifact model

In this section we will derive and interpret our novel artifact model. The key idea of
this model is to separate the artifact into two components, one that depends on the
dynamic process, i.e. the change of attenuation values, and one that depends on the
acquisition geometry and the reconstruction algorithm parameters.

3.1. Derivation

We substitute the expression from Equation (6) into Equation (7) and change the
order of integration such that we obtain:

�rec(r, trec) =

∫∫∫∫

RD2

(R− r ⋅ ew(�(t)))2
�(x, �(t)) ℎramp

(

u∗(r, �(t))− u
)

×
(

u2 +D2
)

−1/2

wΛ

(

�(t)− �(trec), arctan(u/D)
)

× �(u∗(x, �(t))− u) dudtdxdy . (10)

We evaluate the delta function and re-arrange the result into the following two
functions (see Appendix A for details):

�rec(r, trec) =

∫∫

�(r − x,x, trec) dxdy (11)

�(s,x, trec) =

∫

RD2

(R− (s+ x) ⋅ ew(�(t)))2
ℎramp

(

u∗(s+ x, �(t))− u∗(x, �(t))
)

× �
(

x, �(t)
)(

(u∗(x, �(t)))2 +D2
)

−1/2

× wΛ

(

�(t)− �(trec), arctan(u
∗(x, �(t))/D)

)

dt . (12)

The function �(s,x, trec) can be interpreted as the reconstruction associated with
a point object located at x which has time-varying attenuation values �(x, �(t)).
The variable s = (sx, sy)

T denotes the distance vector from the point object in the
reconstructed image and trec is the temporal center of the sliding window used in
the FBP reconstruction. A detailed interpretation of �(s,x, trec) will be given in
Section 3.2.

We now focus on the time dependence of �(x, �(t)). We start by assuming that
it is a smooth function without discontinuities. This assumption is reasonable when
an intra-venous contrast bolus injection, which is the standard injection method in
brain perfusion CT and MR imaging, is used. If injected into the antecubital vein, for
example, the bolus will pass through the heart and lungs. Thus, when it arrives in
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the brain it has been low-pass filtered and is a smooth curve. Using this assumption
we can represent �(x, �(t)) as a Taylor series around �(trec):

�(x, �(t)) =
∞
∑

n=0

dn�(x, �(t))

d�n

∣

∣

∣

∣

�(t)=�(trec)

(�(t)− �(trec))
n

n!
. (13)

According to Equation (2) the second-order derivative of �(t) is zero. Therefore, we
have the following total derivative (the proof is given in Appendix B):

dn�(x, �(t))

dtn

∣

∣

∣

∣

t=trec

=
∂n�(x, �(t))

∂�n

∣

∣

∣

∣

�(t)=�(trec)

(

d�(t)

dt

∣

∣

∣

∣

t=trec

)n

=
dn�(x, �(t))

d�n

∣

∣

∣

∣

�(t)=�(trec)

!n
s . (14)

We combine Equation (14) and Equation (13) and plug the new expression for
�(x, �(t)) into Equation (12). Then we change the order of summation and integration
and split the result into these two functions

�(s,x, trec) =

∞
∑

n=0

dn�(x, t)

dtn

∣

∣

∣

∣

t=trec

!−n
s Pn(s,x, �(trec)) (15)

Pn(s,x, �rec) = RD2

∫

(�− �rec)
n

n!

(

R− (s+ x) ⋅ ew(�)
)

−2

× ℎramp

(

u∗(s+ x, �)− u∗(x, �)
)

×
(

(u∗(x, �))2 +D2
)

−1/2

× wΛ

(

�− �rec, arctan((u
∗(x, �))/D)

)

d� (16)

where we defined �rec ≡ �(trec). We substitute � by �+ �rec and use Equation (8) to
determine the integration interval such that we get:

Pn(s,x, �rec) = RD2

∫ +Λ/2

−Λ/2

�n

n!

(

R− (s+ x) ⋅ ew(�+ �rec)
)

−2

× ℎramp

(

u∗(s+ x, �+ �rec)− u∗(x, �+ �rec)
)

×
(

(u∗(x, �+ �rec))
2 +D2

)

−1/2

× wΛ

(

�, arctan((u∗(x, �+ �rec))/D)
)

d� . (17)

Equations (11), (15) and (17) constitute our artifact model that we will interpret in
the following section.

3.2. Interpretation

According to Equation (11) the reconstructed image �rec(r, trec) is the superposition of
the functions �(s,x, trec). In a theoretically exact reconstruction with �rec(r, trec) =
�(r, trec) this function would be:

�theoretical(s,x, trec) = �(s)�(x, trec) . (18)

However, in reality due to the finite detector pixel width not all spatial frequencies
in the projections can be measured and the ramp filter kernel has to be adapted.
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Figure 2. Spatio-temporal artifact model: a point object at x with time-varying
attenuation value �(x, t) creates an artifact around x in the reconstructed image.
The artifact is described by �art(s,x, trec) where s is the distance vector from x.
This function is the sum of the functions Pn(s,x) that are each weighted with
the n-th derivative of �(x, t), which is evaluated at the central time point trec of
the set of projection data, and a C-arm-angular-velocity-(!s)-dependent factor.
The final reconstruction �(s,x, trec) is a superposition of the artifact �art and
the product �(x, trec)P0(s,x) where P0 denotes the (conventional) point spread
function due to the scanning and reconstruction process.

The reconstruction of a point object will then lead to a slightly blurred point object
with a smooth edge. The point spread function (PSF) provides a description of the
blurring (Ohkubo et al. 2009). We denote by Pstatic(s,x) the PSF that characterizes
the scanning and reconstruction process of a static, time-independent point object at
x and get:

�static(s,x, trec) = Pstatic(s,x)�(x, trec) . (19)

We can interpret Equation (19) and Equation (11) as transformations of the true
attenuation values � into the reconstructed attenuation values �rec. The function
Pstatic(s,x) is shift-variant because it depends explicitly on x. In the fan-beam
FBP this property is evidenced by a non-uniform noise propagation (Zeng 2004),
for example.

In Equation (15) the variable �(trec) is a system parameter that is determined by
the start and end scan angle. For a time-independent object, i.e. when d�(x, t)/dt = 0,
Equation (15) reduces to Equation (19). However, Equation (15) is more general
because it has been derived for dynamic, time-dependent objects. In this equation,
the function �(s,x, trec) is a superposition of weighted functions which we denote
by Pn(s,x). The weights are the n-th order derivative values of �(x, t), evaluated
at trec, and the n-th power of 1/!s. Because the functions Pn with n ≥ 1 have a
similar character as P0 we denote them as n-th order derivative-weighted point spread
functions (DWPSF).

We can split �(s,x, trec) into a term corresponding to the static case as in
Equation (19) and into terms that depend on first or higher order derivatives of �(x, t):

�(s,x, trec) = �(x, trec)P0(s,x, �(trec)) + �art(s,x, trec) (20)

�art(s,x, trec) =

∞
∑

n=1

dn�(x, t)

dtn

∣

∣

∣

∣

t=trec

!−n
s Pn(s,x, �(trec)) . (21)
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We call �art(s,x, trec) the artifact function that results from a time-varying
attenuation value �(x, �(t)) at x. The artifact is centered around x and the vector s

gives the distance from the center. Figure 2 shows an illustration of the artifact model
where for simplicity the scan geometry variable �rec has been omitted. Furthermore,
in this illustration the infinite sum is approximated by the finite sum from n = 1 to
n = N .

Each term in the artifact model consists of two components. The first component
is the rate-of-change of the time-attenuation curve — given by its temporal derivative
value — relative to the C-arm rotation speed. The second component is the function
Pn(s,x, �rec) that depends only on the scan geometry (R,D,Λ, �rec) and on the
reconstruction parameters (ℎramp(u),mΛ(�, )). Changing the speed of the time-
attenuation curve and the rotation speed of the C-arm by the same factor a > 1,
i.e.

�fast(x, t) = �(x, at) (22)

!fast
s = a!s , (23)

does not change the artifact function �art(s,x, trec). However, if only the C-arm
rotation speed is increased while the time-attenuation curve remains constant then
the artifact function changes. The change is non-linear and the weights of the higher-
order DWPSFs is less than when compared to the weights of the lower-order DWPSFs.
It can also be seen that

lim
!s→∞

�art(s,x, �rec) = 0 (24)

which means that the artifact disappears if the acquisition time interval becomes
very short. Figure 3 shows the n-th order DWPSFs computed for typical scan and
reconstruction parameters (Table 1). For better visualization, the windowing is set
relative to their absolute amplitudes fn defined as

fn(x, �rec) = max ( ∣Pn(s,x, �rec)∣ ) . (25)

The 0-th order DWPSF describes the normal blurring of a point object due to the
scan and reconstruction process. The integral value over the function P0 is close to
unity whereas the integral values over Pn with odd n are close to zero. Interestingly,
the DWPSFs with odd values for n and even values for n have similar patterns,
respectively.

The pattern can be explained by investigation of Equation (17). In this equation
only the factor ln(�) ≡ �n/n! depends on n. For n = 0 this factor is a constant and
all view-angles contribute equally to the integral value. For n > 0 the function ln(�)
introduces a non-uniform view-angle-dependent weighting. If n is odd then ln(�) is an
odd function and the values at the integral endpoints have different signs. If n is even
then the values of ln(�) are equal at the integral endpoints. These properties cause
similar functions Pn(s,x, �rec) for even and odd n, respectively.

We will now investigate the variable �rec. If x = (0, 0)T then Pn(s,x, �rec)
depends on �rec only by s ⋅ eu(� + �rec) and s ⋅ ew(� + �rec). We express s in polar
coordinates as s = (r cos(�), r sin(�))T and using common trigonometric identities we
get:

s ⋅ eu(�+ �rec) = r sin(�− �− �rec) (26)

s ⋅ ew(�+ �rec) = r cos(�− �− �rec) . (27)

We can see that a change of the variable �rec by a certain angle can be compensated
by a rotation of the coordinate system by the same angle in the opposite direction
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n=0, f
0
=3.9789 n=1, f

1
=1.1370 n=2, f

2
=1.6477 n=3, f

3
=0.2100

n=4, f
4
=0.2066 n=5, f

5
=0.0159 n=6, f

6
=0.0124 n=7, f

7
=0.0006

Figure 3. Plot of the derivative-weighted point spread functions Pn(s, (0, 0)T, 0)
computed from the parameters given in Table 1. The variable fn is the absolute
amplitude of Pn. The images have a windowing from −fn/2 (black) to +fn/2
(white) and their dotted grids have a spacing of 1 mm.

of rotation. Therefore, changing �rec results in a rotation of the function
Pn(s, (0, 0)

T, �rec) around the origin. Generally, i.e. also for x ∕= (0, 0)T, we can
see that Pn(s,x, �rec) is 2� periodic with respect to �rec.

4. Numerical example

In this section we will use our artifact model to predict artifacts from a typical temporal
change of attenuation values in perfusion imaging. For validation we will compare the
predictions from the model with numerical simulations. Finally, we will use the model
for an analysis of different reconstruction parameter values.

4.1. Methods

We define a mathematical phantom �pha(x, t) to model a large cerebral artery inside
the human head. It consists of two circles that are centered in the origin: a smaller
circle with radius rartery = 1 mm and a larger circle with radius rhead = 100 mm. In
order to simulate contrast flow the attenuation values inside the smaller circle vary
over time t according to a function �artery(t) proposed by Østergaard et al. (1996):

�pha(x, t) =

⎧



⎨



⎩

�water + �artery(t) if x2 + y2 ≤ r2artery

�water if r2artery < x2 + y2 ≤ r2head

0 otherwise

(28)

with

�artery(t) =
A

(�� exp(−1))�
�� exp(−�/�)H(�) . (29)
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Figure 4. Examples for artifacts due to inconsistent data: (1st row) view-angle-
dependent attenuation value inside the modeled origin-centered artery with radius
1 mm, (2nd row) predicted reconstruction using the artifact model, (3rd row)
reconstruction using numerical simulations, (4th row) plot of attenuation values
along the circular paths shown in the above images (�mdl ——, �sim - - - -). The
images have a windowing from –5 HU (black) to +5 HU (white) and their dotted
grids have a spacing of 2.5 mm.
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Table 1. C-arm CT scan and reconstruction parameters used for the numerical
examples.

parameter symbol value

starting view-angle �0 –100∘

view-angle increment Δ� 1∘

number of views per rotation Nviews 201
angular range per rotation Λ = (Nviews − 1)×Δ� 200∘

angular velocity of the C-arm !s 60 ∘/s
time per rotation Trot = Λ/!s 3.33 s
source-to-isocenter distance R 800 mm
source-to-detector distance D 1200 mm
number of detector pixels Ndetpix 600
detector pixel size Δu 0.6 mm
total detector width U = Ndetpix ×Δu 360 mm
full fan-angle m = 2arctan(U/(2D)) 17.1∘

redundancy weighting function mΛ see Equation (9)
ramp filter kernel ℎramp Shepp-Logan, see

Kak & Slaney (1988)
number of reconstructed pixels 301× 301
reconstructed pixel size 0.015× 0.015 mm2

H(�) is the unit step function, �water = 0.18 cm−1 is the X-ray attenuation of water,
A = 0.25�water is the maximum enhancement, � = 3.0 and � = 1.5 are shape
parameters and � = t/s is a dimensionless quantity where s denotes seconds.

We compute the image �mdl(x, trec) using the artifact model. According to
Equation (11) the final 2-D reconstruction �rec is a superposition of the 2-D functions
� which can be thought of as individual reconstructions of (theoretical) point objects.
To apply our artifact model, we first approximate the point objects by discrete pixels.
Then we compute � for each pixel and determine �rec using a discretized version of
Equation (11).

In order to compute � we consider only the first four functions Pn (n = 0, . . . , 3)
assuming 4-th and higher order derivative values can be neglected due to the
smoothness of �artery(t). The parameters for the model are taken from Table 1. The
reconstruction time points trec are 2.25 s, 4.50 s and 6.75 s. We choose these time
points to investigate the reconstruction from data acquired during the inflow, plateau
and outflow phase of the time curve (see first row in Figure 4). We assume that the
data was acquired from three individual C-arm rotations which all started at the same
starting angle to allow for better comparison.

For the numerical simulation we use the scan parameters from Table 1 to simulate
C-arm CT scanning of the central slice of the phantom during the time interval
t ∈ [trec − Trot/2, trec + Trot/2]. The reconstruction time points trec are the same
as for the artifact model. A FBP reconstruction �sim(x, trec) is generated from the
simulated projections by applying the reconstruction parameters from Table 1.

4.2. Results and Discussion

In Figure 4 each column corresponds to a different time trec. The first row shows a
plot of the view-angle-dependent attenuation value inside the artery. The second and
third rows show the images �mdl and �sim respectively. The last row shows values of
�mdl and �sim evaluated along a circular path (radius 2.5 mm) around the origin of the
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Figure 5. Derivative-weighted point spread functions Pn of the artifact model
computed for different sliding window length Λ. The window center is 0 and the
window widths are constant for each n (see text for details). The colormap range
is from black to white. The dotted grid has a spacing of 1 mm.

coordinate system. This path is also depicted in the images in the second and third
row. The windowing of the images was chosen from –5 HU to +5 HU. Because the
contrast enhancement in tissue is about 5 to 10 HU — given an arterial enhancement of
250 HU and a blood volume fraction in cerebral tissue of 2% to 4% — this windowing
is useful to estimate the areas where the artifact values have the same magnitude as
the peaks of the tissue time-attenuation curves.

The results from the model (�mdl) and the simulation (�sim) show excellent
agreement. The curves in the last row of Figure 4 have root mean square deviations
of 1.1 HU (trec = 2.25 s), 0.3 HU (trec = 4.50 s) and 0.5 HU (trec = 6.75 s). The model
has also been validated with other reconstruction parameters and temporal dynamics
and we obtained similar results (data not shown). From the results we can see that
only a small number of DWPSFs of the model must be considered in order to predict
the artifacts from typical perfusion time-attenuation curves. The small differences
between model and simulation are primarily due to discretization effects.

4.3. Analysis of reconstruction parameters

Our model can be used to systematically analyze the effect of different scan and
reconstruction parameters on the artifacts from inconsistent data. Parameters that
could be investigated include, for example, the filter kernel ℎramp(u), the type of the
redundancy weighting function mΛ(�, ) and the sliding window length Λ.

As an example, we present the DWPSFs computed for different sliding window
lengths Λ. We use the parameters from Table 1, change the value for Nviews and
adapt Λ accordingly. The windowing function wΛ(�, 0) for different Λ is shown in
Figure 6(a) and Figure 5 shows Pn (n = 1, 2, 3) computed for different Λ. The window
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(b) Weighted spatial spread Sn of Pn.

Figure 6. (a) Sliding windowing function wΛ(�, 0) corresponding to the central
ray for different Λ. (b) Weighted spatial spread Sn of Pn depending on Λ.

width is constant for each n for better comparison of the change due to different Λ.
We set the window widths to the maximum absolute amplitude values fn, computed
for Λ = 200∘ as shown in Figure 3.

For quantitative evaluation we introduce the weighted spatial spread Sn of Pn

which we define as

Sn(x, �rec) =

∫∫

∣Pn(s,x, �rec)∣ (s
2
x + s2y)

1/2 dsx dsy . (30)

This heuristic definition takes into account both the absolute HU value of the artifact
and its distance from the center of the point object and can be used for relative
comparison of different Λ values. We are computing the absolute value of Pn in order
to avoid the possibility that positive and negative contributions of Pn cancel each
other out. Because artifacts which propagate farther into the tissue area can have a
more negative impact on the clinical interpretation of the perfusion maps we have also
included a distance weighting.

Figure 6(b) shows that increasing the sliding window length reduces S1 from 4.84
mm3 (Λ = 200∘) to 1.48 mm3 (Λ = 360∘). Interestingly, S3 increases from 0.26 mm3

(Λ = 280∘) to 1.06 mm3 (Λ = 360∘). The behavior of the functions Pn with respect to
Λ and other reconstruction parameters can be explained by investigation of Equation
(17) which, however, will not be covered by this paper.

We can use the artifact model to optimize reconstruction parameters for the
expected temporal variation of the attenuation values. The spatial spread of the linear
component a of the time-attenuation curve, defined by S1, decreases by about 70%
when using Λ = 360∘ compared to Λ = 200∘. Typically, one can find an approximately
linear change of attenuation inside an arterial vessel during the inflow phase.

Therefore, with respect to the spatial spread of the FBP artifacts the parameter
value Λ = 360∘ is more optimal than Λ = 200∘ if the dynamic changes of the
attenuation values are approximately piecewise linear. On the other hand, for temporal
dynamics that are not expected to be piecewise linear, different Λ values may be more
optimal. Note that, a larger window length would not increase the total X-ray dose
during the exam if continuously rotating C-arm CT systems could be used.
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(a) reference (b) forward rotation (c) backward rotation

Figure 7. Reconstructions of a flow phantom: (a) reference reconstruction of
data with constant attenuation values and (b-c) reconstructions of data acquired
during a forward and backward C-arm rotation while the attenuation values inside
the plastic tube were linearly increasing. The windowing is from -250 HU (black)
to +250 HU (white).

Higher Λ values lead to a lower temporal resolution of the reconstructed time-
attenuation curves. Although the full width at half maximum is the same for all
windows wΛ(�, 0) , see Figure 6(a), the full width at quarter maximum, for example,
increases for higher Λ. We note that there is a trade-off between the reduction of the
spatial spread of the artifacts and the temporal resolution of the reconstructed time
curves; this topic will be subject of future investigation.

5. Experimental Data From a Clinical C-arm CT

In this section, we present reconstruction results of a flow phantom with time-varying
attenuation values that was scanned using a clinical C-arm CT system.

5.1. Methods

In order to investigate reconstruction artifacts due to time-varying attenuation values
under realistic conditions we have built a simple flow phantom. We have placed a
small plastic tube (inner diameter 2.0 mm) into a water-filled container (volume of
water about 22× 8× 25 cm3) that was placed on the patient table of a clinical C-arm
CT system (Artis dTA with DynaCT, Siemens AG, Healthcare Sector, Forchheim,
Germany). The tube was connected to a double head contrast injector (Accutron HP-
D, Medtron AG, Saarbrücken, Germany) that had the syringes filled with water and
contrast agent (Oxilan 300, Guerbet Group, Villepinte, France), respectively. During
injection into the tube (injection rate 10 ml/s) the mixing ratio of the two syringes was
linearly changed from 0% to 50% contrast agent using an increase of 12.5% contrast
agent per second.

We acquired 191 projections with a view-angle increment of 1.0∘, a detector
pixel spacing of 0.616 × 0.616 mm2 after 4 × 4 binning and a C-arm rotation time
of 4.3 seconds. The phantom was scanned using a forward and a backward C-arm
rotation and one 3-D volume was reconstructed for each rotation with the standard
reconstruction filter kernel. For reference, the phantom filled with a constant amount
(about 15%) of contrast agent was also scanned and reconstructed.
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5.2. Results and Discussion

Figure 7 shows the reference reconstruction of the static phantom data and the two
reconstructions of the dynamic phantom data from the forward and backward C-arm
rotation, respectively. The axial images were reconstructed using 150 × 150 pixels
with 0.1 mm pixel spacing. Thus, the side length of each image is 15 mm. The
reconstructions show a similar pattern when compared with the reconstruction of
the numerical phantom during the inflow or outflow phase (Figure 4, left and right
columns) which also resulted from an approximately linear change of attenuation
values during the data acquisition.

Using our artifact model, we can interpret the reconstruction results in
Figure 7(b)-(c) as the superposition of the weighted DWPSFs of zeroth (P0) and first
(P1) order. We assume that second and higher order DWPSFs receive zero weights
due to the approximately linear change of attenuation values. The different signs of
the streaks in Figure 7(b)-(c), which are contributions of P1, are well explained by
the different directions of the C-arm rotation, i.e. different signs of !s. Note that, the
weight of P0 is independent of !s, see Equation (15).

This experiment provides a qualitative evaluation and interpretation of the
reconstruction artifacts of the flow phantom. A more detailed, quantitative analysis
could be carried out in the future. For example, different angular sliding window
lengths up to 360∘ could be investigated. With potential future C-arm CT systems
that could perform continuous C-arm rotations this investigation would be of high
interest in order to validate the predictions from the numerical example in Section 4.3.

6. Discussion and summary

The aim of this work was to derive and interpret a model for FBP reconstruction
artifacts due to time-varying attenuation values. We analyzed the FBP algorithm
because it is computationally very fast and can be applied to reconstruct large-volume
data sets in C-arm CT perfusion imaging during stroke treatment.

Our novel spatio-temporal model describes the variation of attenuation values
by their temporal derivative values. To model the spatial spread of the artifacts
we introduced time-derivative-weighted point spread functions which are computed
from the scan and reconstruction parameters. With this formalism the reconstruction
artifacts can be separated into a component that depends on the dynamic process and
a component that purely depends on system parameters. The model is optimized for
contrast flow in perfusion imaging where the dynamic process can be approximated
by a few temporal derivative values.

Our model gives a detailed understanding of these FBP reconstruction artifacts.
It can be used to predict the magnitude of artifacts for different temporal dynamics
if the scan and reconstruction parameters are known. The model can also be applied
to further investigate different reconstruction parameters in a systematic way. As a
first example, we have shown a comparison of different reconstruction sliding window
lengths Λ. It could be seen that the optimal value for Λ depends on the expected
temporal dynamics of the attenuation values.

A limitation of our model is that artifacts due to sudden changes of the local
attenuation values, caused for example by patient motion cannot be well described.
These artifacts, which are most prominent at regions that have a high spatial gradient
of attenuation values, can degrade the image quality in a similar manner as the artifacts
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due to contrast flow. In order to model these artifacts a higher number of DWPSFs
would be required, to consider more terms of the Taylor series, which would however
not be practical. Alternatively, if our artifact model was adapted such that it would
use a parameterization of the time-attenuation curves which allows sudden changes
of the attenuation values it may be possible to adequately describe these artifacts as
well.

Noise in projection images was not considered in the artifact model. It can be
treated by separating the noise from the signal and then making a normal FBP
reconstruction of the noise. The artifact model is applied to the signal only. The
final result of the model is the sum of the prediction from the noise-free signal and
the reconstruction of the noise.

In this paper, the model has been derived for the direct 2-D fan-beam FBP. To
derive it for reconstruction algorithms that use 3-D cone-beam data, like the FDK
algorithm (Feldkamp et al. 1984), the equations in Section 2 must be extended to the
3-D geometry and the equations in Section 3 must be derived in a similar approach
using this new geometry.

All terms in the artifact model are linear and this model could be written as a
matrix equation if Equations (11), (15) and (17) were discretized and the derivatives
were approximated by discrete derivative operators. Hence, a numerical inversion of
this model could used to reduce the artifacts in the reconstructed images. Considering
only those terms corresponding to n = 1 and n = 2 would make the inversion approach
robust against noise while still including the most relevant terms.

To summarize, our novel model provides a comprehensive method to describe
FBP artifacts from time-varying attenuation values in perfusion imaging. It is a
mathematically exact analysis of the FBP reconstruction algorithm. This model
can lead to enhanced reconstruction approaches in interventional perfusion imaging,
such as sliding-window reconstruction approaches for continuously-rotating C-arm CT
systems, in order to optimize patient treatment during stroke therapy procedures.
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Appendix A.

To derive Equation (11) and Equation (12) we first evaluate the delta function in
Equation (10) using the identity

∫

f(u) �(u∗(x, �(t))− u) du = f(u∗(x, �(t))) (A.1)

and then split the result into the following two functions:

�rec(r, trec) =

∫∫

�̂(r,x, trec) dxdy (A.2)

�̂(r,x, trec) =

∫

RD2

(R− r ⋅ ew(�(t)))2
ℎramp

(

u∗(r, �(t))− u∗(x, �(t))
)

× �
(

x, �(t)
)(

(u∗(x, �(t)))2 +D2
)

−1/2
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× wΛ

(

�(t)− �(trec), arctan(u
∗(x, �(t))/D)

)

dt . (A.3)

By re-writing �̂(r,x, trec) such that it depends on the distance vector s = r − x we
get the expressions shown in Equation (11) and Equation (12).

Appendix B.

We want to prove that the n-th order total derivative of a function �(�(t)), which has
the property d2�/dt2 = 0, is given by

dn�

dtn
=

∂n�

∂�n

(

d�

dt

)n

. (B.1)

First we define

Dk ≡
∂k�

∂�k

(

d�

dt

)k

. (B.2)

By applying the product rule of differentiation we get

d

dt
Dk =

d

dt

∂k�

∂�k

(

d�

dt

)k

+
∂k�

∂�k

d

dt

(

d�

dt

)k

. (B.3)

We can re-arrange the first term in Equation (B.3) to

d

dt

∂k�

∂�k

(

d�

dt

)k

=
∂k

∂�k

d�

dt

(

d�

dt

)k

=
∂k

∂�k

(

∂�

∂�

d�

dt

) (

d�

dt

)k

=
∂k+1�

∂�k+1

(

d�

dt

)k+1

= Dk+1 . (B.4)

Re-writing the second term in Equation (B.3) gives

∂k�

∂�k

d

dt

(

d�

dt

)k

=
∂k�

∂�k

(

k

(

d�

dt

)k−1
d2�

dt2

)

= 0 . (B.5)

In the last equation we used that the second order derivative of �(t) is zero. Combining
Equation (B.3), Equation (B.4) and Equation (B.5) yields

d

dt
Dk = Dk+1 . (B.6)

The n-th order derivative of Dk can be expressed by applying Equation (B.6)
iteratively:

dn

dtn
Dk = Dk+n . (B.7)

Now, we can show that for n ≥ 1 we get

dn�

dtn
=

dn−1

dtn−1

d�

dt
=

dn−1

dtn−1
D1 = D1+(n−1) =

∂n�

∂�n

(

d�

dt

)n

, (B.8)

which is the same expression as in Equation (B.1).
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