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ABSTRACT

Brain perfusion CT using a C-arm angiography system capable of CT-like imaging could optimize patient treat-
ment during stroke therapy procedures. For this application, an intra-arterial contrast bolus injection at the
aortic arch could be used provided that the location of the injection catheter enables uniform distribution of the
bolus into the two common carotid arteries (CCA). In this work, we present a novel method to support optimal
injection catheter placement by providing additional quantitative information about the distribution of the con-
trast bolus into the CCAs. Our fully automatic method uses 2-D digital subtraction angiography (DSA) images
following a test bolus injection. It segments both CCAs and computes the relative contrast distribution. We
have tested the method in DSA data sets from 5 healthy pigs and our method achieved successful segmentation
of both CCAs in all data sets. The results showed that the contrast is uniformly distributed (mean relative
difference less or equal than 10%) if the injection location is properly chosen.
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1. INTRODUCTION

Brain perfusion CT and MR are common methods for stroke diagnosis and consist of a contrast bolus injection
and sequential scanning of the brain to measure the contrast bolus flow.1 With a C-arm angiography system
capable of CT-like imaging it could be possible to measure tissue perfusion in the interventional suite.2 This
could lead to optimized patient treatment by providing intra-procedural perfusion information.

Since it is expected that the patient is catheterized for vascular therapy an arterial contrast bolus injection
would be feasible in perfusion C-arm CT imaging. This would not be preferred in perfusion CT and MR where
intra-venous contrast bolus injections are used. An arterial injection increases the fraction of contrast that
reaches the brain and thus can increase the signal-to-noise ratio of the measured contrast curves or decrease the
needed amount of injected contrast compared to an intra-venous injection.

In clinical practice, stroke diagnosis from perfusion CT images is performed by comparing the perfusion
maps of the two hemispheres. Hence, it is necessary that the contrast flowing into the two sides has the same
characteristics and that the contrast bolus is distributed equally between both common carotid arteries (CCA).
Another important aspect is the mixability of the contrast with blood after an intra-arterial injection. In a recent
study, Lieber et al.3 demonstrated that using a typical intra-arterial contrast injection the contrast mixes with
the blood within ten artery diameters downstream of the catheter tip.

To address the topic of uniform contrast distribution into the CCAs, we will present an automatic, robust
and fast method that quantifies the contrast bolus distribution following a test bolus injection from DSA images.
This information could optimize exact placement of the injection catheter during the intervention and improve
perfusion C-arm CT imaging.



Figure 1. Overview of the algorithm to measure the contrast bolus distribution in the common carotid arteries (CCA).

2. DESCRIPTION OF THE ALGORITHM

In this section, we will explain our algorithm to measure the contrast bolus distribution in the CCAs. Figure 1
depicts an overview of the algorithm. After pre-processing of the raw data (step 1), the CCAs are segmented fully
automatically (step 2). In step 3, the end of the contrast wash-in phase is determined from the time-intensity
curves of the CCAs. This information is necessary to compute the so-called contrast volume map in step 4.
In step 5 the contrast volume map and the segmentation result of the CCAs are used to compute the carotid
contrast distribution ratio (CCDR) parameter.

2.1 Pre-processing

The first step of our algorithm is the pre-processing of the measured data. We introduce the variable Psub(u, v, t)
to denote the baseline-subtracted projection values at the pixel area with size ΔuΔv centered at the detector
coordinates (u, v). The baseline subtraction is accomplished by subtraction of the projection value before con-
trasts enters the field of view. To convert the measured photon flux density into line integrals of attenuation
values, i.e. projection values, a logarithmic transform and a change of sign must be applied. To reduce noise,
we apply a 2-D spatial Gaussian filter with standard deviation of 2.5 mm to all time instances of Psub(u, v, t).

2.2 Segmentation of Carotid Arteries

We segment the common carotid arteries from a temporal maximum intensity projection (tMIP) of Psub(u, v, t)
which we denote as PtMIP(u, v). First, we apply a spatio-temporal weighting of PtMIP(u, v) to increase the
intensity of the CCAs relative to other structures. The combined weighting function wcmb ∈ [0, 1] has a factor
wspt ∈ [0, 1] that uses prior knowledge of the spatial position of the CCA and a factor wtmp ∈ [0, 1] that uses
prior knowledge of the expected temporal contrast dynamics. The weighted tMIP, denoted by P w

tMIP(u, v), is
then given by

Pw
tMIP(u, v) = wcmb(u, v) PtMIP(u, v)

= wspt(u) wtmp(u, v) PtMIP(u, v) . (1)
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Figure 2. (a-c) Spatial (wspt), temporal (wtmp) and combined (wcmb) weighting functions. The windowing is from 0
(black) to 1 (white). (d-e) Unweighted tMIP (PtMIP) and tMIP weighted with wcmb (Pw

tMIP). Both tMIPs have the same
windowing from 0 (black) to the half maximum of the image data corresponding to (d) (white).

The weighting functions wspt(u) and wtmp(u, v) will be described next. The spatial weighting assumes that the
CCAs can be found near the center of the image. Using a 1-D Gaussian function Gf (x),
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where the parameter f controls the full width at half maximum, it is defined as

wspt(u) = 2GU (u− u0) − 1 . (3)

Here, U is the total width of the detector and u0 is the center coordinate of the detector, both with respect to
the u-coordinate. See Figure 2(a) for an example of wspt(u). Different smooth weighting functions could also be
used, of course.

The temporal weighting assumes that the contrast arrives earlier in the arteries than in the draining veins. By
tmax,e we denote the expected time-to-peak value of the time-intensity curve measured in the CCAs. This value
can be chosen relative to the duration Tinj of the contrast injection. For example, we can set it to tmax,e = 1.2Tinj.
The temporal weighting function wtmp(u, v) is then defined as

wtmp(u, v) =

{

1 , for tmax(u, v) < tmax,e

Gtmax,e
(tmax(u,v) − tmax,e) , for tmax(u, v) ≥ tmax,e

(4)

tmax,e(u, v) = argmax
t

(Psub(u, v, t)) . (5)

An example for wtmp(u, v) is shown in Figure 2(b).

For our following analysis, we do not require a complete segmentation of the CCAs. Thus, we segment the
CCAs only in a region of interest (ROI) where v ∈ [vc − vw, vc + vw]. We use the parameters vw=60 mm and
vc = vmax,cran − vw where vmax,cran is the v-coordinate at the cranial end of the image. These parameters have
been chosen empirically and work well for typical DSA data sets acquired at the aortic arch. In the future, a
more adaptive ROI selection may be used. See Figure 3 for a graphical visualization of the boundaries of the
ROI.

The centerlines of the two CCAs can be segmented in the ROI of the image Pw
tMIP(u, v) using standard 2-D

vessel centerline segmentation methods.4,5 We use a simple technique that looks for the 2 highest intensity
values, separated by a minimum distance of 5 mm, along the line in the u-direction for a given v-coordinate.
Two paths are created by connecting the coordinates of these maxima starting from a maximum at the left and
right side respectively. See Figure 3 for an example of the segmentation.



2.3 Computation of Contrast Volume Map

We introduce the contrast volume map (CVM) as a relative measure to estimate the amount of contrast agent
that has flowed through a certain region. In particular, the CVM is used to compute the carotid contrast
distribution ratio (CCDR) in Section 2.4. We assume that the measured baseline-subtracted projection value
Psub(u, v, t) is proportional to the total mass of contrast at time t that is intersected by the X-rays from the
source to the pixel centered at (u,v).6

First, we determine the duration Twash,in of the contrast wash-in phase. It can be determined relative to the
average time-to-peak measured inside the CCAs (tmax,cca). For example, we can set it to Twash,in = tmax,cca +1s
where s denotes seconds. Then, we compute the CVM, denoted by Pcvm(u, v), as

Pcvm(u, v) =

∫ Twash,in

0

Psub(u, v, t) dt . (6)

We limit the integration interval to the wash-in phase to fulfill the condition that the measured data Psub(u, v, t)
has only contributions from a single vessel. The CVM can be displayed for a visual assessment of relative contrast
bolus distribution. A quantitative evaluation of the CVM is done by computing the CCDR, as described in the
next section.

2.4 Computation of Bolus Distribution

The carotid contrast distribution ratio (CCDR) is computed using the segmented centerlines of the CCAs and
the contrast volume map (CVM). For each v-coordinate in the ROI, v ∈ [vc−vw, vc+vw], we have a u-coordinate
for the segmented centerline of the left CCA (u1) and the right CCA (u2). For a given v-coordinate we can
approximate the v-specific CCDR as

CCDRv ≈ Pcvm(u1(v), v)/Pcvm(u2(v), v) . (7)

Assuming similar flow characteristics in the left and right CCA, we can use this definition of the CCDR as a
measure for the relative contrast bolus distribution into both carotids. A more theoretical analysis of the contrast
bolus distribution is the subject of future investigation.

The final CCDR values are computed by averaging over the values obtained using the different v-coordinates.

3. EXPERIMENTAL EVALUATION

3.1 Material and Methods

We tested our algorithm using DSA sequences acquired as part of our perfusion studies under an institutionally-
approved protocol in 5 anesthetized healthy pigs (54.1±4.7 kg).2 The DSA sequences, acquired at 7.5 frames
per second, were used during the study for visual assessment of contrast flow uniformity and, in this work,
we analyzed them retrospectively to compute quantitative parameters. For potential future patient studies we
expect only slight adaption of the algorithm to the human anatomy.

A contrast bolus (Iohexol, 350 mgI/ml) was delivered intra-arterially at the root of the aortic arch using a
5-French diffusion catheter at different injection rates (3,6,9 ml/s). Contrast concentrations (33%-100%) were
adjusted for each injection rate to provide a similar total contrast volume. We also investigated different catheter
positions for one injection rate (3 ml/s).

3.2 Results

The centerline segmentation of the CCAs succeeded in all data sets, as determined by visual assessment. Hence,
quantitative information about contrast distribution could be computed in all data sets.

For different injection rates (IR), the mean and standard deviation of the CCDR values were 0.99±0.14 (3
ml/s IR), 1.10±0.13 (6 ml/s IR) and 1.06±0.10 (9 ml/s IR). When the catheter was pulled backward by 5-10
mm from its original position it was 0.26±0.10 (3 ml/s IR). Catheter positions that were rated optimal during
the perfusion studies had, in this retrospective analysis, CCDR values closer to one.
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Figure 3. Segmentation of the two common carotid arteries (CCA) and plot of the time-intensity curve extracted from the
CCAs. The segmentation is overlayed on a temporal maximum intensity projection of the 2-D DSA data set. Note that,
the terms left and right CCA refer to the position in the image and not to the anatomical position; i.e. the left CCA of
the pig is actually shown on the right side of the image.

Figure 3 shows segmentations of the CCA and extracted time-intensity curves from one pig with different
injection catheter locations. Quantitative results for this example were CCDR=1.03 (top row) and CCDR=0.36
(bottom row). While the catheter position in the upper image provides uniform contrast bolus distribution, the
catheter position in the bottom image results in a non-uniform bolus distribution.

4. DISCUSSION AND CONCLUSION

We presented a novel method for automatic quantitative evaluation of contrast distribution in the CCAs after a
test bolus injection using DSA images. This method includes an automatic segmentation of the CCAs and an
automatic image analysis to compute relevant parameters of the contrast volume distribution. The results of
this study show that the contrast is uniformly distributed (mean relative difference ≤ 10%) into the CCAs if the
injection location is selected properly. However, a larger sample size is necessary to prove this hypothesis.

The segmentation approach for the centerline of the CCA could also be adapted to other clinical applications
or applied to other vessels in 2-D DSA sequences.

If used in clinical practice, our novel method could help to optimize the catheter placement for arterial
injections in perfusion C-arm CT imaging during stroke therapy by providing additional quantitative parameters.
Our novel method is robust, fast, user-independent and would not require extra X-ray or iodine dose compared
to the current protocols which already use a test bolus injection with a pure visual assessment of the contrast
flow.
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