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Abstract

The inspection of histological image sequences to gain knowledge about the original three-dimensional (3-D)

morphological structure is a standard method in medical research. Its main advantage is that light microscopes

feature high resolution enhanced visibility due to staining. In many cases this imaging technology could immensely

profit from 3-D reconstructions of the slice images. For volumetric stacking, however, the tissue deformations due

to slice preparation require an unwarping strategy to restore the original morphology. The challenge is to re-

verse the artificial deformations while preserving the natural morphological changes. In particular, unintentional

straightening of curved structures across multiple slices has to be avoided. In this article, we propose a novel

way to incorporate landmarks representing the morphological progression. They are used as additional regular-

ization for intensity based non-rigid registration which is capable to exactly match the landmarks. Our approach

is tested on synthetical and histological data sets. We show that it delivers smooth contours while preserving the

morphological structure, and is a promising addition to existing methods.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:
Enhancement—Registration, Geometric Correction

1. Introduction

The investigation of histological image sequences is an ev-
eryday task in biomedical laboratories. Conventional light
microscopes have a high resolution of up to 0.5 µm, and
the possibility to stain structures of interest beforehand en-
hances visibility and perception. Imaging modalities that are
able to directly visualize 3-D objects, e.g., µ-CTs, only re-
cently achieve similar values with about 0.7µm, but without
the benefits tissue staining offers.

The main drawback of histological imaging, however, is
that the spatial connection of structures is lost during cut-
ting. This is especially a disadvantage when the progres-
sion of anatomical structures has to be investigated. Men-
tally recombining the 2-D image sequences then can often
be a challenge. Furthermore, biomedical research often re-
quires the extraction of quantitative values, which is usually
best and most reliably done using volumetric data.

In these cases, a 3-D reconstruction of the original tissue
from the histological image sequence can immensely facil-

itate the perception of the morphology and spatial informa-
tion. An important requirement is, that the final reconstruc-
tion should restore the anatomy such that it matches its orig-
inal in vivo tissue sample before it was extracted from the
specimen.

However, this is not a straightforward procedure of merely
stacking the 2-D images. As tissue preparation and image
acquisition create many artifacts such as intensity inhomo-
geneities, lighting artifacts, differently oriented slices, cuts
and tears the reconstruction process requires several process-
ing steps.

Of particular relevance is the severe mechanical stress the
tissue samples are subject to during slicing. The resulting
deformations prevent a proper reconstruction and perception
of the original morphology. These deformations are there-
fore usually reversed using non-rigid registration methods, a
process to find a deformation matching two images of sim-
ilar content. Such a method can be used to perfectly align
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morphological structures and enable smooth structure pro-
gression.

But, as was in detail explained in [MEBNV04,SMH∗07],
conventional non-rigid registration of histological image
sequences tends to straighten curved structures, which is
known as "banana problem" [SWM97], see fig. 1. It is a
consequence of the fact that histological image sequences
contain both the natural progression of morphological struc-
tures, as well as the deformation due to mechanical stress
during slicing. While the latter is the actual target of the non-
rigid registration, the former should be preserved.

Figure 1: Detail images of reconstructions using synthetic

images. Left: Stacked original slices. Right: Non-rigid reg-

istration mostly optimizes overlap and smooth contour pro-

gression, but alters original object.

Related Work

Many different methods were invented for histological
image registration, covering a broad range of possi-
ble approaches. An extensive overview can be found in
[SMH∗07]. The most reliable way for smooth but anatom-
ically correct reconstruction is to use ground truth data of
the tissue sample. It is often acquired prior to slice prepara-
tion, e.g., an MR volume [DDC∗07]. External references are
however mostly not available. Ju et al. [JWC∗06] propose
a weighted averaging scheme of deformation fields which
were calculated in the neighborhood of the currently consid-
ered slice.

The basis for our approach is a non-parametric non-rigid
registration scheme that restricts the allowed deformations.
As a 2-D translation has to be determined for each pixel,
this is generally a highly underdetermined problem. There-
fore, a constraining function, called regularizer or smoother,
is usually designed to restrict the free-form deformation
calculated by the registration method in a certain manner.
Two commonly used regularizing strategies are discussed in
[Mod03]. One is based on the second derivatives of the de-
formation field, penalizing strong curvature, and therefore
called curvature regularizer. The second one was already ap-
plied in histological image reconstruction [SMH∗07], and
restricts the elastic potential of the deformation.

Landmarks have been used in combination with intensity-
based image registration in several ways before. John-
son and Christensen [JC02] alternate between optimiza-
tion of landmark position and intensity-based registration.
Hartkens et al. [HHC∗02] and Urschler et al. [UZDB06] add
an additional energy term incorporating the landmarks to the

objective function. Both approaches take the landmark posi-
tion into account, but cannot guarantee an exact match in
the end. In contrast to that, Fischer et al. [FM03a] incorpo-
rate the landmarks as hard constraints into the registration
routine, and thus can exactly match the landmarks. The La-
grange multipliers used for this purpose however make the
computation more complex the more landmarks are consid-
ered.

Goal of this work

Complementary to the above-mentioned methods, we pro-
pose to incorporate the morphological structure into the reg-
ularization scheme. We first manually extract anatomical
landmarks to generate an initial model of the original mor-
phology. This is achieved by performing a polynomial fit
of those points that correspond to the same morphological
structure. In this way, smooth trajectories are fitted through
the entire volume. The offset of the landmarks to the tra-
jectory then serves as initial sparse deformation field to a
curvature-regularized non-rigid registration scheme. The ca-
pability of the registration scheme to exactly position land-
marks, combined with the correction of prominent anatomi-
cal structures to their approximated original location on the
trajectories offers new possibilities in anatomically correct
histological image reconstruction.

Section 2 first explains the approximation of the morphol-
ogy by landmarks, and subsequently their use in the non-
rigid registration scheme. Results on synthetic and histolog-
ical data sets are shown in section 3. The proposed method
is discussed and the article concluded in section 4.

2. Methods

Different image artifacts have to be corrected prior to non-
rigid registration. The first steps are comprised of a correc-
tion of image intensities and a rigid registration to roughly
align the tissue slices. These steps are however not subject
of this work.

2.1. Morphology model

For manual tracking, the first image is displayed for the user
to select prominent points as landmarks. These landmarks
are subsequently tracked through the image sequence. Land-
marks belonging to the same anatomical structure therefore
build a trajectory through the volume. It is possible to finish
trajectories when structures end as well as add new trajecto-
ries throughout the volume.

Biological structures are mostly characterized by smooth
curves and gradual progression. As a consequence, the se-
lected landmarks — displaced due to cutting — should ac-
tually lie on a smooth line. Therefore, to approximate the
original morphology, all landmarks belonging to the same
trajectory serve as input for a polynomial fitting procedure.
We assume that the deformations are in general small, such

c© The Eurographics Association 2011.



S.Gaffling & V.Daum & J.Hornegger / Landmark-constrained 3-D Histological Imaging

that the overall characteristic progression of the structure in
consideration is not entirely changed. For our experiments
we used a polynomial of order M = 4. The ideal image coor-
dinates x̂, ŷ for a given landmark on a slice with z-coordinate
z ∈ R is then given by

y(z) = c0 + c1z+ c2z
2 + c3z

3 =

(

x̂

ŷ

)

where ci =
(

cix,ciy

)T
∈ R

2. As fitting procedure, we use
a singular value decomposition scheme as described in
[PTVF07] to generate a smooth function approximating the
assumed morphological progression. This is a linear least-
squares problem of the form

ĉ = argmin
c

‖ Ac−b ‖2
2

with A being the design matrix and b a vector both derived
from the landmarks. c contains the coefficients ci of the poly-
nomial. An example of a fitted trajectory and the landmarks
is given in fig.2.

Figure 2: Landmarks belonging to the same morphological

structure, and the fitted trajectory.

The intersection of the fitted polynomial with the slices
gives the estimated true location the respective landmark
should lie on. Therefore, a sparse deformation field is cre-
ated for each slice, indicating for each landmark the offset
from its current position to the interpolated new position.

2.2. Non-rigid registration scheme

Non-rigid registration is an essential tool for medical image
applications. It can be used to compensate motion between
images such that corresponding content is mapped onto each

other. In this context we will only provide a brief introduc-
tion into the non-rigid, non-parametric registration formu-
lation we use. For a more in-depth discussion please refer
to [Mod03].

Mathematically, the aim of a 2-D image registration is to
find a mapping u : R2 7→ R

2 between a reference image R

and a template image T , such that the deformed template
Tu(x) = T (x−u(x)) is similar to R. The similarity of the
images is measured by a distance measure D. Additionally
we require the deformation u to be regular in some sense,
which usually means we want it to be smooth. The smooth-
ness is measured by the regularizer R. All in all, we thus
want to solve

u
∗ = argmin

u
D(R,Tu)+αR(u), (1)

where α is a weighting parameter that decides whether we
prefer a better match or a smoother deformation. As we
only have to deal with mono-modal registration problems
in this work we employ the well known sum-of-squared-
differences (SSD) as distance measure. It is defined as

DSSD(R,Tu) =
1
|Ω|

∫
Ω

(R(x)−Tu(x))
2
dx, (2)

where Ω is the computational domain of the registration and
|Ω| its area. As regularizer we employ the curvature regular-
ization, popularized in [FM03b]:

RCURV(u) =
1
|Ω|

∫
Ω

∆u(x) dx (3)

Equation (1) is solved by calculating and solving the Euler-
Lagrange equations with respect to the unknown function u.
In our case this amounts to

(R(x)−Tu(x))∇Tu(x)+α

(

∆
2
u
)

(x) = 0 ∀x ∈ Ω (4)

In order to actually solve these equations the problem state-
ment has to be discretized. This is done on a cartesian grid
x composed of the grid positions xi with i = 1, . . . ,s. The
deformation u is therefore discretized as the vector u com-
posed of the 2-D vectors ui = u(xi). The differential operator
∆

2 is discretized as the matrix A which can be described by
its matrix stencil

1
h4













0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0













, (5)

with h denoting the spacing of the cartesian grid used for
the discretization. For the optimization itself we use a semi-
implicit gradient descent scheme

(I+ταA)u(t+1) = u
(t)−τ(R(x)−Tu(t)(x)) ·∇Tu(t)(x). (6)

The index t in this context is the iteration index of the non-
linear optimization scheme and τ is the step-size parameter.

Into this scheme for a non-rigid registration we now want
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Figure 3: Overview of the presented workflow.

to incorporate landmarks. Formally this means that there is
an area or a set of areas Ωp ⊂ Ω with known corresponding
locations in the reference image pR and the template image
pT . The transformation in these areas is defined as

pR = pT −u(pR) ∀pR ∈ Ωp. (7)

Discretized, this results in a set of corresponding discrete
points at locations xi ∈ Ωp. This was exploited for example
by Fischer et al. in [FM03a] by integrating (7) with Lagrange
multipliers as constraints into the registration problem. Dur-
ing each iteration step the according Lagrange multipliers
have to be determined by solving an additional linear sys-
tem, whose complexity depends on the number of landmark
constraints that are used.

We propose a computationally simpler approach for intro-
ducing the landmark constraints in the registration formula-
tion. As the transformation is known in Ωp, there is, liter-
ally, nothing to compute there. We can therefore remove the
areas with a known transformation from the computational
domain.

Ω̃ := Ω\Ωp (8)

The known transformation u(pR) ∀pR ∈ Ωp is used as a
Dirichlet boundary condition. This way the computational
work is actually reduced for each constraint that is added, as
the computational domain gets smaller and smaller.

In practice, instead of outright eliminating all ui corre-
sponding to a landmark location right away we instead re-
place their rows i in the system matrix I+ ταA by “identity
stencils”, which, in stencil notation, can be written as





0 0 0
0 1 0
0 0 0





. (9)

Additionally, we set the gradient of the distance measure to

0 and therefore the right hand side of (6) to u
(t)
i for these

rows. By making these two adjustments it is now ensured
that ui will not change if one iteration of the non-linear op-
timization is performed. If u(0) is initialized with the known
transformation from the corresponding point-to-point corre-
spondence, it will stay constant throughout the iteration. The
neighborhood of these boundary points, however, will be in-
fluenced through the regularizer.

The resulting linear problem that has to be solved during
one iteration of the non-linear optimization is not symmet-
ric, but it is positive definite. We therefore employ a stabi-
lized biconjugate gradient method, which can deal with these
types of linear problems.

We initialize the deformation u(0) with the already known
offset of the landmarks to the trajectories. This sparse defor-
mation field is then transformed into a dense deformation
field by solving just for the regularizer with its boundary
conditions, by means of a direct sparse matrix solver. The
sparse matrix solver is applied on a downsampled represen-
tation of the problem due to memory constraints. This good
initialization allows us to use fewer iterations of the iterative
method in the registration scheme and thus to speed up the
computation.

2.3. Volume reconstruction

The reconstruction result mainly depends on the type of non-
rigid registration. However, the manner in which the regis-
tration is applied to the entire image sequence also influences
the volume quality. There are different strategies that can be
applied, for example calculating a weighted average of de-
formation fields in the neighborhood of a current slice, or
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iteratively registering the slice sequence until no change is
observed.

We assume that the registration reestablishes the original
geometry of the slices, especially because it is restricted by
the landmarks. Therefore we deform the first image with its
initial dense deformation field, to correct its geometry such
that the landmarks lie on the trajectories, as requested. The
resulting slice is then used as reference image in the de-
scribed non-rigid registration approach. The following slice
is the template image. Its dense deformation field - the cor-
rection of its landmark positions to the fitted polynomials
- serves as initialization for the non-rigid registration. This
registration scheme is repeated throughout the entire data
set.

To summarize, our proposed 3-D histological image re-
construction consists of the following steps, . also fig.3:

1. Selection of the landmarks on each slice
2. Fitting of polynomials to create volume trajectories
3. Creation of sparse deformation fields from the offsets of

the landmarks to the polynomials
4. Transformation into a dense deformation field
5. Solving of the non-rigid registration problem.

3. Results

We tested our approach on two data sets. First, we cre-
ated a synthetic image sequence comprised of a white disk
with changing diameter and position representing a diago-
nal structure, and two white rectangles with fixed position
on black background.

The second data set is a histological data set consisting
of 350 Nissl-stained cryo sections of an adult mouse brain,
available online by Ju et al [JWC∗06]. For a typical slice
example including the selected landmarks see fig. 4. For our
reconstructions we selected the first 100 images of the mouse
brain data set, as they show the main part of the structures
in the brain. The image intensities were normalized and the
slices rigidly registered beforehand.

We compare our method with a standard non-rigid reg-
istration scheme without landmarks, that is, without the
Dirichlet boundary conditions. The amount of regularization
for both methods is chosen such that the resulting images are
deformed in a realistic manner without strong unnatural dis-
tortions, and to avoid the banana problem. These parameter
settings were selected once and not changed for all experi-
ments with both the synthetic and the histology images.

The first image is used as reference, and the subsequent
images are matched to their respective already registered and
warped predecessing slice.

Fig. 5 shows the results for the synthetic data set. The
left image shows the original synthetic structure from the

Figure 4: A typical histological slice image with dots indi-

cating selected landmarks.

stacked images. The middle image was created by register-
ing a slice with its already registered and deformed predeces-
sor. Although the amount of regularization was rather high,
the circular structure is almost entirely matched throughout
the volume. This deformation also affects the shape of the
white boxes, which originally should not change.

The reconstruction to the right shows the result of our
approach, incorporating landmarks. Very slight changes are
observable for the surfaces of the box structures. Otherwise
their size and position remains preserved. Note again that
the parameters settings were the same for both experiments.
The only difference is the incorporation of the landmarks.
Figure 6 shows exemplary instances of deformation fields.
Here, higher intensities refer to higher deformation.

Fig.7 gives an overall impression of the reconstruction re-
sults of the histological data set.

As expected, the rigidly registered volume in the top row
shows jagged contours and distortions of the slices. Using
the standard non-rigid registration scheme, shown in the
middle row, the contours are for the most part well matched.
However, two problems are immediately noticeable. First,
parts that appear to be curved in the rigidly registered vol-
ume are deformed such that they are for the greatest part
stacked straight over each other. This is an example for the
banana problem as described before. Second, the volume
shows distinct blocks. After a number of slices where the
contours are matched very well, there are strong jumps dis-
rupting the spatial coherence of the structures.

The reason for the block effect is basically the applica-
tion scheme of the non-rigid registration. The slices are de-
formed, and subsequently used as reference slice for the next
section. In this case, the deformation of a certain structure
might increase from slice to slice as it is matched against its
counterpart in the already warped reference image.

There are two possible explanations of the result. First,
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Figure 5: Left: Original slices stacked as volume. Middle: Non-rigid registration without landmarks. Right: Improved recon-

struction using the proposed approach with landmarks.

(a) Checkerboard image of ref-
erence and template images

(b) Subtraction images after non-rigid registration

(c) Deformation images after registration

Figure 6: Left column: Non-rigid registration without land-

marks. Right column: Our approach. Note that the intensi-

ties of the deformation images are scaled for better visual-

ization.

it is possible that the structures of the template image are
matched to different structures of the reference, that are dis-
located due to the strong deformations. Basically, the opti-
mization routine becomes trapped in a local minimum. A
second possibility is that the regularization does not allow
the amount of deformation that would be necessary to match
the corresponding structures, and the registration stops some

way in between. Both processes result in the observed jumps
within the volume.

The last row of fig.7 shows the results using our pro-
posed reconstruction method. Overall, the contours are much
smoother compared to the rigidly registered volume. At the
same time, the round shape of the brain and the curva-
ture of the structures therein remains intact. This shows that
the incorporation of the landmarks was able to prevent the
straightening of the contours. Smoothing of the contours for
a natural progression was however possible.

While the overall goal was achieved, there are still some
problems present. Figure 8 shows a detail image of the re-
construction. While the effect is much less severe than in
the normal non-rigid registration scheme described before,
some jumps and straightened objects occur at some locations
where no landmarks were set. As before, this can be consid-
ered to be mainly a cause of the successive increase of the
deformations via the resampled reference images.

4. Discussion

Histological image reconstruction in the absence of ground
truth data is about finding a balance between preservation
of morphological correctness and the reestablishment of
smooth and natural contours. Solely regularizing the defor-
mation might not always be enough to prevent unnatural
changes. The application of our method on one histological
data set is certainly not enough to prove its efficiency and
general applicability. But this article still gives a first im-
pression about the potential of introducing landmarks into
histological reconstructions as proposed in this work.

While a polynomial function was flexible enough to fit
the structures of the data set used for the experiments, they
might be too restrictive for more complicated, and espe-
cially longer structures. In this case other C2-continuous
functions that are better able to follow these structures, e.g.,
B-Splines, should be used. Manual landmark extraction can
be tedious and is prone to error. As the selected landmarks
are forced onto the trajectories, inaccurate landmark posi-
tions exceeding small deviations might lead to problems.
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(a) Rigid registration

(b) Non-rigid registration without landmarks

(c) Non-rigid registration with landmarks

Figure 7: First row: Data set reconstructed by stacking rigidly registered slices. Middle row: Non-rigid registration without

landmarks. Bottom: Improved reconstruction using the proposed approach with landmarks and the novel registration scheme.
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Therefore, reliable automatic landmark detection and track-
ing should be implemented. The complete distribution of
the landmarks covering prominent anatomical features in the
volume should be provided to prevent jumps. Furthermore,
different application schemes of non-rigid registration of the
image sequences should be investigated.

Finally, the applicability and benefit of our method for dif-
ferent types of histological data sets has to be investigated.
The quality has to be objectively evaluated using ground
truth data, and our approach has to be thoroughly compared
to other methods in this field.

Figure 8: Left arrow: Jump in reconstruction. Top arrow:

Straightening of curve.

Contribution

To conclude, we will sum up the main contributions of our
work. First, we propose to explicitly distinguish between
morphology-based offsets and artificially introduced warps.
Instead of direct correspondences, we use landmarks to gen-
erate a morphology model, by fitting smooth polynomials
approximating the original tissue sample. Dense deforma-
tion fields generated from this model serve as input into a
non-rigid registration scheme. In our method, the landmarks
are introduced as constraints in the registration formulation
such that the optimization problem gets simpler with a grow-
ing number of landmarks. The algorithm can guarantee that
the landmarks exactly match, which we use to relocate the
landmarks to their approximated original location. The re-
sults show that our approach can efficiently smooth con-
tours while preserving the morphological structure. It pro-
vides an additional means to preserve morphology in cases
where normal methods would fail.
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