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Abstract

Deriving algorithms that automatically align images being acquired from different
sources (multimodal image registration) is a fundamental problem that is of importance
to several active research areas in image analysis, computer vision, and medical
imaging. In particular, the accurate estimation of deformations in multimodal image
data perpetually engages researchers while playing an essential role in several clinical
applications that are designed to improve available healthcare. Since the field of
medical image analysis has been rapidly growing for the past two decades, the
abundance of clinical information that is available to medical experts inspires more
automatic processing of medical images.

Registering multimodal image data is a difficult task due to the tremendous
variability of possible image content and diverse object deformations. Motion patterns
in medical imaging mostly originate from cardiac, breathing, or patient motion (i.e.
highly complex motion patterns), and the involved image data may be noisy, furnished
with image reconstruction artifacts, or rendered with occluded image information
resulting from imaged pathologies. A key problem with methods reported in the
literature is that they purely rely on the quality of the available images and have,
therefore, difficulties in reliably finding an accurate alignment when the underlying
multimodal image information is noisy or corrupted.

In this research, we leverage prior knowledge about the intensity distributions
of accurate image alignments for robust and accurate registration of medical image
data. The following contributions to the field of multimodal image registration are
made. First, we developed a prior model called integrated statistical intensity prior
model that incorporates both current image information and prior knowledge. It
shows an increased capture range and robustness on degenerate clinical image data
compared to traditional methods. Second, we developed a generalization of the first
model that allows for modeling all available prior information and greater accuracy
in aligning clinical multimodal image data. The models are formulated in a unifying
Bayesian framework that is embedded in the statistical foundations of information
theoretic similarity measures. Third, we applied the proposed models to two clinical
applications and validated their performance on a database of approximately 100
patient data sets. The validation is performed using a systematic framework and
we further developed a criteria for assessing the quality of non-rigid or deformable
registrations.

The experiments on synthetic and real, clinical images demonstrate the superior
performance, i.e. in terms of robustness and accuracy, of statistical intensity prior
models to traditional registration methods. This suggests that fully automatic mul-
timodal registration (i.e. rigid and non-rigid) is achievable for clinical applications.
Statistical intensity prior models deliver great accuracy from a “relatively small”
amount of prior knowledge when compared to traditional machine learning approaches
that is appealing in both theory and in practice.



Übersicht

Die Herleitung von Algorithmen, die automatisch Bilder aus unterschiedlichen Aufnah-
mequellen registrieren können, man spricht auch von Multimodaler Bildregistrierung,
ist ein fundamentales Problem von grosser Bedeutung für Forschungsgebiete in der
Bildanalyse, der Computervision und der medizinischen Bildgebung. Insbesondere,
die genaue Berechung von Deformationen in multimodalen Bilddaten beschäftigt
fortwährend Wissenschaftler und spielt zur gleichen Zeit eine immens wichtige Rolle
in verschiedenen klinischen Anwendungen, die zu einer höheren Qualität des Gesund-
heitswesens beitragen sollen. Da das Gebiet der medizinischen Bildanalyse in den
letzen zwei Jahrzehnten rapide gewachsen ist, verlangt die Fülle der klinischen Informa-
tionen, die den Experten in der Medizin zur Verfügung stehen, nach mehr Automation
der Algorithmen in der medizinischen Bildverarbeitung.

Die Registrierung von multimodalen Bilddaten in der Medizin ist eine komplizierte
Aufgabenstellung aufgrund der hohen Variabilität der möglichen Bildinhalte und der
Mannigfaltigkeit der vorkommenden Objektverformungen. Die Bewegungsmuster in
der medizinischen Bildgebung begründen sich meist in Herz-, Atem-, oder Patien-
tenbewegungen (d.h. sehr komplexe Bewegungsmuster), und die zugrundeliegenden
Bilddaten können verrauscht sein, mit Bildrekonstruktions-Artefakten versehen sein,
oder verdeckte Bildinformation, das aus einigen Krankheitsbildern resultiert, in der
Modalität aufweisen. Ein Kernproblem der Methoden, die in der Fachliteratur vorhan-
den und bekannt sind, ist, dass sie auf die Qualität der vorhandenen Bilder angewiesen
sind. Dadurch kann es schwierig werden, eine zuverlässige und akkurate Registrierung
von verrauschten oder fehlerbehafteten, multimodalen Bilddaten zu erreichen.

In dieser Forschungsarbeit nutzen wir Vorwissen über die Intensitätsverteilun-
gen von exakten vorhergehenden Registrierungen aus, um eine robuste und genaue
Registrierung von multimodalen medizinischen Bilddaten zu erreichen. Die folgen-
den Beiträge zum Gebiet der multimodalen Bildregistrierungen werden von der vor-
liegenden Arbeit gemacht. Erstens, wir haben ein integriertes statistisches Model
für intensitäts-basiertes Vorwissen entwickelt, das Bildinformationen der zu registri-
erenden Bilder und das Vorwissen miteinander verbindet. Das Model ermöglicht
eine robustere Registrierung mit einem grösseren Erfassungsgebiet als gewöhnliche
Methoden. Zweitens, wir haben eine Generalisierung dieses Modells entwickelt, das
die Modellierung von verschiedenartigem Vorwissen erlaubt und damit eine höhere
Genauigkeit in der Registrierung von klinischen, multimodalen Bilddaten aufweisen
kann. Die Modelle sind in einem vereinigenden Bayes’schen System formuliert, das
in die statistischen Grundlagen von Informationstheoretischen Ähnlichkeitsmaßen
eingebettet ist. Drittens, wir haben die vorgestellten Modelle angewandt auf zwei
klinische Anwendungen und deren Registrierungsqualitäten auf einer Datenbank von
ungefähr 100 Patienten ausgewertet. Diese Auswertung wurde anhand eines systema-
tischen Validierungssystem vorgenommen und im Zuge dessen haben wir weiterhin
ein Kriterium zur Evaluierung von nicht-starrer oder deformierbarer Registrierung
entwickelt.

Die Experimente auf synthetischen und realen, klinischen Daten zeigen ein besseres
Ergebnis, d.h. in Bezug auf Robustheit und Genauigkeit, der statistischen Modelle für
intensitäts-basiertes Vorwissen gegenüber gewöhnlichen Registrierverfahren. Unsere
Ergebnisse zeigen auch, dass voll-automatische multimodale, starre sowie nicht-starre,



Bildregistrierung erreicht werden kann in klinischen Anwendungen. Statistische
intensitäts-basierte Vorwissenmodelle liefern eine hohe Genauigkeit erzeugt von einer
“relativ kleinen” Menge an Vorwissen im Vergleich zu traditionellen Verfahren auf
dem Gebiet von machine learning: eine interessante Eigenschaft in der Theorie als
auch in der Praxis.
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Chapter 1

Introduction

Over the past two decades, there has been an increasing research activity in deriving
algorithms that automatically align images being acquired from different sources. This
task, also known as multimodal image registration, is a fundamental component for
many active research areas in image analysis, computer vision, and medical imaging.
Multimodal image registration is aimed at determining a spatial transformation that
will bring homologous points in images from different domains into correspondence
such that complementary information can be linked and compared correctly, e.g. for a
fused visualization. The applications of multimodal image registration include sensor
data fusion [Fish 01,Denz 07], medical image fusion in diagnostic imaging and medical
image analysis [Bari 93,Loat 93,Bosc 03,Lee 05], image segmentation [Chrs 04,Dros 07],
and image guided surgery [Grim 96,Rizz 97,Vogt 06,Tian 08,Wein 08].

Registering multimodal image data is a difficult task due to the tremendous
variability of possible image content and diverse object deformations. For example, one
important task in medical imaging is the registration of potential cardiac, breathing,
and patient motion in 3-d myocardial positron emission tomography (PET) and
computed tomography (CT) images (Fig. 1.1), where we are facing complex motion
patterns, imaging noise, reconstruction artifacts, and large-scale image data sets.
Imaging noise and artifacts especially may lead to failures of registration methods that
are generally known to be robust. How to solve the multimodal registration problem
on such degenerate clinical data is a challenging problem that a robust registration
algorithm has to address.

1.1 Medical Image Analysis And Processing

One of the important tools in the field of medical imaging is the automated analysis of
medical images. It allows for non-invasive inspection of the human bodies on the look
for diseases or damages to internal structures. Medical image analysis provides effective
diagnostic tools in medicine derived from data produced by imaging instruments that
leverage physical phenomena such as X-rays, ultrasound, radioactivity, and magnetic
resonance, and the medical imaging community is capable to probe into the structure,
function, and pathology of the human body with a diversity of imaging systems.
Data sets in two, three, and more dimensions convey increasingly vast and detailed
information for clinical and research applications. In order to benefit health care,

1
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(a) Cardiac CT (b) Cardiac PET

Figure 1.1: Three orthogonal views plus a 3-d volume rendering of a patient cardiac
scan in two modalities: (a) CT, and (b) PET.

this information has to be analyzed and interpreted in a timely and accurate manner.
Moreover, the imaging systems are also used for planning treatment and surgery.
Fundamental classes of algorithms in medical imaging analysis are concerned with
image enhancement, segmentation, quantification, registration, visualization, and the
area of compression, storage, and communication. For a comprehensive introduction to
the field of medical image analysis including the description of concepts and techniques
for processing and analyzing medical images after they have been generated, we refer
the interested reader to [Bank 09].

Image Segmentation, the separation of structures of interest from the background
and from each other, is an essential class of algorithms in medical image analysis.
The automated delineation of different components is used for analyzing spatial
distribution of activity, anatomical structure and tissue types, and pathological
regions. It can also be used as an initial step for visualization. Among the numerous
applications of segmentation are lesion quantification, surgery simulations, surgical
planning, measurement of tumor volume, and its response to therapy, study of brain
development, image registration, atlas-matching, heart image extraction from cardiac
cine data, and so on.

Image Registration, the alignment of images and structures to establish proper
correspondence between the multiple medical images, needs to be identified before
any type of medical image comparison can be performed. The automated registration
of images and structures is used in image classification, motion estimation and
analysis, template matching, and image reconstruction. Once proper correspondence
is established, interesting applications can be built upon: e.g. (i) the fused visualization
of complementary information, or (ii) the correction of motion that occurred between
the two or more acquired images. These applications help address a wide range of
medical questions including analyzing relationships between structure and function
in complex organs such as the brain and the heart, full-body screening for lesions,
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surgical planning and navigational guidance during minimally-invasive interventions,
monitoring of treatment response in radiation treatment, image quality enhancement
through reduction of artifacts induced by patient or organ motion, and many more.

Despite the variation of context in which medical image registration approaches
have appeared in the literature, there are several commonalities between these ap-
proaches. The objective of pair-wise image registration is to find a transformation
that transforms, in general, one of the images called alignment image so that it best
matches the reference image. This transformation can be generated through manual,
semi-automatic, or fully-automatic means, and belongs to a certain class of transforma-
tions dependent on the application. Section 2.1.3 portrays the most popular types of
transformations that are sometimes categorized in rigid and non-rigid transformations
based on the amount of flexibility that is offered by the transformation. How well a
particular transformation matches the two images is described by the image similarity,
and we point to the most popular measures in section 2.1.4. Registration approaches
can further be categorized based on the type of sensors that were used to acquire
the image data, and are called monomodal, when the images to be registered are
generated by the same sensor type or scanner, or are called multimodal, when they
originate from different scanners. Depending on the application, image registration
can either be done using data sets from the same patient, intrasubject , or from patient
populations or atlases, intersubject . Multimodal registration problems arise in both
settings. For example, multimodal intersubject registration to a shape atlas can be
employed to obtain segmentations of brain anatomy in functional images that are used
for surgery planning [Rizz 97], and multimodal intrasubject registration can be used
to correct for organ and patient motion in hybrid scanner image acquisitions [Guet 07]
or to align multimodal data sets from different time points. One can imagine that
multimodal image registration presents several challenges for registration methods due
to its diverse nature. An interesting approach to relax this problem is to introduce
prior knowledge about the correct alignment into the registration method. Prior
information about the expected type of deformation or intensity mapping can be
very helpful in solving the multimodal registration problem, and, so far, only a small
amount of work has been performed along this direction. A detailed description of
multimodal registration and state-of-the art methods is provided in chapter 2.

In conclusion, segmentation and registration are fundamental elements for medical
image analysis tasks. In many applications, these approaches dictate the outcome
of the entire analysis, since measurements and other processing steps are based on
registered and segmented regions. Quantification algorithms are applied to segmented
structures to extract essential diagnostic information such as shape, size, texture, angle,
and motion. Moreover, both algorithms often play complementary roles in image
processing. For example, if images are in correspondence and segmentation is known in
one of them, it becomes easier to segment the other image. One example that greatly
benefits from this complementary role play is cardiac segmentation from magnet
resonance (MR) cine data as proposed in [Joll 10]. If segmentations are available in
both images using the same set of segmentation classes, these corresponding classes
can be used to identify the spatial transformation that would establish accurate
correspondence. It is further possible to validate registration accuracy if the correct
segmentation is known. In our clinical validation work, we demonstrate the accuracy
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of our registration results by examining alignment with known segmentations and also
show the added clinical value in knowing the correspondences between segmentations
from multiple modalities.

In this dissertation, we focus on the introduction, analysis, and characterization of
registration approaches that leverage prior knowledge models for the fully-automatic
alignment of multiple complementary modalities and using a range of transformation
models. We will present two notions of statistical intensity prior models that are
intuitive and formulated in one unifying Bayesian framework, and we will show that
these prior models promise to address a wide selection of the introduced clinical
applications.

1.2 Medical Image Modalities

The proposed models presented in the following chapters are directly applicable to
other research fields such as computer vision or image analysis, and they are designed
to be applied to any type of image and modality combination. In the majority of
this dissertation, however, we focus on the domain of medical imaging. Each type
of medical image shows specific characteristics that play an important role in the
clinical decision making. For example, cardiovascular function can be estimated from
multiple modalities or a combination thereof. It appears that one logical future
direction of clinical post-processing applications will be the combine-it-all strategy
such that the physician can leverage all available information to make the most
informed decision. Consequently, multimodal registration techniques will be required
to robustly align images from a large spectrum of modalities. Figure 1.2 displays such
a possible spectrum of modalities currently used for cardiovascular analysis. In order
to allow the reader to understand the details of each modality and its characteristics,
we briefly summarize the most prevalent image modalities in the medical imaging
community. The information presented in the following sections is mostly gathered
from [Kale 00,Kipp 04,Cher 03,http].

Tomographic Reconstruction

Tomographic images are 2-d representations of structures lying within a selected plane
in a 3-d object. Tomographic reconstruction, first developed in diagnostic radiology
and later extended to nuclear medicine, includes positron emission tomography, single
photon emission computed tomography (SPECT), magnetic resonance tomography
(MRT), and x-ray computed tomography in modern clinical systems. These systems
use detectors placed or rotated around the object so that many different angular views,
also known as projections, of the object are obtained. Mathematical algorithms then
are used to reconstruct images from these projection data. The reconstruction of images
from multiple projections of detected radionuclide emissions within the body is known
as emission computed tomography (i.e. PET, SPECT), and reconstruction of images
from transmitted emissions from an external source is known as transmission computed
tomography (i.e. CT). For these modalities, the basic reconstruction algorithm is the
same for both emission as well as transmission categories, but significant differences
exist in the details of the implementations. MR relies on magnetic resonance effects
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Figure 1.2: The electrical system of the heart sided by different clinical acquisitions
involving the following examples of medical image modalities: SPECT/CT (fused
rendering), CT, SPECT, PET, and MR.
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inside the body but could be categorized as an emission tomography. However, the
tomographic reconstruction in MRI as described in section 1.2.4 differs significantly
from the other imaging modalities.

The following is a description of each individual image modality and its peculiarities
that are directed at the tomographic reconstruction techniques.

1.2.1 Computed Tomography

The predominant image modality in our current work is computed tomography from
x-ray images, which is generally referred to as CT. X-rays or Röntgen-rays, named
after Wilhelm Conrad Röntgen, are a form of electromagnetic radiation that can
penetrate solid objects and that is used to take images of the object’s inside in
diagnostic radiography. Since its introduction in the 1970s, CT has become an
important tool in medical imaging to supplement X-rays and medical ultrasonography.
The advantages of CT are a high contrast-to-noise ratio (CNR), image noise is
predominantly influenced by physically generated quantum noise (i.e. fluctuations in
the number of x-ray quanta registered by the detector), and that it results in high
resolution images [Cher 03,Kale 00].

Independently of the parameters described in the previous paragraph, that exhibit
an objectively measurable and quantifiable influence on the image quality, the CT
imaging system may produce artificial structures that deviate from reality, i.e. also
known as artifacts. These artifacts cannot always be determined objectively and it
requires considerable experience on the part of the examiner, as well as a proper
knowledge of the system’s artifact behavior, to decide whether image information is
artifacted or not. Important causes of artifacts in CT are patient/organ movement,
beam hardening, scattered radiation, partial volume effects, sampling errors, exceeding
the limits of the field of measurement, and metallic implants. Most of those causes
can be addressed by system adaptations or stringent acquisition protocols. However,
some of them such as patient/organ movement or metallic implants are simply
unavoidable and could occur frequently in specific applications (e.g. pacemakers in
cardiac perfusion imaging). The current recommendation for the examiner how to
treat metallic implants is to select the slice orientation of the imaging system such that
the implant is excluded from the scanned section as much as possible. These content
extinguishing artifacts strongly deteriorate intensity-based registration algorithms,
severely impact multimodal image alignment quality and therefore the results of the
analysis.

The high-resolution CT images in medical imaging depict anatomical context in
high quality. Therefore, it has been utilized in hybrid imaging systems to provide
anatomical context for functional or nuclear imaging. We will introduce these systems
and corresponding applications in chapter 5. Other popular applications of CT include
CT angiography, dynamic (perfusion) CT, interventional CT, quantitative CT, and
4-d CT cardiac imaging.
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1.2.2 Single Photon Emission Tomography

The approach of using a rotating gamma camera to acquire data for computed
tomographic images, which is employed with radionuclides that emit single or multiple
γ rays with no angular correlation, is known as single photon emission computed
tomography or SPECT. Radionuclides are injected through a radiotracer into the
patients body, and the scan has to be performed within the radiotracer’s half life.
The gamma camera acquires 2-d projection images by counting the activity of γ rays
that reach its collimator detectors at equally spaced angular intervals around the
patient. Typically, clinical SPECT images are reconstructed on a matrix of 64× 64 or
nowadays more commonly 128× 128. These cross-sectional images are produced for
all slices with the field-of-view (FOV) of the gamma camera, resulting in a stack of
contiguous 2-d images forming a 3-d volume.

Ideally, the signal level for a voxel in a SPECT image would be linearly propor-
tional to the amount of activity contained with the volume of tissue in the patient
that corresponded to the location of that voxel. This would be useful not only for
quantitative applications, such as perfusion studies, but also for visual interpretations
of the images. In practice, however, this ideal result is not achieved because acquisition
reality and idealized assumptions made for reconstruction do not meet. An extensive
description of practical and theoretical considerations involved in SPECT imaging
can be found in [Cher 03].

The quality of SPECT images heavily depends on the quality of attenuation and
scatter corrections, partial-volume effects, spatial resolution, volume sensitivity, and
most importantly on the fact that the underlying projection geometry is unknown.
The limited resolution and low image quality in SPECT, for example as compared
to PET, originates from the problem that it needs to be estimated with collimators.
Collimators are designed as an array of tubes that end in a photon sensitive detector,
i.e. once a photon hits a collimator tube it increases the count for this particular
location. However, the angle at which a photon hits the collimator tubes cannot be
determined, and, hence, the true originating location of that photon might never be
known.

The key imaging feature of SPECT (and PET) is that radiotracers typically
accumulate in specific organs or types of cells. This information is particularly
important in the visualization of cancer where malignant cells may occur anywhere in
the body. In the United States, SPECT imaging is most frequently used for studies
of myocardial perfusion to assess coronary artery disease or heart muscle damage
following myocardial infarction. It is common to perform cardiac perfusion studies both
under resting conditions and also following a stress to the heart induced by exercise
or by the injection of a drug that causes vasodilation. These are called rest/stress
studies. Other important applications using SPECT are cerebral perfusion studies,
tumor detection and localization in oncology, imaging of infection and inflammation,
measurement of liver and kidney function, and using radiolabeled antibodies and
peptides for tumor localization and ultimately for tumor therapy.
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1.2.3 Positron Emission Tomography

A second form of tomographic nuclear medicine imaging, positron emission tomog-
raphy or PET, uses radionuclides that decay by positron emission. This mode can
be used only with positron-emitting radionuclides. The acquisition itself and general
reconstruction algorithm is similar to that of SPECT, however, using different radio-
tracers and a key difference in the projection geometry calibration. PET detectors
count annihilation photons that are produced when a positron interacts with an
ordinary electron. Annihilation photons show back-to-back directional characteristics
that are advantageous for the image reconstruction exploited by special annihilation-
coincidence detector systems. PET has gained widespread clinical acceptance in recent
years and is now firmly established in clinical nuclear medicine.

Due to the unique annihilation feature, PET systems, especially those employing
multiple detector rings and multiring coincidence detection, have substantially higher
detection efficiencies (by orders of magnitude) than what is achievable with typical
SPECT systems. Therefore, PET images usually can be reconstructed with higher
cut-off frequencies, and their final spatial resolution is generally superior to SPECT
images. Despite a few additional correction strategies, attenuation correction is by far
the largest single correction in PET, and image artifacts are of similar origin as in
SPECT.

The major clinical applications for PET imaging are in oncology, neurology, and
cardiovascular disease [Kipp 04]. The uptake of FDG-18 , 18F-fluorodeoxy-glucose
is the tracer of choice for most PET applications, reflects glucose metabolism that
is regionally, i.e. in the affected tissue, altered by numerous pathologic conditions.
A widespread application of PET imaging is the detection and staging of cancer.
FDG-PET is, further, used diagnostically to evaluate myocardial viability and stratify
patients with coronary artery disease with regard to bypass surgery.

1.2.4 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology
to visualize detailed internal structure and function of the body. MRI provides
greater contrast between different soft tissues of the body than CT (introduced in
section 1.2.1) does, making it especially useful in neurological (brain), musculoskeletal,
cardiovascular, and oncological (cancer) imaging. Unlike CT, MRI uses no ionizing
radiation. Rather, it uses a powerful magnetic field to align the nuclear magnetization
of hydrogen nuclei atoms in water in the body. Radio frequency (RF) fields are used
to systematically alter the alignment of this magnetization. This causes the hydrogen
nuclei to produce a rotating magnetic field detectable by the scanner. This signal
can be manipulated by additional magnetic fields to build up enough information
to construct an image of the body. Magnetic resonance imaging is a relatively new
technology with the first MR images being published approximately 30 years ago. By
comparison, the first human X-ray image was taken in 1895.

Magnetic resonance imaging is based on the principles of nuclear magnetic reso-
nance (NMR). It is known mostly to chemists that the term nuclear does not refer to
radioactivity, and in order to avoid the negative connotations associated with the word
nuclear for the general public, the term was dropped from the name of the imaging
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technique in the late 1970’s. Besides being mostly known as a tomographic imaging
technique, MRI has throughout the years become a volume imaging method.

The imaging technique relies most frequently on the relaxation properties of excited
hydrogen nuclei in the body’s tissue. A superconducting external magnet in clinical
MR systems generates a large magnetic field (i.e. typical magnetic field strengths
are 1.5T and 3T (Tesla)) that aligns the spins of the atomic nuclei with non-zero
spin numbers within the tissue of the to be imaged object parallel to the magnetic
field - and produces a net magnetization. The magnetic dipole moment of the nuclei
then experiences a phenomenon called precession due to the external magnetic field
just like a spinning top interacts with gravity. The proton precessional frequency is
determined from the Larmor equation, in which the frequency of precession is equal
to a constant times the main magnetic field strength. The tissue is then exposed to a
sequence of electromagnetic energy pulses (RF pulse). As energy is absorbed from the
RF pulse, the net magnetization rotates away from the original longitudinal direction.
The amount of rotation (termed the flip angle) depends on the strength and duration
of the RF pulse. This transmitted RF pulse must be at the precessional frequency of
the nuclei in order for resonance to occur and for efficient transfer of energy from the
RF coil (i.e. RF pulse sender) to the nuclei. Depending on the type of RF pulse (i.e.
90◦ or 180◦) the net magnetization gets rotated into the transverse plane or along
the z-direction. The different RF pulses are important for the spin echo (SE) and
gradient-recalled-echo (GRE) imaging techniques.

As the net magnetization rotates back to original alignment, the nuclei emit
energy that can be measured and used to form the image. Due to its direction,
the realignment with the external magnetic field is termed longitudinal relaxation
or T1 relaxation. The rate at which this longitudinal magnetization grows back is
different for protons associated with different tissues and is the fundamental source of
contrast in T1-weighted images. T2-weighted imaging relies upon local dephasing of
spins following the application of a transverse energy pulse (i.e. 90◦ RF pulse). The
definition of T2 is the time that it takes for the transverse magnetization to decay to
37% of its original value. Both T1- and T2-weighted images are frequently acquired for
most medical examinations. Often, a paramagnetic contrast agent (e.g. gadolinium) is
administered, and both pre-contrast and post-contrast images are obtained. Contrast
acquisitions can be useful to determine functional values such as myocardial blood
flow through the left and right ventricle in myocardial perfusion imaging.

For further details, we refer the interested reader to a valuable introduction to the
physics of an MRI scanner in [Pool 05] from the viewpoint of a radiologist.

1.3 Thesis Contributions
In this dissertation, we direct our attention to the problem of multimodal image
registration due to its importance in medical image analysis and the complexity of
this problem on routine clinical data. This complexity makes the robust and accurate,
automatic estimation of non-rigid deformations an appealing problem in both theory
and practice. The information gained from individual image modalities is unique and
in the majority complementary to that of others. As a consequence, more clinical
information and a higher diagnostic value for physician and patient is gained by
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combining complementary modalities. In recent years, image fusion has been adopted
for many clinical applications and systems to bring anatomical context into molecular,
ultrasonic, magnetic-resonance, or low resolution morphological images. Accurate
image registration is needed to ensure that fusion of multiple such modalities is correct
as many analytic and diagnostic applications depend on the correspondence between
the images.

The goal of this thesis is to derive statistical intensity prior models that are general
and simple enough to allow for the seamless integration of prior knowledge from
any number and type of image modality, and for the automatic processing of large
numbers of clinical patient data while fulfilling the high clinical demands for speed,
accuracy, and trivial human-computer interface interaction. The main contributions
in this thesis are:

1. Statistical intensity prior model: A new statistical intensity prior model
for multimodal image registration is proposed that combines prior knowledge
derived from previously aligned image data with current observations. This
integrated statistical intensity prior (SIP) model has three advantages compared
to traditional registration methods:

• It shows a larger capture range and allows for deformable registrations to
be initialized far away from the optimal alignment.

• It achieves accurate registration results by leveraging from both previ-
ous and current observations at almost no extra cost in computational
performance.

• This single prior mixture model is easy to add on to any existing intensity-
based registration approach and is applicable to any modality combination
allowing it to be used in a wide range of registration problems in computer
vision and image processing.

This method is applied to synthetic brain MR, and a large number of clinical
PET/CT and SPECT/CT images.

2. Generalized statistical intensity prior model: Based on the integrated
SIP model, a generalization (i.e. generalized SIP or GSIP) of the non-parametric
prior is developed that spans an entire space of encoded prior knowledge. The
GSIP model is given by a kernel density estimate on the space of joint intensity
distributions computed from a representative set of previously aligned image
pairs. The new prior allows for a comprehensive modeling of prior knowledge
and an automatic selection of the best fitting prior distribution(s) for the current
data set. A training step does not require any kind of supervision other than
deciding that a given data set is correctly aligned. This method is applied to a
large variety of multimodal medical images.

3. Clinical validation and applications: The proposed methods are system-
atically validated on extensive sets of clinical data and for different clinical
applications. The validations are performed for both rigid and non-rigid trans-
formation models. In addition, for the application of cardiac perfusion studies, a
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new, clinically motivated metric for the validation of non-rigid image registration
techniques is proposed. In summary, registration accuracy and robustness are
significantly improved by employing statistical intensity prior models in more
than 80 % of the cases.

1.4 Previous Publications
Portions of this thesis have been previously published. The integrated statistical
intensity prior model was published for non-rigid and rigid transformations in [Guet 05,
Guet 07] and applied to image guided surgery in [Liao 06]. The generalized statistical
intensity prior model was published in [Crem06b]. The implementation of both
models on a Graphics Processing Unit (GPU) was published in [Vett 07, Fan 08],
and the pre-clinical application of Ventricular Tachycardia using the integrated SIP
registration was published in [Tian 08].

1.5 Thesis Organization
The thesis is organized as follows. In Chapter 2, we provide background materials on
multimodal image registration and present an overview of related work on prior models.
In Chapter 3, we develop the SIP non-parametric model and study its strengths and
weaknesses on synthetic and simulated medical data. In Chapter 4, we develop the
GSIP non-parametric model and apply it to medical and non-medical images. In
Chapter 5, we present a systematic validation framework for multimodal registration
for rigid as well as non-rigid transformation models, and validate SIP and GSIP on
two clinical applications. Finally, we conclude the thesis in Chapter 6 with a summary
and discussion of future directions.
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Chapter 2

Background and Literature

Traditional image registration algorithms are typically designed using the following
core components: interpolation, transformation, optimization, and similarity. Figure
2.1 displays the functional relationship of these core building blocks during the
registration procedure. For better performance, i.e. increased robustness, handling
of large deformations, and faster computational speed, the images to be registered
are often processed through a multi-resolution image pyramid, i.e. resampling by n
number of resolution levels. In each image resolution level, the registration problem
can be solved by iterating through the following scenario. A similarity metric, that is
been chosen to best describe the correct alignment of both images, is being evaluated
between moving and fixed volume. An optimizer, then, uses the transformation
model and somewhat intelligently determines the next best transformation. This
transformation is applied to the moving image using an interpolator that approximates
the true image function given the discrete nature of digitized images. The iteration
scenario completes by evaluating the similarity between the newly transformed image
and fixed image to verify whether an optimum has already been reached. After
convergence the final transformation of the current resolution level is transformed
to the next level, if necessary, and the registration procedure is repeated using the
previously estimated transformation as initial transformation.

Although this is a strongly simplified description of medical image registration, it
stressed the importance of all four core elements for the success of the registration
algorithm. These building blocks should be formulated carefully with respect to the

Figure 2.1: Building blocks of a typical registration algorithm.

13
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underlying registration problem to be addressed. Hill and colleagues wrote an excellent
introduction to the topic of medical image registration [Hajn 01].

2.1 Variational Image Registration
Multimodal image registration is the process of establishing correspondence between
two or more images that have been acquired by multiple sensors. In the context of
variational calculus, the image registration problem is formulated as a search problem
in the domain of continous functions. Assuming the images acquired by the medical
sensors are described by two functions f1 : Rn → R and f2 : Rn → R that are square-
integrable and, hence, live in the infinite-dimensional L2 space, image registration is
the search for a function u : Ω→ Rn that assigns each point x in Ω a displacement
vector u(x) ∈ Rn aligning the two images accurately. Ω represents a bounded region
of Rn and we further restrict ourselves to n = 2, 3 here. This function is searched in a
set of admissible functions F such that it minimizes an energy functional of the form

E(u) = Idata(u) + α Ismooth(u). (2.1)

Generally speaking, the set F is assumed to be a linear subspace of a Hilbert space
H with the scalar product being denoted 〈·, ·〉H .

The term Idata(u) is designed to measure the distance between f1 and the u-
deformed image f2(x + u(x)), essentially describing how similar f1 and deformed
f2 are. The images f1 and f2 are further referred to as reference and alignment
image, respectively. The term Ismooth(u) prevents fast variations of function u with
α controlling the amount of this regularization. Then, the image registration problem
is defined as the minimization of E with respect to u leading to a matching that
represents the solution û to the minimization problem:

û = arg min
u∈F

E(u) = arg min
u∈F

(
Idata(u) + α Ismooth(u)

)
. (2.2)

2.1.1 Bayesian Formulation

The formulation of the image registration problem as a deterministic minimization
of energies, as presented in (2.2), is paralleled by formulating the problem using
the probabilistic framework of Bayesian inference. In this context, the problem of
multimodal image registration can be solved by finding the most likely displacement
field u given the two images f1(x) and f2(x+u(x)). That is equivalent to maximizing
the following posterior probability

P
(
u
∣∣ f1, f2

)
=

P
(
f1, f2

∣∣u) P(u )∫
uP

(
f1, f2

∣∣u) P(u)du
(2.3)

given by the Bayes rule. After neglecting the factor in the above equation that does
not depend on the displacement field u and thus do not affect the maximization, we
receive the final expression of the conditional probability

P
(
u
∣∣ f1, f2

)
∝ P

(
f1, f2

∣∣u) P(u). (2.4)
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The optimization problem in (2.3) separates into two factors that are interpreted as
follows: The first factor represents the measurement likelihood, stating how likely
the two images are given the correspondence induced by the displacement field u.
Images f1 and f2 are supposedly more “likely” the more similar they are made by the
function u. The second factor provides the a priori probability for the displacement
field u. The measurement likelihood can be regarded as a data term whereas the a
priori probability can be understood as a geometric prior for the displacement field.
This interpretation will reveal itself by looking at how these factors can be modeled.

We model the measurement likelihood for a general registration problem by stating
that images f1 and f2 are more likely to be aligned, if they are more similar according
to a specified criterion:

P
(
f1, f2

∣∣u) = k · exp
(
− Idata

(
f1(x), f2(x + u)

))
(2.5)

where Idata needs to be strictly positive, i.e. Idata(f1(x), f2(x+u)) ≥ 0, ∀f1(x), f2(x+
u) and k > 0. It evaluates the given data with respect to the registration problem
and is chosen such that Idata(f1, f2,u)→ min ⇐⇒ f1(x) = f2(x + u).

The geometric prior states an a priori likelihood for u describing which u is more
or less likely. As described above, a common choice for non-rigid image registration
formulations is to assume the underlying displacement field to be smooth:s

P(u) = α · exp
(
− Ismooth(u)

)
, (2.6)

where α determines the amount of smoothness that is imposed on the displacement
field.

Maximizing the posterior distribution in (2.3) is equivalent to minimizing its
negative log likelihood leading to the following minimization problem

E(u) = − log
(
P
(
u
∣∣f1, f2

))
= Idata(u) + α Ismooth(u) (2.7)

û = arg min
u

E(u), (2.8)

with û denoting that displacement field that corresponds to the Maximum A Posteori
point of the posterior distribution in (2.3).

Comparing equations (2.1) and (2.7), it becomes clear that both problem formu-
lations eventually lead to the same expression and are valid modeling assumptions.
As a matter of fact, both frameworks have been successfully applied to numerous
registration problems. Historically, the Bayesian framework has generally been used for
parametric formulations due to its inherently natural handling of parameter optimiza-
tion. Although it is not straightforward to use Bayesian modeling in a non-parametric
setting, Bayesian inference presents an attractive theoretical framework in which
our statistical prior formulations are nicely embedded. Besides providing a sound
interpretation for the derivation of statistical prior models, the use of the Bayesian
framework enabled us to formulate them in the first place. The detailed Bayesian
formulations of the SIP models are presented in section 3.3 and 4.1.

2.1.2 Variational Formulation

Independent of the choice of the modeling framework, the calculus of variations can
be used to determine the Euler-Lagrange equations of the specified energy functionals
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E that reveals the minimizer û in (2.8). Assuming that E(u) is sufficiently regular,
its first variation at u ∈ F in the direction of ũ ∈ F is defined by (see e.g. [Aube 02]):

δũE(u) =
∂E(u + εũ)

∂ε

∣∣∣∣
ε=0

(2.9)

The gradient ∇HE(u) of E is defined by requiring the following equality to hold for
every ũ ∈ F :

δũE(u) = 〈∇HE(u), ũ〉H . (2.10)

If a minimizer û of E exists, then the set of equations δũE(û) = 0 must hold for
every ũ ∈ F . This is equivalent to ∇HE(û) = 0. These are called the Euler-Lagrange
equations associated with the energy functional E. Due to an infinite-dimensional
functional space where the optimization is carried out, there is usually, i.e. in non-
academic scenarios, no closed-form solution available for solving the Euler-Lagrange
equation. With the assumption, however, that the energy functional is locally convex,
we can solve for the Euler-Lagrange equation by descending the gradient of the
functional. If we have a suitable initial guess that is located in the vicinity of the
global optimum, the gradient descent approach leads to an optimal solution. The
solution of the Euler-Lagrange equation can be found by solving the following initial
value problem: {

∂u
∂t

+ ∂E(u)
∂u = 0,

ut=0(·) = u0.
(2.11)

Provided the suitable initial guess u0, the time-dependent, differentiable function
u : [0,+∞[→ L2 is being computed solving the partial differential equation above,
and the asymptotic state when t → ∞ is then chosen as the solution to the image
registration problem given that ut ∈ F , ∀t. Consequently, the update rule in the k-th
time step directly results from (2.11):

uk+1(x) = uk(x)− τk
∂E(uk(x))

∂uk(x)
, (2.12)

where τk is the size of the applied time-step and uk(x) the displacement field at time
k for all locations x ∈ Ω.

The choice of a suitable smoothing term or geometric prior Ismooth is usually made
based on the type of application. One example of a traditional smoothing term is the
Tikhonov regularization [Tikh 77]

Ismooth =

∫
|∇u|2 dx, (2.13)

where ∇u =
(
∂u
∂x1
, ∂u
∂x2
, . . . , ∂u

∂xn

)
, that has been pioneered by the seminal work of Horn

and Schunck [Horn 81]. More sophisticated priors are conceivable, for example non-
quadratic (robust) smoothness priors that allow for discontinuities in the estimated
displacement fields (cf. [Brox 04]), an edge-based smoothness term that changes
from an isotropic smoothing in homogeneous regions to anisotropic smoothing across
contours of the image [Herm02], a linear-elastic smoothing as described in [Chri 01],
or a curvature regularization smoothness term as proposed in [Fisc 03].
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In this thesis, we will in the majority focus on non-rigid transformations as defined
by the displacement function u ∈ L2. However, multimodal image registration in
clinical practice, currently, relies on simpler, more restricted transformation models
that are easier to compute, provide reasonably robust registration, but are not sufficient
to describe motion patterns as they occur within the human body or between different
subjects. The following section introduces the most common types of transformation
models.

2.1.3 Types of Transformations

Let’s recall that the images to be registered are defined by two functions f1 : Rn → R
and f2 : Rn → R, where f1 is the reference and f2 the alignment image. The spatial
transformation ΦS describes a transformation that warps the alignment image onto
the reference image, i.e. deforming the alignment image. The non-rigid transformation

ΦS(x) = x + u(x) (2.14)

achieves this warping by assigning a displacement vector u(x) to each location x ∈ Rn

in the domain. During registration, the measurement likelihood function Idata is
maximized with respect to a spatial transformation acting on the alignment image,
i.e.:

Idata(f1(x), f2(ΦS(x))) = Idata(f1(x), f2(x + u(x))) (2.15)
In this definition, ΦS is an unconstrained, non-rigid transformation that is some-

times also referenced as non-parametric transformation model. Other types of transfor-
mations are combined in the class of parametric transformation models. In this class,
two general types of transformations are usually distinguished: rigid and non-rigid
transformations. Rigid transformations are defined as transformations that do not
change the distance between any two points that undergo the transformation. In
contrary, non-rigid transformations are capable of deforming the image locally.

Non-Rigid Transformation Models

Non-rigid transformations can be described by parametric transformation models with
a high degree-of-freedom (DOF) such as transformations using radial basis functions
(RBF), splines (i.e. Thin-Plate or B-Splines), or n-th order polynomials. Polynomial
models are a linear combination of higher order terms to describe the non-rigid
deformation, whereas RBFs and spline models describe the spatial transformation as
a linear combination of basis functions θi, e.g.:

ΦS(x1, x2, x3) =

x′1x′2
x′3

 =

a00 . . . a0n

a10 . . . a1n

a20 . . . a2n


θ1(x1, x2, x3)

...
θn(x1, x2, x3)

 , (2.16)

defined for 3-d transformations. As shown by the above equations such radial basis
functions are spatially located in the image domain Ω describing the displacements
at those locations. The values of the deformation in between the basis functions are
interpolated depending on the type of basis function θ. The Thin-Plate spline (TPS)
or B-Spline models are specific types of basis functions with the TPS incorporating
geometric characteristics such as strain energy in the formulation.
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Affine Transformation Models

The most restricted types of transformations are affine and rigid transformations
since they are defining how a group of or all locations within the image domain are
transformed by a small number of parameters. For example, the affine transformation
model only allows for scale, shear, rotations, and translations within the linear
transformation matrix A ∈ Rn×n:

ΦS(x) = Ax + t, (2.17)

with t ∈ Rn, n = 2, 3 describing the translations, and A defining shear, scale, and
rotations.

Rigid Transformation Model

A transformation model is called rigid body transformation model, if the Euclidean
distance between any two locations in the domain remains unchanged by the transfor-
mation. Therefore, the rigid transformation model allows only for rotations R ∈ Rn×n,
R being an orthonormal matrix with det R = 1, and translations t:

ΦS(x) = Rx + t. (2.18)

In the case of 3-d transformations, one way of describing the rotation matrix is to use
rotation angles R(α, β, γ) around the three coordinate axes:

R =

cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cos β sin γ cos β cos γ

.
A more robust and convenient mathematical notation for representing rotations in
3-d are unit quaternions. Compared to the Euler angles, as presented above, they are
simpler to compose and avoid the problem of gimbal lock. See [Altm 86] for a detailed
explanation of rotations and quaternions.

The advantage of affine and rigid transformation models are that they defined
by only a small number of parameters. That provides a fast but simplified solution
to the registration problem. Moreover, restricted parametric transformation models
provide a greater numerical stability and appear more intuitive and understandable
to the clinical end user. Therefore, affine and rigid models are prevalent and can be
considered state-of-the-art methods in clinical applications despite their disability to
accurately capture the underlying deformations.

The majority of this dissertation is concerned with the non-parametric registration
of medical imaging data sets. For convenience, we will use the notation of the
displacement field u rather than the more general transformation model ΦS when
refering to the transformation model.

2.1.4 Measures of Similarity

The central component of a registration algorithm is the evaluation of the image
alignment quality. A set of mathematical functions called objective or similarity
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functions is specifically designed to measure the quality of a particular alignment.
Depending on the context, these functions are sometimes also referred to as cost or
energy functions. During registration an objective function produces a numerical value
that is used in the optimization procedure (see also Fig. 2.1). Similarity functions
can be categorized in feature-based and intensity-based functions.

Feature-based similarity functions measure image similarity given a set of features
in both images such as points, landmarks, edges, surfaces, saliency, and many more.
The features are either automatically extracted or provided by the user. After
feature correspondences between the two sets of features have been established, the
matching problem reverts to generating a transformation from these correspondences,
either directly or through interpolating using the underlying transformation type.
An automatic way of establishing correspondences between features is to employ a
feature-based registration algorithm (e.g. landmark-based, point-based, or surface-
based registration) using either parametric or non-parametric transformation models
[Fitz 98,Josh 00,Rohr 01,Hill 01,Guet 03].

Intensity-based similarity functions compute similarity by directly involving the
images’ intensities and are also refered to similarity measures. There are several
popular intensity-based similarity metrics used in medical image registration, since
they are very suitable for fully automatic registration tasks. The different measures
assume each a specific relationship between the intensity values of the images to be
compared. Intensity-based measures can be further categorized in two subclasses:
direct and indirect similarity measures. Direct similarity measures compute similarity
by directly operating on the image intensities. Indirect measures, however, are
calculated on the basis of statistics such as comparing the intensity distributions of
the images.

A simple direct similarity measure is the Sum-of-Squared-Differences (SSD) that
assumes the image intensities to be constant over time, i.e. between the compared
images. It can be written as

ISSD(f1(x), f2(ΦS(x))) =
1

|Ω|

∫
Ω

(f1(x)− f2 (ΦS(x)))2 dx (2.19)

This intensity constancy assumption may not always hold in practice due to
image noise and artifacts. The quadratic influence of such imperfections on the
similarity measure can be reduced if one applies the absolute distance instead. The
Sum-of-Absolute-Differences (SAD) is defined as

ISAD(f1(x), f2(ΦS(x))) =
1

|Ω|

∫
Ω

|f1(x)− f2 (ΦS(x))| .dx (2.20)

Both measure perform well on images that were acquired by similar sensors. However,
even in the case of monomodal images, the constancy assumption might be violated
due to structures moving in and out of the image plane, e.g. in cardiac cine MRI. A
robust alternative in this case is provided by other direct measures such as Cross-
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Correlation (CC), or Local Cross-Correlation (LCC). The LCC measure in the discrete
case is defined as

ILCC(f1(x), f2(ΦS(x))) =

Nnb∑
i,j

∑
nb (f1(i, j)− f̄1)(f2(i, j)− f̄2)√∑

nb (f1(i, j)− f̄1)2
∑

nb (f2(i, j)− f̄2)2

. (2.21)

These correlation measures assume a linear relation between the images and have
proven to robustly deal with images that show slight intensity variations such as
perfusion or T1-/T2-weighted MRI imaging.

In case the images have been acquired by different sensors, the intensity constancy
or linearity cannot be assumed anymore. Then, we need to revert to indirect statis-
tical approaches to evaluate the image alignment. These approaches are based on
information theory and statistics and we will refer to them as statistical measures in
the remainder of this document. Probabilistic measures such as

• Maximum Joint Entropy (JE), proposed by Woods et al.. [Wood 92] and Hill et
al. [Hill 93],

• Maximum Mutual Information (MI), independently proposed by Viola and Wells
et al. [Viol 95] and by Collignon and colleagues [Coll 95],

• Maximum Entropy Correlation Coefficient (ECC), suggested by Collignon
[Coll 98] and Maes [Maes 97], and

• The generalized Correlation-Ratio (CR), proposed by Roche et al. [Roch 98],

are the most influential in multimodal, medical image registration.
The key idea of the criterion of maximum mutual information, for example, is

to find a deformation field that maximizes the statistical dependency between two
images where the intensities are considered samples from two random variables:

IMI

(
f1(x), f2(ΦS(x))

)
=∫
R2

pΦS
(i1, i2) log

pΦS
(i1, i2)

pf1(i1)pf2(i2)
di1di2, (2.22)

where i1 = f1(x), i2 = f2 (ΦS(x)), and pf1(i1), pf2(i2), pΦS
(i1, i2) are the marginal

and joint intensity distributions estimated from f1(x) and f2(ΦS(x)). Statistical
dependency is measured by the Kullback-Leibler (KL) divergence between the joint
intensity distribution of the two images and the product of the marginals. After the
MI criterion was adopted for medical image registration, it was further modified with
regards to normalization [Maes 97,Coll 98, Stud 99] and has proven to be a robust
similarity measure for rigid multimodal registration problems.

Despite the success of the MI measure, it can be shown that it strongly depends
on the overlap domain of the images. This is particularly disturbing in medical images
where it is common to experience a large homogenous background that negatively
influence the mutual information measure. This effect is amplified for the maximum
joint entropy measure, and, hence, evident for MI. Studholme et al.circumvent this
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problem by proposing a normalized mutual information measure [Stud 99] that is less
sensitive to changes in the image overlap through dividing the marginal entropies by
the joint entropy:

INMI(f1, f2) =
H(f1) +H(f2)

H(f1, f2)
, (2.23)

where H(f1),H(f2) are the marginal entropies of f1 and f2, with the entropy being
defined as

H =

∫
R
p(i) log p(i)di (2.24)

, and H(f1, f2) denotes the joint entropy

H =

∫
R2

p(i1, i2) log p(i1, i2)di1i2. (2.25)

They found a distinct improvement in the behavior of this normalized measure for
rigid registration methods. Another form of normalized mutual information is the
entropy correlation coefficient (ECC) [Maes 98] that is related to NMI in the following
manner

IECC(f1, f2) = 2− 2

INMI(f1, f2)
(2.26)

For more information on probabilistic similarity measures in medical image regis-
tration we refer the interested reader to a number of survey papers [Brow 92,Main 98,
Roch 00,Hill 01].

The registration of functional and morphological images, however, turns out to
be rather challenging due to their imaging dichotomy. Routine clinical applications
currently rely on rigid-body registration algorithms that optimize on low-level image
information. Therefore, the established alignment arises purely from the matched
volumes and strongly depends on the available image information.

The statistical intensity prior models that are introduced later are based on
the same theoretical principles as statistical similarity measures leveraging on their
strengths and improving on their weaknesses.

2.2 Related Work
Learning from previous experience has been playing a key role in the advancements
of man kind and it has proven beneficial to apply previously gathered knowledge
to current tasks. The field of machine learning is concerned with the research and
development of algorithms that allow computers to evolve behaviors based on empirical
data such as sensor data. The major focus of the research is to automatically learn to
recognize complex patterns and make intelligent decisions based on the given data. In
general, an extensive amount of data is required to learn such complex patterns. A
slightly different approach is to utilize knowledge from previous observations enhance
purely data driven image processing algorithms. In other words, prior knowledge is
providing additional information through constraints or other means to algorithms
optimizing on the current data. We refer to those approaches as prior models rather
than learning-based processing to avoid confusion with machine learning. Though
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concepts from machine learning have been applied to image registration, for example,
by Zhou et al. [Zhou 06] who use classification of learned image patches to align
ultrasound images, but the question of (clinical) practicality of such approaches always
arises when compared to prior models due to an extensive and elaborate training step.
The introduction of prior knowledge has greatly enhanced numerous purely low-level
driven image processing algorithms and, hence, benefited many image analysis tasks.
The reason is that prior knowledge constrains the solution space for challenging
problems to a meaningful subset. For example, constraining image segmentation
algorithms by an elaborate formulation of shape priors has significantly improved
segmentation accuracy and robustness, especially on noisy and corrupted data as
they appear in many practical applications [Rous 02,Chan 05,Crem06a,Kohl 06]. In
general, such methods are formulated so that the optimizing function includes a data
term and a shape prior term modeling previously observed shapes.

Deformation Priors

In the context of image registration such prior knowledge is most closely related to
statistical deformation models (SDM) that compute deformation priors from non-rigid
registrations of medical image data and utilize statistics (e.g. principal component
analysis) to encode the prior knowledge [Ruec 03, Xue 06]. The concept of SDMs
is similar to active shape models, which capture statistical information about the
shapes across a population, while utilizing information from the dense deformation
field. Another direction of incorporating deformation priors in deformable registration
algorithms is to make very specific assumptions on how to impose regularization on
the deformation field u. Beyond a number of fairly sophisticated regularity constraints
such as non-quadratic smoothness priors [Weic 01], a linear-elastic smoothness prior
[Chri 01,He 03], or a curvature regularization smoothness term [Fisc 03], Roth and
Black [Roth 05] suggested to learn the statistics of optical flow from training sequences
using Markov-Random-Field cliques and to subsequently impose these as smoothness
priors for variational motion estimation.

Nevertheless, all these techniques implicitly or explicitly (e.g. through the need
of segmentation) make specific assumptions about and are intertwined with the
occurring shapes. Consequently, in data that includes undefined or highly varying
shape boundaries and objects, deformation patterns may be irregular and therefore
difficult to impose.

Intensity Priors

An intriguing and promising direction of research is to learn and impose statistical
intensity priors not on the displacement field u, but on the simultaneously estimated
joint intensity distribution pu (see eq. (3.1)), which characterizes the intensity trans-
formation between two images. In contrary to deformation priors, this approach
is independent of occurring shape patterns. Intensity priors are more readily ob-
tained and can be applied to a wider range of problems than deformation-based prior
knowledge, which makes it an appealing approach both in theory and practice.

In the context of medical image registration, the first pursuits using intensity
priors involved ideas on optimizing similarity of the current observations to a single
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instance of prior observations for rigid as well as non-rigid transformation models.
Leventon and Grimson [Leve 98] suggested to rigidly register multimodal images by
optimizing on the currently observed joint intensity distribution until it resembles a
prior one. Chung et al. [Chun 02] found empirically that utilizing the Kullback-Leibler
(KL) divergence for distance computation between distributions is superior to the
log likelihood used by Leventon and Grimson. Zöllei et al. [Zoll 03] showed that
Chung’s method makes some implicit assumptions about the desired solution which
do not always hold suggesting that the registration result may be biased towards the
given prior. Hermosillo et al. [Herm02] formulated the supervised learning approach
of Leventon and Grimson using the maximum likelihood criterion for variational
multimodal registration.

Although these approaches increase the capture range of multimodal registration
methods, the registration accuracy clearly depends on the quality of the provided
single instance of prior knowledge.

Generalized Prior Models

In [Guet 05], we further developed the idea of utilizing prior knowledge by proposing
to compare to previously observed intensity mappings while simultaneously optimizing
on the similarity of the currently matched image data. This concept is similar to the
one used with shape priors where a data term is combined with a prior term. Our
previous, rather ad-hoc, introduction of this idea in [Guet 05] finds further theoretical
justification in a Bayesian inference formulation that is derived in chapter 3. The
idea of leveraging prior and observed samples of the joint intensity distribution for
registration has also been employed by Sabuncu et al. [Sabu 05,Sabu 08] who construct
and optimize on an Euclidean Minimum Spanning Trees (EMST) that encode the
image samples. However, the EMST gradients for non-rigid transformation models
remain to be derived. Specialization with regards to certain clinical applications have
been proposed by Gholipour et al. [Ghol 07] who employ the joint intensity distribution
for the non-parametric registration of echo-planar and structural magnetic resonance
brain images, and us [Guet 07] suggesting a weighing scheme on the prior distribution
to favor intensity mappings that belong to a specific organ in rigid multimodal
registration.

Despite the increased accuracy delivered by such methods, they are limited to a
single prior joint intensity distribution or single prior data set. In [Crem06b], we
address this problem by formulating a non-parametric prior model sampling an entire
space of joint intensity distributions for deformable image registration. The statistical
foundation for such a general prior model lies in the theory of Gaussian processes: the
basis for probability distributions on infinite-dimensional function spaces. Gaussian
processes perform well on a large range of data sets, which is what we are interested
in. Depending on the amount of available prior data, this non-parametric prior model
allows for an accurate modeling of the space of admissible joint intensity distributions.
An interesting comparable prior model was later formulated as a parametric prior of
a collection of joint intensity mappings using Dirichlet priors, i.e. the distribution of
distributions, for rigid and non-rigid image registration by Zöllei et al. [Zoll 06b,Zoll 07].
The core of this dissertation describes a statistical framework that unifies a formulation
for optimizing on observed data, single instance prior, or an entire “library” of prior
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knowledge in form of joint intensity distributions, i.e. extending our published work.
We, further, investigate the relationship between these different prior models. In
chapter 4, the non-parametric, generalized prior intensity model is presented that
spans the space of all admissible joint intensity distributions.

Recently, plenty of interest has been generated in using prior models to address
the challenging problems in non-rigid multimodal image registration. Retrieving
complex non-rigid deformations accurately and robustly in multimodal data sets
presents numerous challenges to registration algorithms. This is due to the fact that
handling complex, non-rigid deformations involves estimating the optimal transforma-
tion in a suitable, infinite-dimensional functional space [Ruec 98,Gaen 98,Herm02].
Depending on algorithm-related choices, the solution space could be filled with many
locally optimal solutions. Therefore, the design of non-rigid, multimodal registration
algorithms has attracted much research attention in recent years including general
approaches as in [Gaen 98, Chef 01, Roge 03] or specific clinical applications such
as [Cama 03,DAgo 03,Ghol 07]. The resulting algorithms, however, are staying largely
unnoticed in routine clinical applications as they fail to suffice clinical demands for ac-
curacy, robustness, and computation time. This leads to compromises in the employed
registration such as reverting to simpler transformation models [Bank 09].

Interestingly, common clinical motion patterns are of non-rigid nature originating
from patient, organ, and respiratory motion. Therefore, the third core component of
this dissertation is concerned with systematic validation of registration algorithms
on clinical data sets resulting in a concise presentation of the proposed prior models’
practical value. This is, up to our knowledge, one of few validation studies that
investigate the performance fully-automatic multimodal registration algorithms on a
large set of routine clinical image data.



Chapter 3

Statistical Intensity Prior Model

It is known that traditional intensity-based registration methods have problems
associated with initialization and poor performance on routine clinical image data
that are artifacted or noisy. In this chapter, we present a new combined model of
current and prior statistical observations that addresses both issues listed above. This
model, which we call integrated statistical intensity prior model, is the limit case
of a non-parametric prior model on the space of joint intensity distributions. The
theoretical foundations for probability distributions on infinite-dimensional function
spaces is provided by the theory of Gaussian processes. We will call the joint intensity
distribution that is derived from a previously aligned image data set statistical intensity
prior (SIP). The statistical intensity prior formulation is distinguished from nearly all
previous prior formulations in that it is not making any modeling assumption on the
underlying probability distributions of the prior knowledge. Because of this, we will
specify a solution using the calculus of variations for the optimization in functional
spaces.

The space of statistical intensity priors is infinite-dimensional in the number m
of described prior data sets; however, in this chapter we assume only one prior joint
intensity distribution. At first glance, it might seem contra-intuitive to distract
our attention with a bound prior model. Nevertheless, deriving prior and posterior
probability distributions from little prior knowledge is of significant practical im-
portance. One of the biggest issues in clinical applications remains the availability
of high-quality prior data sets for training. Previous work on prior modeling for
registration [Sabu 05,Zoll 06a,Zoll 07] does not include discussions on practical aspects
such as model performance for restricted availability of prior clinical data sets. Zöllei
et al. [Zoll 07] presented a parametric prior model that uses the Dirichlet distribution
as a conjugate prior on multinomial prior distributions. Furthermore, three interesting
categories of prior confidence (i.e. no, medium, and full) are thoroughly analyzed w.r.t.
the relationship of Dirichlet encoded priors and current statistical methods. Despite
this stimulating analysis, it would be interesting to correlate these levels of confidence
with clinical problems in order to provide the clinician user with an intuition of how
to map confidence levels with regards to the available prior data.

The goal of this chapter is to derive a SIP model that improves on traditional
multimodal registration techniques while utilizing limited amounts of prior knowledge.
We further believe that a systematical validation of multimodal registration techniques

25
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on complementary multimodal data sets (e.g. an anatomical / functional modality
combination) has not been performed yet. The goal of this thesis is to derive a
non-parametric prior on the infinite-dimensional function space of prior distributions
and to show its applicability in clinical environments by systematically validating this
model for multiple clinical applications. As it turns out in our model, the posterior
distribution of the registration problem for the limit casem = 1 becomes a compromise
between data and prior information resulting in an integrated SIP model.

Particular advantages of the integrated SIP over traditional intensity-based reg-
istration methods are an increased robustness to initialization (i.e. capture-range)
and an improved performance on artifact and noisy image data. As we show in the
following sections, the integrated prior allows for initializations far away from the
correct solution and even for initializations that create ambiguous matching situa-
tions. The ambiguity is resolved by providing the respective statistical intensity prior.
Image noise, artifacts, or morphological changes in the image data are not part of
the expected joint distribution, and as a consequence they are masked out by the
integrated SIP model to achieve the desired alignment. As opposed to learning based
approaches to image registration that are required to train a large number of features,
image data, or pooled samples in order to achieve accurate alignment, there is no
cumbersome training step required for the integrated SIP model. As we will present
in our experimental chapter 5, the proposed prior model serves as a practical, efficient,
and robust model that constitutes a crucial building block of the comprehensive
non-parametric prior on the space of statistical intensity priors.

In medical image registration, the choice of the transformation model impacts
the complexity of the solution space and, hence, the achievable quality of alignment.
We will formulate the integrated statistical prior model for the most general case of
dense deformations in order to benefit a wide range of clinical applications. However,
the model is also applicable to constrained transformation models such as rigid
transformations. For certain clinical applications, it may further be desirable to adapt
the statistical intensity prior such that a constrained alignment of particular image
regions (e.g. specific organs) can be ensured. In section 3.4, the derivation for such a
constrained prior and an example application is presented.

3.1 Behavior of Traditional Registration Methods
Although traditional registration methods have proven to be fairly robust in many
clinical applications [Plui 03], they rely on purely data-driven criteria such as the pre-
viously introduced intensity-based similarity measures. As a consequence, registration
results will deteriorate in case the low-level image information is corrupted due to noise,
occlusion, or image reconstruction artifacts. In addition, certain multimodality combi-
nations show little morphological and anatomical commonalities, which is also why
the fusion of such modalities (e.g. PET/CT, SPECT/CT, PET/MR, or SPECT/MR)
is of high clinical importance. Traditional similarity measures like normalized mutual
information (NMI), entropy correlation coefficient (ECC) or correlation ratio (CR)
are then computed from noisy estimates of the respective underlying probability
distributions. Consequently, little work can be found that reports the accuracy of
traditional registration methods on clinical data that is degenerate. Although such
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(a) Computed Tomography (b) Positron Emission Tomography

(c) PET/CT

Figure 3.1: (a)-(b) Clinical example of complementary image modalities showing
a slice of the heart in head view. (c) Inaccurate convergence of traditional NMI
registration due to a typical CT image reconstruction artifact.
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data is usually treated as exceptional data within the technical community, in a clinical
setting artifacted patient data is very much common. In chapter 5, we introduce two
clinical applications that in the majority of the cases experience image artifacts. An
example of such degenerate image data where where traditional NMI registration fails
to properly align the images is given in Figure 3.1. Figure 3.1a shows a 256 × 256
pixels image slice of a CT heart acquisition including a bright and streaky windmill
artifact centered in the cardiac wall. Such artifacts are resulting from CT reconstruc-
tion errors that occur at metallic medical implants such as implanted pacemakers or
electrodes intended to support degenerate heart activity. Fig. 3.1b shows a 128 × 128
pixels image slice of a cardiac PET scan that visualizes cardiac function. In order
to register these inherently complementary image information, one could revert to
the previously introduced statistical similarity metrics such as NMI (defined in Eq.
(2.23)). The result of rigidly registering PET and CT volume using NMI is shown in
Fig. 3.1c.

The reason for the poor behavior of traditional data driven measures is revealed in
Fig. 3.1c, where the strong activity from PET, represented as bright intensities, aligns
with the image artifact in CT. The presence of image artifacts in the data may shift
the location of the similarity measure’s optimum. In addition, such degenerate data
increases the number of locally optimal solutions with only one of them representing the
desired clinical matching. Though many factors play an important role in the success
of a registration method (e.g. choice of the optimization technique, interpolation
strategy, multi-resolution approaches, etc.), it is usually inconvenient and at times
impractical to determine the optimal set of parameters on degenerated data sets. As
we can see from this examples, the performance of traditional similarity measures is
strongly degraded on artifacted data.

Another key problem with traditional registration methods, the problem of limited
capture range (i.e. the interval of parameters or distance away from the correct solution
that does not contain any local optima other than the correct solution), is documented
in Fig. 3.2. In this figure, we see the 2-d rendering of a clinical 3-d SPECT/CT data set
at different spatial alignments. The visualized alignments describe the capture ranges
for traditional mutual information-based registration technique tested by translational
initializations Φ0

S between ±50 mm away from the ground truth along the x1, x2, and
x3-dimensions. One can notice the limited range along each parameter dimension for
this type of image data visualizing the challenging registration problem in routine
clinical use. The capture range is directly correlated to the robustness of a registration
method and, hence, to its clinical applicability. Its computation is rather difficult and
may vary significantly within an application due to a large variety of patient data
in clinical settings. The reason for the poor capture range on this data is revealed
in Fig. 3.1 by examining the SPECT image data. Due to the nature of the SPECT
imaging technique, the reconstructed images hold only few identifying structures (see
section 1.2 for more details on SPECT imaging). Though the 3-d image data would
allow for a robust estimation of probability distributions from the considered image
intensities, the limited availability of identifying image objects in SPECT leads to a
noisy description of the images’ joint intensity relationships.
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(a) CT (b) SPECT

(c) (d) Result profile: Φx1
(e)

(f) (g) Result profile: Φx2
(h)

(i) (j) Result profile: Φx3 (k)

Figure 3.2: Capture range visualization through a convergence experiment on transla-
tion parameters Φx1,2,3 using a 3-d clinical SPECT/CT data set with available ground
truth (GT). Result profiles plot final vs. initial distance from GT. (c)-(k) The images
next to these plots visualize the maximum (±) distance along dimension xi from
where registration still succeeds using ECC.
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3.2 Statistical Intensity Priors

Intensity histograms have proven to be very robust and meaningful in solving selected
computer vision problems. Swain and Ballard [Swai 91], for example, describe how
object detection and identification can be performed through comparing to a model
histogram that describes the searched object. Information such as color, brightness,
and size of objects within an image can be captured by intensity histograms. A
joint intensity histogram combines two 1-d intensity histograms and describes the
frequencies of intensity pairs in the two volumes under registration defined at a specific
alignment. Statistical similarity measures such as MI, its normalized versions, or
correlation ratio are computed utilizing the joint histogram as a key element because
it becomes distinct when the two matched images align.

The joint histogram can be thought of as a collection of point samples from a joint
probability density function (pdf) of the two given images. Assuming the two images
are specified by functions f1 and f2, where f2 is deformed by the displacement field u.
Then, the joint density can be inferred by the general representation of a normalized
Parzen-Window [Parz 62] estimator:

pu(i1, i2) ≡ 1

|Ω|

∫
Ω

Gσ(i1 − f1(x), i2 − f2(x + u(x)))dx, (3.1)

with a two-dimensional Gaussian kernel Gσ with variance σ, and u(x) denotes the
displacement field at location x. Note that the Parzen estimator is not limited to
Gaussian kernels. The density estimator for the marginal densities is defined analogous
in 1-d.

Figure 3.3 explains how the intensity relation between the images is described by
different contributions to a joint pdf or histogram of two images that align three disks.
In addition, Figs. 3.3a and 3.3b show the joint histogram for two different, but specific
example alignments. The first one matches the center of one disk with the middle
point between the two other disks. By examining the image space of Fig. 3.3a it
becomes clear that this initial alignment is ambiguous since one disk is at exactly equal
distance to both disks in the second image. Though this example alignment is purely
synthetic, it has practical value in simulating ambiguous matching situations that
could occur in clinical practice. One can imagine such ambiguous alignment situations
to occur in cancer treatment follow-up monitoring where lesions or tumorous tissue
appear or (hopefully) disappear in between two acquisitions. The role of registration
in follow-up studies is merely tumor growth quantification. Figure 3.3b describes an
accurate matching of two equal sized disks. Note how distinguished the joint histogram
becomes from the initial alignment once the image data is accurately matched.

Consequently, the joint intensity distribution can further be used as a fixed prior
model that holds knowledge about the probability of occurring joint intensities at accu-
rate alignment. Registration is then achieved by retrieving an optimal transformation
such that the resulting joint intensity distribution matches the fixed prior distribution
as described in [Leve 98, Herm02, Chun 02, Zoll 03]. It has been shown that those
models result in more robust registration methods with significantly larger capture
ranges than statistical similarity measures deliver. While fixed joint intensity prior
models increase robustness of multimodal registration techniques, the accuracy of such
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(a) Initial (b) Aligned

Figure 3.3: Joint histogram contributions of two disk images at a particular alignment.
The joint histogram becomes distinctive if two data sets are precisely aligned (a)-(b).
The joint histograms (bottom parts) are visualized as 3D height maps in logarithmic
scale.

purely prior knowledge driven methods is dependent on the accuracy of the statistical
intensity prior. The computed registration can only result in an alignment as good as
being described by the prior joint intensity model. Hence, it may introduce a bias
that will be reflected in a degraded registration solution. Therefore, the applicability
of such methods to routine clinical application is limited.

A powerful compromise to the abovementioned issues is the combination of statisti-
cal similarity measures and intensity priors as introduced in our early works [Guet 05]
where we proposed a more robust and more accurate similarity criterion for nonrigid
intensity-based multimodal image registration. At that time, we formulated this
compromise using a variational energy minimization framework yielding promising
preliminary results. Unfortunately, the theoretical foundations for such an integrated
statistical intensity prior model were not clarified. In the following section, we will
now present the Bayesian framework that provides the theoretical foundation for our
original combined approach. It will further allow us to formulate a comprehensive
statistical intensity prior model in later sections. The integrated SIP model generates
an optimization function that ensures consistency with current and prior observations
by granting flexible control between the two influences. It is not obvious how to
find the appropriate balance between the two observations. However, we found in
our experiments that the control parameter has an optimum value and in that way
addresses the adaptability issue of fixed joint intensity models.

3.3 Consistency of Current with Prior Observations

Assume we are given a representative set of pre-registered image pairs {f j1 , f
j
2}j=1,...,m,

where f jk : Ω ⊂ Rn → R. These image pairs may be obtained from various image
modalities or body sections. Each registered image pair gives rise to a specific joint
intensity distribution pj(i1, i2), stating which intensities i1 and i2 are likely to be in
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correspondence for the given image pair. The goal of this thesis is to derive means to
impose this knowledge during optimization in variational image registration algorithms.
The matching problem, therefore, formulated as finding the most likely displacement
field function u and joint intensity distribution pu, given the two images f1 and f2,
under the constraint that the joint intensity distribution pu is provided by the one
arising from f1(x) and f2(x + u(x)). That is we propose to maximize the conditional
distribution

P
(
u, pu

∣∣ f1, f2, {pj}
)

=
P
(
f1, f2

∣∣u, pu, {pj}) P(u, pu ∣∣ {pj})∫
u,pu

P
(
f1, f2

∣∣u, pu, {pj}) P(u, pu ∣∣ {pj})dudpu
∝ P

(
f1, f2

∣∣u, pu, {pj}) P(u, pu ∣∣ {pj})
∝ P

(
f1, f2

∣∣u, pu) P(pu∣∣u) P(u) P(pu ∣∣ {pj}),
(3.2)

with respect to the displacement field u. Proportionality in the above expressions
means that we have only neglected factors that do not depend on the displacement
field u and thus do not affect the maximization. In the second step in (3.2), we have
made the assumption that the prior decouples into a geometric prior P(u) on the
displacement field and a prior on the joint intensity distribution pu. This latter term
can be used to model intensity normalization that plays a major role in the success
of a multimodal registration technique. For now, we can assume P

(
pu
∣∣u) to be 1

because pu is derived from u but fixed for a particular u, and we will ignore this
term. In section 3.3.2, it will become clear that this term bears a certain significance
for clinical applications, and we will describe a respective model for it.

Consequently, the optimization problem in (3.2) separates into three factors that
can be interpreted as follows: The first factor provides the measurement likelihood,
stating how likely the two images are given the correspondence induced by the
displacement field u. The second factor in (3.2) indicates the a priori probability of a
displacement field u. And the last factor specifies how consistent the estimated joint
intensity distribution is with respect to the previously learned ones. In the following
sections, we will describe how these three expressions can be modeled.

Low Confidence Prior

In clinical applications, large amounts of prior knowledge may not always be available
instantly and only build up over time. In this case, we can assume only a low confidence
in our prior model. As the availability m of previously registered data sets increases,
the confidence in the prior model increases.

Assuming there is only one representative pre-registered data set available (i.e.
m = 1), then the set {pj} consists only of one learned probability distribution pl and
the respective prior probability can be formulated as:

P
(
pu
∣∣ {pj}) = P

(
pu
∣∣ pl) ∝ exp

(
−α1

Isip(pu, p
l)2

2 σ2
`

)
(3.3)
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If we now consider the log likelihood of the posterior probability P
(
u, pu

∣∣f1, f2

)
, the

following minimization problem will lead to the MAP point:

E(u, pu, f1, f2) = − log
(
P
(
u, pu

∣∣f1, f2

))
= Idata + α1

Isip(pu, p
l)2

2 σ2
`

+ α2 Ismooth(u), (3.4)

where Ismooth and Idata refer to the smoothness and data term respectively. The
parameters α1 and α2 determine the influence of prior knowledge and smoothness
assumption, respectively. In our experiments, we show how a reliable value for α1

can be found deterministically based on the available image information. Without
supervised training, accurate (theoretical) derivation of parameter α1 is difficult.
In [Sabu 05], Sabuncu et al.propose to automatically estimate the influence of prior
samples as a fraction between the amounts of prior and observed samples. As it
appears, this computation is merely a shifting of the problem to the decision of how
many samples to draw from the currently observed and from the prior distribution.
Moreover, the proposed parameter computation has not been validated for feasibility
on clinical, multimodal data. Nevertheless, we experimentally show that a robust
value of α1 can be determined to achieve robust and accurate image registration.

Formulation (3.4) is equivalent to our previously proposed method in [Guet 05]
with Idata defined as the maximum mutual information similarity and Ismooth being
the standard Tikhonov regularizer [Tikh 77]. Note that using a Gaussian kernel
in (3.3) rather than an exponential one, as in our previous work, will lead to an
additional factor of Isip in the gradient expression of (3.4) that provides better
convergence properties as the gradient goes to zero for pu → pl. We now realize that
a minimum of (3.4) corresponds to the Maximum A Posteriori point of our Bayesian
posterior probability formulation (3.2) for the nonrigid registration problem justifying
an additive integration of the prior term in the variational optimization framework
in [Guet 05]. It also provides an explanation why such an arrangement provides a
favorable solution.

Similar to incorporating shape priors for robust segmentation, e.g. as presented
in [Crem06a], the above formulation (3.4) proposes to complement a traditional data
term with an energy that measures the closeness to a given prior joint pdf. Our
approach differs from previous approaches in that the prior is used as an additional
constraint during the registration optimization process. Most prior-driven approaches
that allow for small number of prior data sets have been using solely the distance to a
prior as a similarity metric for registration [Leve 98,Chun 02,Gan 04,Herm02] rather
than integrating it into a combined model. As the statistical intensity prior integrates
with the data term in (3.4) we will refer to it as integrated statistical intensity prior
model. Slightly different approaches from formulation (3.4), but with similar strengths,
have been proposed by Sabuncu et al.and Zoellei [Sabu 08,Zoll 06a] who pool together
samples from prior and current observations. The pool of samples can be compared
to our combined energy (3.4). Despite the promising preliminary registration results
of these two methods, they remain largely unvalidated on routine clinical data.

Figure 3.4 gives a visual interpretation of the proposed integrated model for the
previously mentioned ambiguous matching problem involving three disks. This figure
shows the three spaces that are deeply intertwined during image registration, i.e the



34 Chapter 3. Statistical Intensity Prior Model

Final

I

Final

II

Initial Initial 

+ 

Statistical Prior

Final

Im
a

g
e

 S
p

a
ce

H
is

to
g

ra
m

 S
p

a
ce

E
n

e
rg

y
 S

p
a

ce
H

is
to

g
ra

m
 S

p
a

ce

Figure 3.4: Registration problem (left column) that shows two equally optimal
solutions for data-driven registration methods (2 middle columns). Adding statistical
priors about the correct solution dissolves such ambiguities (right column).

image space, the histogram space, and the energy landscape. Each column in Fig.
3.4 represents one stage during registration of the images as described by the three
different spaces. The top row visualizes the alignment images with overlayed object
gradient edges of the reference image, the middle row plots the joint histograms of the
alignment as 3-d height maps in log scale, and the bottom row prints an abstract but
corresponding energy landscape. The black dot in this energy landscape represents
the current alignment. For traditional methods, the schematic energy landscape is
portrayed in the bottom row along the first three columns and visualizes the ambiguity
of the matching problem by two dominant equal optima. Thus, traditional methods
such as MI will either match the one disk in the alignment image with the left of the
two reference disks (column “Final I”) or with right one (column “Final II”). Suppose
the matching with the right disk is clinically relevant. Using the joint histogram of the
alignment (“Final II”) as a prior will alter the energy landscape as shown in column
“Initial + Statistical Prior”. Note that in histogram space both prior and the data
histogram are optimized upon resulting in the final alignment as displayed by the
rightmost column in Fig 3.4.

The combined model has a number of favorable properties. First, this model
leverages prior knowledge as an additional information channel during optimization.
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Second, the flexible encoding using weights allows the prior to be turned on or off. In
fact, using a multi-resolution scheme during registration, prior knowledge could only
be used in coarse resolution levels. And third, in case no prior knowledge is available,
the combined model reverts to pure data-driven optimization Idata corresponding to,
for example, maximum mutual information.

The minimization of this low confidence prior model is achieved by descending the
gradient of a combined cost function that optimizes the similarity of both volumes
as well as the closeness of both volumes’ joint intensity distribution to the statistical
intensity prior. Minimization of energy (3.4) by gradient descent leads to a partial
differential equation for u of the form:

∂u

∂t
= −∂E(u, pu, f1, f2)

∂u
(3.5)

= −∂Idata(u, pu, f1, f2)

∂u
− α1

1
2
∂Isip(pu, p

l)2

∂u
− α2

∂Ismooth(u)

∂u
.

The respective partial derivatives of the three terms are computed as follows.

3.3.1 The Variational Derivatives

Given the mathematical framework of calculus of variations, each gradient can be
derived using the Parzen density estimator. The respective partial differential equation
is:

∂p(i1, i2)

∂u
=

1

|Ω|

∫
Ω

∂2Gσ

(
i1 − f1(x), i2 − f2(x + u(x))

)
∇f2(x + u(x))dx,(3.6)

where x is the N-dimensional spatial location, and ∂2Gσ(. . .) denotes the partial
derivative after Gσ’s second variable. For example, ∂2p(i1, i2) = ∂

∂i2
p(i1, i2).

Statistical Intensity Prior Energy

The term IsipKL
is designed to ensure the statistical consistency of the current joint pdf

with the prior. This can be done by computing the Kullback-Leibler (KL) divergence
between observed and prior pdf:

IsipKL
(u) =

∫∫
R
pou(i1, i2) ln

pou(i1, i2)

p`(i1, i2)
di1di2 (3.7)

with pou denoting the observed joint intensity distribution dependent on u, and
p`(i1, i2) representing the prior joint intensity distribution of a previously aligned data
set. Equations (3.24) and (3.7) reveal the relationship of IsipKL

and IMI. Mutual
information is the KL divergence between observed joint pdf and the product of the
observed marginals, whereas in IsipKL

the product of the marginal densities is replaced
by the training data.

In the calculus of variations, the Gateaux derivative yields the gradient for the
statistical prior energy functional:
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∂IsipKL
(u, f1, f2, ũ)

∂ε

∣∣∣∣
ε=0

=
∂IsipKL

∂ε
=

∂

∂ε

∫∫
R

pou+εũ(i1, i2) ln
pou+εũ(i1, i2)

p`(i1, i2)
di1di2

. . . =

∫∫
R

∂

∂ε
pou+εũ(i1, i2) · ln(pou+εũ(i1, i2)) + pou+εũ(i1, i2) · ∂

∂ε
ln(pou+εũ(i1, i2))

− ∂

∂ε
pou+εũ(i1, i2) · ln(p`(i1, i2)) di1di2

=

∫∫
R

[
1 + ln

(
pou+εũ(i1, i2)

p`(i1, i2)

)]
∂

∂ε
pou+εũ(i1, i2) di1di2 (3.8)

with

p`(i1, i2) =
1

|Ω|

∫
Ω

Gγ

(
f `1(x)− i1, f `2(x)− i2

)
dx (3.9)

being derived from previously aligned image data, and hence not dependent on u.
The observed joint density is written as

pou+εũ(i1, i2) =
1

|Ω|

∫
Ω

Gσ (f1(x)− i1, f2(x + u(x) + εũ(x))− i2) dx (3.10)

and its partial derivative is

∂

∂ε
pou+εũ(i1, i2) =

1

|Ω|

∫
Ω

∂2Gσ (f1(x)− i1, f2(x + u(x) + εũ(x))− i2) ·

· ∇f2(x + u(x) + εũ)ũ(x) dx, (3.11)

where ∂2 denotes the partial derivative after the function’s second variable. Re-
placing equation (3.11) in (3.8) and letting ε = 0 yields

∂IsipKL

∂ε
=

1

|Ω|

∫∫
R

∫
Ω

Lu(i1, i2) · ∂2Gσ (f1(x)− i1, f2(x) + u(x)− i2) ·

· ∇f2(x + u(x)) · ũ(x) dxdi1di2 (3.12)

with
Lu(i1, i2) =

[
1 + ln

(
pou(i1, i2)

p`(i1, i2)

)]
.

Note that the following formula holds for partial differentiation and the convolution
operator

∂

∂xi
(f ∗ g)(x) =

∂f

∂xi
∗ g = f ∗ ∂g

∂xi
(3.13)
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Eventually, we have

∂IsipKL

∂ε
=

1

|Ω|

∫
Ω

[
∂

∂i2
Lu(i1, i2) ∗Gσ

]
(f1(x), f2(x + u(x)))

·∇f2(x + u(x)) · ũ(x) dx (3.14)

and
∂

∂i2
Lu(i1, i2) =

∂2p
0
u(i1, i2)

p0
u(i1, i2)

− ∂2p
`(i1, i2)

p`(i1, i2)
. (3.15)

The gradient of the energy functional with respect to u, i.e. ∇uI, comprising
the Kullback-Leibler divergence between observed and prior joint intensity densities
results from the following scalar product, as defined in section 2.1:

∂IsipKL
(u, f1, f2, ũ)

∂ε

∣∣∣∣
ε=0

= 〈∇uIKL(u), ũ〉H = 0. (3.16)

This leads us to the partial derivative:

∂IsipKL
(u)

∂u
= − 1

|Ω|

[(
∂2p

o
u(i1, i2)

pou(i1, i2)
− ∂2p

`(i1, i2)

p`(i1, i2)

)
∗Gσ

]
(f1(x), f2(x + u(x))

· ∇f2(x + u(x)). (3.17)

We can see that the term
∂2pou(i1,i2)

pou(i1,i2)
− ∂2p`(i1,i2)

p`(i1,i2)
serves as a comparison function. In fact,

alignment is achieved by continuous adjustments of the joint intensity model until it
resembles the learned joint pdf. Instead of taking the nearest most likely intensity
correspondence into account, intensity correspondences learned from previous, correct
alignments are considered.

Jensen-Shannon Divergence

The Kullback-Leibler divergence is a distance measure between distributions, however,
it is not a distance metric. That can lead instabilities and incorrect estimations with
respect to our gradient estimation for values of the joint distribution that are close to
zero. The following chapter explains these issues on an academic example.

The Jensen-Shannon divergence has further desirable properties besides being
symmetric and a metric. For example, it still relates to other information-theoretic
functionals such as the KL-divergence or Mutual Information and hence it shares
their mathematical properties and intuition. Furthermore, joint intensity distributions
compared with the JS-divergence can be weighted and we introduce a variant of our
prior model in the next section that makes use of this. The Jensen-Shannon divergence
is defined as

IsipJS

(
pou || p`

)
=

1

2
IsipKL

(
pou || pu

)
+

1

2
IsipKL

(
p` || pu

)
, (3.18)

where

pu =
pou + p`

2
. (3.19)
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Using the definitions and derivatives for the KL-divergence from above, we can
derive the Jensen-Shannon gradient as follows

∂IsipJS
(pou, p

`, ũ)

∂ε

∣∣∣∣
ε=0

=
1

2

∂IsipJS
(pou, pu)

∂ε
+

1

2

∂IsipJS
(p`, pu)

∂ε
= . . .

= . . .

=

∫∫
R

[
1

2
ln

(
pou+εũ(i1, i2)

p(i1, i2)

)]
∂

∂ε
pou+εũ(i1, i2) di1di2 (3.20)

Setting

Lu(i1, i2) =

[
1

2
ln

(
pou+εũ(i1, i2)

p(i1, i2)

)]
the needed partial derivative can be computed as

∂

∂i2
Lu(i1, i2) =

1

2

[
∂2p

0
u(i1, i2)

p0
u(i1, i2)

− ∂2pu(i1, i2)

pu(i1, i2)

]
. (3.21)

Then, the variational gradient of the Jensen-Shannon divergence can be written as

∂IsipJS
(u)

∂u
= − 1

2 |Ω|

[(
∂2p

0
u(i1, i2)

p0
u(i1, i2)

− ∂2pu(i1, i2)

pu(i1, i2)

)
∗Gσ

]
(f1(x), f2(x + u(x))

· ∇f2(x + u(x)). (3.22)

Note how the comparison function changed as compared to (3.17). The term
∂2p0

u(i1,i2)

p0
u(i1,i2)

− ∂2pu(i1,i2)

pu(i1,i2)
shows us that the currently observed joint intensity model gets

updated until it resembles the average joint pdf between observed and learned pdf. It
is an intriguing observation that this variational gradient computation ensures the
symmetry property of JS.

Mutual Information

To model the first factor in (3.2) we are free to choose any of the previously introduced
data comparison or similarity metrics. However, by reverting to the well-known
concept of maximal mutual information, we achieve a consistent intuition for our
comparison measures since Mutual Information, Kullback-Leibler and Jensen-Shannon
divergence are closely related information-theoretic similarity measures. The Mutual
Information between two images f1 and f2 is maximized by stating that they are
more likely to be aligned if the two images f1(x) and f2(x + u) are statistically more
dependent:

P(f1, f2 |u, pu) ∝ exp
(
IMI

(
f1(x), f2(x + u)

))
, (3.23)

with the mutual information IMI being defined as:

IMI

(
f1(x), f2(x+u(x))

)
=

∫
R2

pu(i1, i2) log
pu(i1, i2)

pf1(i1)pf2(i2)
di1di2, (3.24)
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where i1 = f1(x), i2 = f2 (x + u(x)), and pf1(i1), pf2(i2), pu(i1, i2) are the marginal
and joint intensity distributions estimated from f1(x) and f2(x+u(x)).

In the statistical inference (3.2) this constraint will favor displacement fields u
that maximize the statistical dependency between two random variables in form of the
given images. In order to retrieve the alignment that yields the maximum MI between
reference and alignment function, we define energy term IMI as the negative MI in
(3.24). The alignment function f2 is related to the reference function f1 through the
displacement field u. Similar to the statistical prior energy gradient, the computation
of the variational derivative using the definitions from above yields the gradient of
mutual information energy as follows:

∂IMI(u)

∂u
=

1

|Ω|

[(
∂2p

o
u(i1, i2)

pou(i1, i2)
− ∂2p

o
u(i2)

pou(i2)

)
∗Gσ

]
(f1(x), f2(x + u(x))

· ∇f2(x + u(x)), (3.25)

where ∗ denotes the convolution operator, Gσ is a two-dimensional Gaussian with
standard deviation σ, and |Ω| is a normalizing constant. Similar to (3.17), the term
∂2pou(i1,i2)

pou(i1,i2)
− ∂2pou(i2)

pou(i2)
serves as a comparison function. It implicitly takes the knowledge of

the nearest most likely intensity correspondence into account. Hermosillo, Chefd’Hotel
and Faugeras have found this in their work on multimodal image matching [Herm02].

Smoothness Prior on the Displacement Field

The last factor in (3.2) allows to impose a prior on the displacement field u stating
which displacement fields are a priori more or less likely. As proposed in [Roth 05],
one could also learn such priors from training sequences of optic flow fields. Since
our contribution is the statistical modeling of priors on the intensity transformation
between the two images, we shall merely impose a common smoothness prior on the
displacement field:

P(u) ∝ exp (−α2Ismooth(u)) . (3.26)

In this work we use the smoothness prior that was pioneered in the seminal work of
Horn and Schunck [Horn 81]:

Ismooth(u) =
1

2

∫
Ω

|∇u(x)|2 dx, (3.27)

with x ∈ Rn. The gradient of the smoothness constraint leads to the diffusion term
4u:

∂Ismooth(u)

∂u
= div

(
Φ′smooth(|∇u|)
|∇u|

∇u
)

= div(∇u) = ∆u, (3.28)

where Φsmooth(|∇u|) = 1
2
|∇u(x)|2, and ∆u =

∑n
i=1

∂2u
∂x2

i
denotes the Laplace operator.

The choice of a suitable smoothing term or geometric prior Ismooth is usually
made based on the type of application. More sophisticated priors are conceivable,
for example non-quadratic (robust) smoothness priors that allow for discontinuities
in the estimated displacement fields (cf. [Brox 04]), an edge-based smoothness term
that changes from an isotropic smoothing in homogeneous regions to anisotropic



40 Chapter 3. Statistical Intensity Prior Model

smoothing along contours of the image [Herm02], a linear-elastic smoothing as
described in [Chri 01], or a curvature regularization smoothness term as proposed
in [Fisc 03].

3.3.2 Intensity Normalization

Some types of imaging modalities such as emission imaging show incoherent intensity
ranges across patient populations due to their dependence on various patient parame-
ters. For example, molecular image intensities represent counts of activity that cannot
be normalized as reliable as, for example, CT intensities that are based on Hounsfield
units (HU). Instead, the uptake in PET images, can be roughly quantified using the
standard uptake value (SUV) that utilizes information such as amount of injected
radionuclide activity, patient weight and height, body surface area, exposure time, and
acquisition protocol parameters. However, SUV does not result in intensity values that
fall into a standardizable range such as HU. Depending on scanner type (i.e. hybrid
or stand-alone), acquisition protocol (i.e. gated vs. non-gated, attenuation corrected
(AC) vs. non-AC), and the patient itself, the acquired intensity range may vary from
4-bit to up to 16-bit. That may significantly affect the performance of prior models
such as the integrated statistical intensity prior. However, we have observed that
(i) this problem can be treated as an application data dependent scaling issue, and
(ii) the intensity range remains constant within a particular setting (i.e. acquisition
protocol, scanner type). Due to the occurrence of activation hot spots or image
artifacts, that are usually very bright but small in size, intensity normalization based
on minimum and maximum intensity is not feasible. Note that if range normalization
is not handled carefully, neither data-driven nor prior influenced registration methods
will succeed.

Therefore, it becomes necessary to optimize the image intensities for consistency
across populations in order to ensure consistency with the learned distributions. In
the previous chapter, we considered the conditional distribution P(pu|u) to be 1. It
models the probability of a joint intensity distribution given the displacement field u
by stating that a given joint intensity distribution is more likely when it resembles
a representative reference distribution. This term is only of practical importance
and for normalized modalities such as CT, it is not necessary due to a consistent
representation of objects. In other words, P(pu|u) is modeled to incorporate an
intensity normalization optimization. This allows us to estimate an optimal intensity
transformation between the current and the prior data set using the joint intensity
model at the same time as the registration is computed. We model the conditional
probability as follows

P(pu|u) = exp
(
−α Iinorm(pou, p

`,Φi)
)

(3.29)

where Iinorm is an intensity normalization term, pou and p` denote currently observed
and statistical intensity prior distribution, respectively, and Φi defines an intensity
transformation that estimates the intensity variation between patients describing a
simple affine intensity model

Φi(i) = s · i+ c. (3.30)
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Then, the optimal intensity transformation minimizes the following JS-divergence
between the two distributions

Iinorm(pou, p
`,Φi) = IsipJS

(
pou (f1,Φi(f2)) || p`(f1, f2)

)
=

1

2

∫
R2

pou(i1,Φi(i2)) ln
pou(i1,Φi(i2))

pΦi
(i1, i2)

di1di2 +

1

2

∫
R2

pΦi
(i1, i2) ln

pΦi
(i1, i2)

p`(i1, i2)
di1di2 (3.31)

with

pΦi
(i1, i2) =

pou(i1,Φi(i2)) + p`(i1, i2)

2
.

This intensity normalization model is derived for the clinical application of PET or
SPECT/CT imaging using the assumption that CT intensities are normalized by
Hounsfield units. Therefore, the linear intensity model is only applied to the molecular
imaging modalities, and without loss of generality, we define f2 to describe those
modalities.

In order to deal with the intensity range scaling issue in molecular imaging, we
are recovering the optimal scale s that maximizes the conditional probability (3.29).
Thus,

ŝ = arg min
s
IsipJS

(
pou (f1,Φi(f2)) || p`(f1, f2)

)
, (3.32)

where f2 corresponds to the molecular image intensities, and constant c is chosen to
be zero. Finding the maximum of (3.29) is performed simultaneously to retrieving the
optimal displacement field u by retrieving the MAP of (3.2). Therefore, our Bayesian
formulation incorporates both spatial and intensity normalization in one framework.
We are aware that far more elaborate intensity modeling techniques exist than our
simple affine attempt (3.30). For example, Jäger et al. [Jage 09] non-rigidly register
the joint intensity distribution of magnetic resonance images to a template image and
achieve intensity normalization. The goal of this work, however, is to derive advanced
intensity prior models in medical image registration.

In clinical practice, one could accelerate the optimization of (3.2) by performing
the maximization of (3.29) beforehand and keep ŝ fixed during the registration
optimization.

3.4 Constrained Statistical Intensity Prior
For some clinical applications, the choice of a constrained rigid or affine transformation
model is more appealing due to increased simplicity, robustness, and efficiency of the
registration procedure. Furthermore, the compromised overall registration accuracy
may be acceptable since the clinical focus is only directed to parts of the image or
volume (e.g. cardiac imaging). The following section describes a constrained statistical
intensity prior model designed to ensure consistency with intensity intervals of the
learned joint intensity relationships. We observe during our experiments that subsets
of joint intensity distributions often correspond to specific regions or organs of interest
in the medical image domain. Therefore, constraining the previously introduced
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Figure 3.5: Eight frontal slices of non-attenuation corrected (NAC) PET images
of PET/CT volumes acquired by hybrid scanners visualized using the same win-
dow/leveling function as in Fig. 3.6. This figure shows the unnormalized images.
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Figure 3.6: Eight frontal slices of non-attenuation corrected (NAC) PET images
of PET/CT volumes acquired by hybrid scanners visualized using the same win-
dow/leveling function as in Fig.3.5. This figure visualizes the normalized version.
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(a) CT (b) SPECT/CT W/L 1 (c) SPECT/CT W/L 2

Figure 3.7: Three anterior views of a misaligned cardiac SPECT/CT data set, the
CT (a), and the SPECT overlayed on CT with two different window level settings 1,
(b) and (c). The figure visualizes the challenging multi-modal registration problem.

integrated prior model can be interpreted as implicitly adding spatial information to
the statistical intensity prior.

The following rigid registration method is designed specifically to address the clini-
cal accuracy requirements of cardiac SPECT/CT imaging with the goal of providing a
highly accurate registration approach that can be utilized as a fully-automatic method.
Details on the clinical imaging technique and its dependency on accurate registration
are provided in application section 5.3. The required accuracy in aligning cardiac
SPECT/CT data is achieved by introducing a weighted intensity co-occurrence prior
about an accurate alignment of just the mediastinum, as visualized in Fig. 3.10.

Two aspects are of importance for this application: (i) Given the noisy clinical
data (Fig. 3.7), employment of the integrated SIP model is desirable to ensure
robust and accurate alignment in general, and (ii) since misalignments within the
heart region cause image artifacts, see section 5.3 for detailed description, the clinical
accuracy requirement is mainly addressing the cardiac region. In the following, we
derive a constrained SIP model considering those aspects. The achieved accuracy
of the proposed approach is further compared to the accuracy of standard mutual
information (MI) [Well 96,Maes 97] and the unconstrained integrated SIP with the
focus of applicability. Achieving higher accuracy and robustness than MI in this
application, the constrained statistical intensity prior model is not limited to cardiac
SPECT/CT imaging.

3.4.1 Weighted Jensen-Shannon Divergence

In order to achieve the registration accuracy and robustness needed in CT-based
AC for SPECT reconstruction, some open questions w.r.t. the integrated SIP model
need to be answered. How does the choice of the α1-parameter in (3.4) influence the
registration of cardiac SPECT/CT and how should it be selected for this application?
Secondly, is the Kullback-Leibler (KL) divergence a sufficient distance measure for
ensuring consistency with learned joint pdfs? And the most intriguing open question:
how well do the proposed schemes (3.4) and (3.35) generalize over a large pool of
patients?

In contrary to the general SIP model (see chapter 4), the prior confidence value
α1 is difficult to derive for the integrated SIP model. Nevertheless, it is feasible to
estimate a robust and meaningful α1 based on empirical observations on synthetic
as well as real clinical data. Synthetically, one can investigate the behavior of the
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Figure 3.8: Influence of the α1-parameter (eq. (3.4)) on the overall cost for a simple
translation probing experiment in range [-100 mm; +100 mm] on SPECT/CT data.
Values for α1 are in range [0.6; 0.1] from top to bottom curve.

proposed energy (3.4) for a simple 1-d translation along an arbitrary coordinate axis
passing through ground truth alignment. Figure 3.8a, for example, shows the results
of such a synthetic experiment for different α1 values. We note that a larger α1, i.e.
more prior influence, has a smoothing effect on the overall cost function. However,
large values for α1 also imply a strong tendency towards the prior that in return
may limit the adaptability to a larger patient population. Therefore, an α1 = 0.2
is observed to be a good trade-off between the two forces. Decreasing the influence
of MI allows to smooth out its local optima while still optimizing for the maximum
mutual information that both images share.

Most previous work on prior based image registration [Chun 02,Soma 03,Guet 05,
Crem06b] utilize the KL-divergence to measure the (dis)similarity of probability
distributions. In a discrete formulation, this can be written as:

IsipKL

(
poΦS

, p`
)

= KL
(
poΦS
|| p`
)

=
∑
i,j

poΦS
(i, j) log

(
poΦS

(i, j)

p`(i, j)

)
, (3.33)

where poΦS
is the observed joint pdf of two volumes related to each other by rigid

transformation ΦS, and p` is the joint pdf learned from two previously aligned
volumes. As previously discussed, the KL-divergence is not symmetric and Figure
3.9a illustrates the complication originating from this asymmetry when comparing two
artificial distributions. We can observe that dissimilarities between the distributions
may create opposite local contributions to KL dependent on the order of comparison.
Consequently, local measures of the joint intensity distribution such as the previously
derived gradients will be negatively influenced. The more appropriate statistical
measure addressing this issue is provided by the Jensen-Shannon (JS) divergence that,
in a discrete formulation, is defined as:

IsipJS

(
poΦS

, p`
)

= JS
(
poΦS
|| p`
)

=
1

2

(
KL
(
poΦS
|| p
)

+ KL
(
p` || p

) )
, (3.34)
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(a) Kullback-Leibler Divergence (b) Jensen-Shannon Divergence

Figure 3.9: Two plots of individual contributions from two artificial distributions for
pou and p` to (a) KL and (b) JS divergence. The area under the curve (gray) denotes
the KL and JS value. Note that differences in the distribution have positive, limited,
and comparable contributions to JS, but not to KL.

where p =
poΦS

+p`

2
. Figure 3.9b nicely portraits the symmetry properties of JS-

divergence. Besides correctly handling local measures, symmetry is of further impor-
tance when we want to emphasize on local contributions in the joint pdf originating
from, for example, specific organs of interest.

Misalignments of the SPECT heart image into the lung region of CT attenuation
map introduce artifacts that can lead to false diagnosis. Prior knowledge about the
correct mapping within this area is important to ensure such a mapping in future
registrations. An implicit property of the integrated SIP model is that stored prior
information in the learned joint pdf is global and to some extent influenced by the size
of the background. Local alignments are driven by the global matching especially if the
transformation model is not capable of allowing local refinements such as rigid models.
Thus, we propose a formulation of the prior model that utilizes local information
stored in the learned joint pdf. In other words, the constrained statistical intensity
prior formulation is given by:

Iω,sipJS
(poΦS

, p`) = ω · IsipJS

(
poΦS

, p`
)

=
1

2

∑
Ω

ω(i, j)

[
poΦS

(i, j) ln

(
poΦS

(i, j)

p (i, j)

)
+ (3.35)

p`(i, j) ln

(
p`(i, j)

p (i, j)

)]
,

where ω ∈ [0, 1]|Ω|×|Ω|, and · denotes the element-wise multiplication in the discrete
case. The term ω will be chosen such that it penalizes organ specific intensity
matchings that are inconsistent with a learned distribution. Hence, this penalty term
introduces, to some extent, spatial information to intensity-based registration. Organ
specific appearances in the joint intensity distribution can be estimated by either a
segmentation or a manual outline of the organ of interest, see discussions below for
details on the choice of ω. A crucial assumption of ω is that penalties need to be
assigned comparably for differences between prior and joint pdf, see discussion KL
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vs. JS above and Fig. 3.9. This requires a symmetric and strictly positive similarity
measure on distributions.

The rigid transformation between the two data sets is obtained by minimizing the
following expressions corresponding to the MAP point of the posterior distribution
in (3.4) describing the limit case of the general SIP model. Instead of retrieving a
displacement field u, we are solving now for the parameters of transformation ΦS.
Further applying the intensity normalization step as described in section 3.3.2, we
optimize a transformation Φ̂ such that

Φ̂ = arg min
Φ={ΦS ,Φi}

[
(1− α) · I∗MI (poΦ) + (α) · Iω,sipJS

(
poΦ, p

`
Φ

)]
(3.36)

where I∗MI = −IMI , and Φ is composed of a spatial rigid transformation ΦS that
aligns SPECT and CT volume and an intensity transformation Φi that warps p` to
poΦS

to compensate for patient specific intensity variations. Φi is a 1-dimensional linear
intensity transformation, as defined in (3.30), between the prior SPECT intensities
and the intensity range of the SPECT volume to be registered. In our implementation,
the two transformations are estimated sequentially but the framework above also
allows for concurrent estimation. Eq.(3.36) is optimized in the parameter space of
Φ = {ΦS,Φi} by using either a gradient descent strategy or other strategies such as
efficient line search, or hill-climbing optimizers.

Organ Specific Statistical Intensity Priors

The weighted Jensen-Shannon (wJS) divergence, defined in (3.35), is introduced to
ensure an organ specific intensity co-occurrence. In order to derive a suitable ω for
cardiac SPECT/CT registration, we segmented the heart in the SPECT volume using
the method in [Kohl 06]. The penalty area of ω, i.e. white area in rightmost image
of Fig. 3.10, is then generated by studying the joint pdfs for different alignments of
the segmented heart with the CT, see two middle images in Fig. 3.10. In Fig. 3.10,
the coordinate system is defined as follows: The origin is located in the lower left
corner of each image, the horizontal and vertical axis refer to CT and SPECT volume
intensities, respectively. Several interesting aspects are observed:

1. The joint intensity mappings corresponding to a segmented object in both
modalities occur in a limited region within the joint pdf space. This is true for
all possible spatial alignments of the two volumes (see two middle images in Fig.
3.10).

2. In order to ensure consistency with a learned distribution, the penalty term
needs to cover all intensity pairs that the object may generate in the joint pdf.
The reason is that a learned pdf not only states which intensities do match but
also provides knowledge about which intensities do not match.

3. Evaluating a similarity measure on a subset of the joint pdfs eliminates unwanted
influences from the unweighted learned distribution, e.g. background size
dependency, influences of defining global structures, or bright image artifacts
that usually occur outside the chosen subset.



48 Chapter 3. Statistical Intensity Prior Model

i1

i2

Figure 3.10: Observed joint pdfs of cardiac SPECT/CT data. From left to right, the
distributions are displayed for the full volume overlap, the heart overlap, and the
heart overlap at misalignment. The rightmost image presents the penalty term ω of
eq. (3.35) that is generated from the observations made in two middle images.

Using the defined ω (i.e. rightmost image in Fig. 3.10), we apply the proposed
constrained SIP model to a pool of cardiac SPECT/CT patients in the following
demonstrations sections.

3.5 Integrated Statistical Intensity Prior: Demon-
strations

Up to now, we have introduced a comprehensive statistical intensity prior model
and several flavors of it. This section shows several examples of the integrated
and constrained integrated SIP model on synthetic as well as clinical data and
demonstrates several key properties of the statistical intensity priors. We, further,
empirically estimate an optimal value of the confidence in the available prior data.
The section separates in two parts describing observations for the rigid and non-rigid
transformation models.

3.5.1 Robust and Accurate Parametric Registration

The robustness and accuracy of the integrated SIP for rigid transformation models
is validated on a clinical problem and can be explored in chapter 5. In this section,
we focus on synthetic and numerical experiments to gain some understanding in the
behavior of the implied parameters.

3.5.2 Non-Rigid Registration Initialization and Convergence

In a significant amount of clinical image data ambiguous matching situations arise
with only one clinically meaningful solution (e.g. in studies of disease or in certain
populations such as the elderly). Moreover, there are plenty of challenges in clinical
medical imaging data that pose limitations to intensity-based registration algorithms.
To investigate the clinical potential of the proposed prior model under a variety of
clinically realistic conditions, we demonstrate the model’s ability to handle topological
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(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 3.11: Mutual Information and Statistical Priors in the presence of image
artifacts. (a) Reference image, (b) initial alignment image, (c) alignment after MI,
(d) respective deformation field, (e) checkerboard visualization of (a) and (b), (g)
alignment after SIP, (h) respective deformation field, and (f) checkerboard visualization
of (a) and (g). Statistical intensity priors seems invariant to strong simulated artifacts.

changes and severe organ motion on simulated as well as synthetic and real clinical
data sets.

Simulating Image Artifacts

This completely synthetic experiment investigates a registration problem that involves
a simulated image reconstruction artifacts. The image of Fig. 3.11a contains a streak
artifact of varying bright intensities as they are noticed in the reconstruction of metal
implants in CT imaging. Data-driven image registration criteria such as MI tend to fail
to correctly register images containing such streak-like artifacts (see Figs. 3.11b, 3.11c,
and 3.11d). In this experiment, we use statistical intensity priors of rather sparse
distributions describing the few intensity matchings of the individual components
without the streaking artifact. Images 3.11f, 3.11g, and 3.11h illustrate the successful
registration when using statistical intensity priors. The checkerboard visualization
in image 3.11f nicely display the advantage of using statistical intensity priors. A
checkerboard visualization shows how well two images match locally by alternating
tiles of the two images like black and white alternate on a checkerboard. We observe
statistical intensity priors to be more robust than MI with regards to bright image
artifacts.

The subsequent experiments validate these preliminary and playful experiments
(Figs. 3.4 and 3.11) more extensively and thoroughly on a variety of simulated and
real clinical data sets.
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Figure 3.12: Examples of brain MR phantom images simulating expanding lesion
tissue. A normal brain image (left) is overlayed as an edge map on phantom images
including lesions of size r = 5 mm, r = 10 mm, and r = 19 mm. Corresponding ground
truth deformation fields are used to validate the registration algorithms.

Synthetic Brain MRI

To simulate changes in topology induced by expanding lesion tissue, we apply synthetic
deformations to 2-D brain MR phantom images and add a simple lesion intensity model.
The resulting images are typical in the clinical application of lesion follow-up (FU)
studies where registration is being used to quantify lesion growth. Figure 3.12 shows
sample images of synthetic lesion tissue visualizing this clinically relevant problem. It
can be observed how neighboring tissue is being pushed away with increasing lesion
size. The synthetic deformation is generated by locating eight radial basis functions
(RBF) around a simple, circular lesion model that simulates lesion intensities by
using an additive Gaussian noise model: Ilesion(x) = c + n(x), ∀x inside the lesion
with c being a constant. The ground-truth deformation field ugt(x) becomes a linear
combination of a set of compactly supported RBFs irregularly spaced over the image
domain: ugt(x) =

∑K
i=1 ciΦ(x− xi). We use Φ(x) = φ

(
‖x‖2
s

)
,x ∈ R2, with a

band-limited polynomial kernel φ(k) = (1 − k)4
+(3k3 + 12k2 + 16k + 4) for k ≥ 0,

where (1 − k)+ = max(1 − k, 0), s is a scale for the basis function, and ‖·‖2 is the
Euclidean norm on R2, see [Rohd 03]. The parameters s and ‖x‖2 are chosen such
that deformation vectors are still larger than 0 at 3r away from the lesion center, with
r being the lesion radius. In the following, we use radius r as a reference to the size of
the local deformation induced by the lesion. We are aware that more elaborate brain
deformation models exist (e.g. as proposed by Clatz et al. [Clat 05]). Nevertheless, our
phantom model already points to strengths and weaknesses of the validated algorithms
and serves well for the purpose of validating non-rigid registration algorithms.

Note that the ground truth deformation model differs from the dense deformation
model that we employ during registration. Since in clinical applications the underlying
type of deformation is unknown in most cases, a robust motion compensation algorithm
needs to allow for a variety of deformation types. For registration accuracy validation,
we compute the target registration error (TRE) that is generally defined using all
pixels within a region of interest:

TRE(x) =
∥∥ugt ◦ û−1(x)− x

∥∥
2
, ∀x ∈ ROI (3.37)
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(a) NMI (b) SIP (c) TREs for Increasing Lesion Sizes

Figure 3.13: Synthetic brain MRI registration experiment on handling topological
changes. Example registration results, (a) and (b), of a brain image without (edge
map overlay) to an image with a lesion of size r = 19 mm. While similar structures
are mapped correctly using statistical priors, MI gets trapped in local optima caused
by the appearing lesion. The proposed combined model using statistical intensity
priors shows a larger capture range than MI reflected by significantly lower TREs for
larger lesion sizes (c).

with ugt and û being the ground-truth and the retrieved deformation field, respectively.
In order to avoid estimating the inverse of the ground-truth deformation field, we
approximate the TRE as follows: TRE(x) ≈ ‖ugt(x)− û(x)‖2.

The phantom allows us to quantify registration accuracy and robustness for varying
lesion sizes representing varying deformations. We investigate algorithm performance,
both qualitatively and quantitatively, w.r.t. local optima, image noise, and presence of
topological changes. The two compared registration criteria are MI and the proposed
combined statistical prior model that we will refer to as statistical intensity priors
(SP). Moreover, we study the influence of the control parameter α1 on retrieving the
correct displacement field. Note that the proposed framework achieves registration
based on maximization of MI when α1 = 0.

Accuracy and Robustness Validation

Aligning a normal brain image to brain images containing lesions of varying sizes (i.e.
r ∈ [15, 27] mm) allowed the validation of the proposed method w.r.t. topological
changes and indicate the extent of the method’s capture range. The prior in this
experiment is derived from the joint intensity histogram of the reference image with a
copy of itself plus the lesion tissue and α1 = 0.4. Figure 3.13 shows sample MI and SP
registration results superimposed as edge maps on the alignment image for r = 19mm
and plots the respective TREs for all validated lesion sizes. It can be observed that
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(a) NMI (b) SIP (c) TREs for Increasing Prior Influence

Figure 3.14: Effect of prior influence on registration performance for noisy MR images
simulating lesion follow-up studies. Alignment image, r = 10 mm, is superimposed on
reference image, r = 19 mm, after registration using (a) MI and (b) 40% statistical
prior influence. The TRE statistics (c) for increasing amounts of prior knowledge
(note MI = 0%) suggest that there is an optimal choice for control parameter α1 at
about 20%-40% influence.

purely data-driven MI registration fails already for r = 17mm (Fig. 3.13c) due to the
existence of local optima that deteriorate MI to map local structures like the gray
matter with lesion tissue (Fig. 3.13a). SP proofs to be more robust (Fig. 3.13b) and
prevails with a much larger capture range (i.e. up to r = 25mm as shown in Fig.
3.13c).

Parameter Robustness

Our method requires the selection of several parameters that affect the overall perfor-
mance. We found in our experiments that the method is quite robust to variations in
σ′ and α2. The control parameter α1, however, can influence the registration result
more significantly. Therefore, we conducted numerical and quantitative experiments in
order to find the parameter’s optimal values for a wide range of applications. Here, we
registered two synthetic brain MR images that both include lesions (e.g. ralign = 10mm
and rref = 19mm). The images were further altered by additive Gaussian noise. Note
that the prior model does not include knowledge about the added noise and is gener-
ated from two identical synthetic lesion images as shown in Fig. 3.12. Consistent with
the previous experiment, MI based registration gets mislead to local optima whereas
SP using α1 = 0.4 robustly aligns the noisy images (Figures 3.14a and 3.14b). Varying
α1, as plotted in Figure 3.14c, and comparing registration results shows an optimum
range for α1 in [0.2, 0.4]. Due to the difference of prior and observed distribution
incurred by the added noise, registration accuracy decays as the influence of the prior
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model increases. Nevertheless, any influence of the prior model already improves the
registration accuracy of MI (α1 = 0).

The high accuracy of the integrated SIP model is mirrored in a root-mean-square
(RMS) error of 2 mm to the ground-truth deformation in both experiments.

3.6 Summary
We have introduced and validated a new integrated statistical intensity prior model for
both rigid and non-rigid transformation models. The introduced Bayesian framework
allows to incorporate multiple complementing influences that have a strong impact
for practical implementations and applications of the SIP model. We have shown
that the limitation to only one instance of prior knowledge still allows for accurate
and robust results in clinical applications addressing practical requirements such as
robustness or shortcomings such as limited availability of accurate prior knowledge.
In chapter 5, we will present a systematic validation of the introduced prior models on
routine medical image data in the context of two clinical applications. On simulated
data, prior models demonstrated an increased capture range, higher accuracy, and
larger robustness when compared to standard intensity-based registration methods.
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Chapter 4

Generalized Statistical Intensity Prior
Model

In the previous chapter, we developed a new integrated statistical intensity prior
model that combines samples from previously aligned and currently observed image
data. The integrated SIP model has a large capture range, which means that the two
volumes can be initially aligned far away from the optimal target alignment. The
integrated SIP model further shows more robust and accurate results where traditional
methods fail to align properly. It is, however, only capable of considering one instance
of prior knowledge at a time, which is a practical limitation once a larger database of
previously registered data is available.

In this chapter, we generalize the SIP formulation to a non-parametric modeling
of the space of prior joint intensity distributions. The prior model is defined as
a kernel density estimate on this infinite-dimensional function space that embeds
the available prior distributions. The variational gradients derived from this new
generalized SIP (GSIP) contribute to one total gradient embodying the contribution of
all relevant joint prior distributions. Therefore, the accuracy of the model is improved
by leveraging comprehensive prior knowledge, while maintaining other desirable
properties of the integrated SIP, such as extended capture range and increased
robustness. The integrated SIP is a special case of the GSIP. In order to compare
between non-rigid registration using the GSIP and traditional registration methods,
we performed a quantitative analysis on a series of medical and non-medical images
and show corresponding results.

In the following derivation of a statistical framework, we assume that we are given
an entire set of correctly registered pairs of image data sets. From these we can
compute respective joint intensity distributions and construct a nonlinear statistical
prior given by a kernel density estimate on the space of joint intensity distributions. It
can be introduced into the registration process in the framework of Bayesian inference
as described in the previous chapter. As a consequence, the subsequent image matching
process is not only driven by a maximization of statistical dependence of the individual
intensity distributions, but it will also favor matching results for which the resulting
joint intensity distribution is statistically consistent with the set of learned joint
intensity distributions. The following section introduces the generalization of the SIP
as well as the concept of statistical consistency.
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(a) ∇f1 + f2 (b) ∇f3 + f4

i1

i2

i3

i4

Figure 4.1: (a)-(b) Two PET slices overlayed with image edges from CT visualizing
the image alignment in coronal and axial view. Bottom row shows corresponding joint
intensity distributions. Bright colors indicate a higher count of PET/CT intensity
pairs, whereas dark areas denote their absence in the medical data.

4.1 Generalized SIP

In the context of medical images, we found that a single joint intensity distribution
is not sufficient to describe the variability of observed intensity correspondences:
Given a set of pairs of matched images from different modalities, one finds great
variations among the estimated joint distributions. Figure 4.1 shows coronary slices
as obtained with a PET and a CT scanner, registrations of this pair of coronary
slices and of a respective pair of axial slices. The inferred joint intensity histograms
characterizing the intensity correspondence look quite different. Table 4.1 shows the
KL distances between pairs of joint intensity distributions, each of which is estimated
from a registered pair of medical images. These observed variations are due to different
pairings of imaging modalities (PET, CT, SPECT), different acquisition protocols, or
simply due to the selection of slices from different areas of the same scan, i.e. to a
variation in the field of view.

Assume we are given a representative set of pre-registered images {f j1 , f
j
2}j=1,...,m,

where f jk : Ω ⊂ Rn → R. These pairs of image data may be obtained from various
image modalities and field-of-views. Each registered data set gives rise to a specific
joint intensity distributions pj(i1, i2), stating which intensities i1 and i2 are likely to
be in correspondence for the given image pair. The goal of this work is to derive
means to impose this knowledge into variational image registration algorithms. Recall
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KLD PET/CT
Whole Body

PET/CT
Lungs

SPECT/CT
Kidneys

PET/CT
Whole Body

0.0 0.7740 3.9609

PET/CT
Lungs

0.4871 0.0 3.8275

SPECT/CT
Kidneys

2.6614 2.5604 0.0

Table 4.1: KL divergences for aligned, sample medical data showing the dissimilarity
between joint intensity distributions (each of which was computed from the registration
of respective image/volume pairs), as shown in Figure 4.1. The matching of slices
requires different priors on the intensity correspondence, depending on which imaging
modalities, which slice locations and which acquisition protocols are used.

the definition of the joint intensity distribution using a Parzen-window estimator and
given a particular deformation field u as presented in (3.1):

pu(i1, i2) ≡ 1

|Ω|

∫
Ω

Gσ(i1 − f1(x), i2 − f2(x + u(x)))dx,

Similar to (3.2), we formulate the registration problem as maximization of the
conditional distribution

P
(
u, pu

∣∣ f1, f2, {pj}
)

=
P
(
f1, f2

∣∣u, pu, {pj}) P(u, pu ∣∣ {pj})∫
u,pu

P
(
f1, f2

∣∣u, pu, {pj}) P(u, pu ∣∣ {pj})dudpu
∝ P

(
f1, f2

∣∣u, pu, {pj}) P(u, pu ∣∣ {pj})
∝ P

(
f1, f2

∣∣u, pu) P(pu∣∣u) P(u) P(pu ∣∣ {pj}),
(4.1)

with respect to the displacement field u. Again, proportionality in the above ex-
pressions means that we have only neglected factors that do not depend on the
displacement field u and thus do not affect the maximization. The optimization
problem (4.1) splits into four factors with the first three being already introduced
in the previous chapter (i.e. the data, the intensity normalization, and the prior
smoothness term).

After understanding the role that the prior term of the integrated SIP model
plays in (3.2), we will now derive the fourth term of the final expression in (4.1) as a
nonparametric prior on the space of joint intensity distributions.

Consistency with Learned Distributions

The theoretical basis of probability distributions on infinite-dimensional function
spaces is provided by the theory of Gaussian processes [Rasm05]. A Gaussian process
is defined as a collection of random variables, any finite number of which have a joint
Gaussian distribution. This definition automatically implies a consistency requirement,
which is also known as the marginalization property. In other words, the examination
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of a larger set of variables does not change the distribution of the smaller set. A
Gaussian process is completely specified by its mean function and covariance function.
Considering the joint intensity distributions as random variables, we propose to model
the prior density as follows.

Given a set of joint intensity distributions {pj}j=1,...,m obtained from a set of
optimally registered image pairs, we can revert to concepts from kernel density
estimation [Silv 92,Coma 02,Huan 04,Crem06c] in order to derive the following prior
on the space of joint intensity distributions:

P(pu | {pj}) ∝
1

m

m∑
j=1

exp

(
− IsipJS

(pu||pj)2

2σ2
l

)
, (4.2)

where
IsipJS

(pu||pj) =
1

2

(
IsipKL

(pou||p) + IsipKL
(p||pj)

)
, (4.3)

denotes the JS divergence measuring the dissimilarity between the intensity dis-
tribution pu (induced by matching f1 and f2 under the displacement u) and the
previously learned joint distribution pj using the following components:

IsipKL
(p||pj) =

∫∫
R
p(i1, i2) log

p(i1, i2)

pj(i1, i2)
di1di2 (4.4)

p =
pou + pj

2
. (4.5)

In the optimization of (4.1), the distribution (4.2) therefore imposes statistical simi-
larity between the inferred intensity correspondence pu and the previously observed
joint intensity distributions {pj}j=1,...,m. The kernel width σl in the density estimator
is fixed to the average nearest neighbor distance computed for the set of joint intensity
distributions {pj}:

σl =
1

m

m∑
i=1

min
j 6=i
IsipJS

(pi||pj). (4.6)

The intuition behind this choice is that the width of the Gaussians is chosen such that
on average the next prior joint intensity distribution is within one standard deviation.
More sophisticated estimates, for example using cross validation, are conceivable and
we refer the reader to [Silv 92].

In the context of Gaussian processes, equation (4.2) can be understood as the
linear predictor using the squared exponential covariance function. It is interpreted as
the linear combination of n kernel functions, each one centered on a training point (i.e.
prior joint distribution). Now that the fourth factor in the inference problem (4.1)
is specified, we can maximize this probability by minimizing its negative logarithm,
which is given by an energy of the form:

E(u, pu, {pj}) = Iprior(pu, {pj}) + α1 Idata(pu) + α2 Ismooth(u), (4.7)

where these three energies impose several constraints with α1 and α2 steering the
influence of data and smoothness term. The energy Iprior guarantees that the joint
intensity distribution induced by a displacement field u is consistent with previously
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observed joint intensity distributions. According to (4.2), (3.23), and (3.27) the three
energies are given by:

Iprior(u, pu, {pj}) = −log

(
m∑
j=1

exp

(
−IsipJS

(pu||pj)2

2σ2
`

))
, (4.8)

Idata(u, pu) = −IMI

(
(f1(x), f2(x + u)

)
, (4.9)

Ismooth(u) =
1

2

∫ √√√√ n∑
i=1

∇ui(x)2 dx. (4.10)

Minimization of the energy (4.7) by gradient descent leads to a partial differential
equation for u as shown in (2.11) with individual gradients for each of the above
energy terms. For the gradient derivations of Idata and Ismooth, we refer the reader
to the previous chapter, where the gradient of MI and the well known diffusion term
∆u are presented for the two energies respectively. Given the previously introduced
mathematical framework of variational calculus, we can derive the gradient of Iprior
as follows:

∂Iprior(u, pu, {pj})
∂u

=
m∑
j=1

γj
IsipJS

(pu||pj)
σ2
`

∂IsipJS
(pu||pj)
∂u

, (4.11)

with normalized weights:

γj =
γ̂j∑
i γ̂i

(4.12)

γ̂j = exp

(
−IsipJS

(pu||pj)2

2σ2
`

)
. (4.13)

We note that the gradient in (4.11) provides better convergence properties than
using an exponential kernel in (4.2) as the gradient goes to zero for pu → pj due to
the additional term IsipJS

(pu||pj)/σ2
` . In the previous chapter, we have derived the

gradient of IsipJS
(pu||pj) with respect to the displacement field u as:

∂IsipJS
(u)

∂u
= − 1

2 |Ω|

[(
∂2p

0
u(i1, i2)

p0
u(i1, i2)

− ∂2pu(i1, i2)

pu(i1, i2)

)
∗Gσ

]
(f1(x), f2(x + u(x))

· ∇f2(x + u(x)).

The interpretation of the additional term (4.11) in the evolution of the displacement
field u is quite intuitive: It induces a change in the estimated displacement field u
that aims at minimizing the JS-divergence IsipJS

(pu, pj), thereby drawing the current
intensity distribution pu toward the previously learned distributions {pj}. More pre-
cisely, the energy gradient exerts a force on the estimated intensity distribution toward
each learned intensity distribution pj, which is modulated by a weight γj that decays
exponentially with the distance between the intensity distributions — see equation
(4.13). Thus this additional term comes into play only for those learned distributions
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Figure 4.2: Schematic plot of energy (4.8). Each black point represents a joint
intensity distribution. The energy (4.8) measures the dissimilarity between a given
joint intensity distribution and the previously learned distributions.
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that are most consistent with the currently estimated intensity distribution. And
this is precisely the mechanism by which the algorithm “decides” which intensity
distributions among the learned ones are to be used for a given registration task.

To further clarify this effect of the multimodal energy (4.8) we refer to the
visualization in Figure 4.2: In this schematic drawing, each joint intensity distribution
pj is represented as a black 2D point. The energy (4.2) generated by all learned
training points is shown as a shaded surface. It essentially extends the JS-divergence to
a dissimilarity with respect to an entire set of joint intensity distributions. During the
optimization process it constrains the displacement field such that the corresponding
intensity distribution remains within the valleys of low energy. This ensures that
the joint intensity distribution will favor similarity to previously learned intensity
distributions during the optimization.

What does it mean that the current joint intensity distribution is forced to be
similar to one or the other previously learned intensity distribution? To this end,
let us consider the following very simple example. Assume we have learned two
joint distributions, where the first one states that white pixels in image 1 are always
associated with black pixels in image 2 and vice versa, while the second one states
that the matching of white-to-white and black-to-black is most likely. Then enforcing
similarity to one or the other by energy (4.8) has the following effect: If during
optimization pairs of white pixels are associated through the displacement field,
then this induces proximity to the second learned intensity distribution, and the
prior will automatically enforce that black should also be associated with black –
because a matching of white-to-white on one hand but black-to-white on the other
is not consistent with any of the two learned intensity distributions. In other words:
The matching of certain intensities will provide clues for the matching of others, as
indicated by the learned joint distributions.

The above example illuminates the idea of imposing a prior on the space of joint
intensity distributions. Note that this is fundamentally different from learning a single
joint intensity distribution, as proposed for example by Leventon and Grimson [Leve 98].
Firstly, our method allows for a large variety of different intensity distributions.
Secondly, the inherent selection mechanism allows the algorithm to infer statistical
relations between matching of different intensity pairs, as in the simple example of
two joint distributions discussed above.

4.2 Experiments and Results
In the following, we will evaluate the proposed statistical framework for image registra-
tion. In Section 4.2.1, a quantitative study on a SPECT - CT image pair shows that
priors on the joint intensity distribution can improve the mutual-information-based
registration process by increasing the basin of attraction and by shifting the location
of the energy minimum to the correct one. In Section 4.2.2, a study on the registration
of a PET - CT image pair shows that the proposed multimodal prior on the joint
intensity distribution outperforms a simpler unimodal prior, because the multimodal
one allows the registration process to “select” among appropriate joint distributions.
Section 4.2.3 shows that the proposed prior allows to cope with partial occlusions in a
face registration task.
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Figure 4.3: SPECT-CT registration performance analysis. SPECT slice was shifted
horizontally within a range of −15mm to 15mm. Mutual information is noisy around
the optimum and its minimum actually corresponds to an incorrect alignment. The
integration of a prior on the joint intensity distribution provides for a larger basin of
attraction and enables the estimation of the correct alignment.

All implementations are done within a multi-resolution framework, giving compu-
tation times around 10 seconds for image pairs of size 450×450.

4.2.1 Quantitative Evaluation

Assume we are given a perfectly aligned image data set, such as the SPECT - CT
image pair acquired by a Siemens Symbia T2 hybrid scanner in Fig. 4.3a. Now
we use these data to study the performance of competing objective functions, e.g.
EmaxMI = max(IMI) − IMI for MI, Eprior in (4.8), and the total energy E in (4.7).
In this experiment, the SPECT slice was shifted horizontally, while the CT image
remained fixed, and the respective values of all three objective functions are computed,
see Fig. 4.3a. The energy plots show quantitatively that incorporating a prior
(computed from the correctly aligned image pair) will lead to a superior registration
algorithm. While this is only shown for the case of translation, one can expect similar
improvements for non-rigid deformations.

4.2.2 PET/CT Medical Image Registration

Given several training image pairs, the proposed prior can incorporate a variety of
joint intensity distributions. The following experiment will show that among this
complementary information, the proposed algorithm selectively choses the intensity
information appropriate for a specific registration task.
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(a) (b) (c)

Figure 4.4: PET/CT registration. (a) deformed PET/CT, (b) registration result using
average prior, (c) registration result using both priors. While using the averaged joint
intensity distribution as a prior leads to misregistration, the proposed multi-modal
prior on the joint intensity distribution allows for the correct registration.

The training data is composed of two sets of aligned PET/CT slices1 acquired
by a Siemens hybrid scanner, Figs 4.1a, 4.1b. The superimposed edge maps (white)
illustrate structural information of the CT image and visualize the quality of alignment.
Note the significant difference in Figure 4.1 between the two shown joint intensity
distributions, which reflect a typical scenario as it occurs in clinical applications.

An artificial deformation is applied to the PET slices and compared to the recovered
displacement fields of using only a single prior distribution vs. using two complimentary.
The two priors represent the joint distribution of the axial and coronal PET - CT
slices shown in Fig. 4.1. In the case of a single prior, the average of the two is used
for fair comparison.

Figure 4.4 illustrates the advantage of using several prior distributions as opposed
to only using one. The weighting factors of energy (4.7) are set with a preference
towards the prior energy Eprior , i.e. α1 is chosen to be small. The width σ is determined
using equation (4.6), and α2 is chosen to allow for a smooth displacement field.

The results of recovering the significant deformation between the PET and CT
images (see Figure 4.4a) are shown in Figs. 4.4b and 4.4c. Using an average distribution
misleads the algorithm and registration fails, see Fig. 4.4b. However, the proposed
method can fully utilize the given priors and correctly “selects” the closest joint
intensity distribution. As a result, the underlying deformation is fully recovered (Fig.
4.4c).

This experiment shows the strength of introducing a space of joint intensity distri-
butions, while the algorithm is able to chose the best available prior information. In
case no best information is available, the prior energy decays to zero, and performance
will be at least as good as using a context-free similarity measure.

1PET and SPECT are nuclear imaging techniques which visualize centers of high activity in the
human body, as described in sections 1.2.3 and 1.2.2.
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4.2.3 Face Registration in the Presence of Occlusion

Non-rigid multi-modal registration can serve as a preprocessing step for face recognition,
where facial and/or head motion must be recovered in order to establish correspondence.
In the following experiment, we illustrate how prior knowledge on the joint intensity
distribution improves the registration in the presence of lighting variation and occlusion.
The experiment is to recover facial expressions and head movement between two images.
The second image is taken under different lighting conditions with the person wearing
sun glasses. The objective functions of comparison are (i) purely MI based registration
and (ii) the proposed combined approach using prior knowledge in eq. (4.7). The
first row of Fig. 4.5 shows the two pairs of manually registered training data used to
construct the prior, i.e. m = 2. To compare the performance, the same images have
been registered (i) by the context-free MI criterion and (ii) by additionally imposing
a prior on the space of joint intensity distributions. The parameters used here are
similar to previous experiment. The second row of Fig. 4.5 shows the reference and
alignment images that are subject to registration. Those images show multi-modality
due to a slight illumination change, but moreover due to the appearance of the sun
glasses. Furthermore, Figure 4.5 illustrates the differences of learned data towards
the current data.

There are two runs for each objective function that are being compared. Figure 4.6
shows the achieved results for pure MI and for imposing a space of prior information.
Since the underlying transformation is unknown, the edge map of the alignment image
is superimposed on the reference image for performance comparison. Column 4.6a
shows the initial positions of the faces, column 4.6b shows the results using pure MI,
and column 4.6c plots the results of the energy in equation (4.7). Comparing the edge
maps it can be noticed that the proposed energy (4.7) is superior to using pure MI.
The MI method matches the outline of the persons correctly but fails to match the
glasses in the alignment image on the eye region of the reference image. The combined
method, however, succeeds for both faces in establishing correspondence, see column
4.6c. Note that our method selects the prior intensity distribution, which corresponds
best to the current input images.

4.3 Summary
In this chapter, we proposed a multimodal prior on the joint intensity distribution
in order to enhance image registration problems. While MI was shown to provide a
powerful registration criterion, it remains a purely low-level criterion. Our formulation
allows to enhance this existing registration method in order to integrate prior knowledge
about likely intensity correspondences, which is statistically learned from multiple
pairs of pre-registered training images. Experimental results on both medical and
face images demonstrate that our approach outperforms purely MI based image
registration.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Face images used for training and registration. (a)-(d) training images,
(e)-(h) reference and alignment images that are subject to registration. The latter
pose a challenging registration task and slightly differ from the training data.
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(a) (b) (c)

Figure 4.6: Face image registration results. Column (a) shows initial alignment of the
two images, column (b) the final registration for pure MI-based energy, and column
(c) illustrates the final registration using energy (4.7). The energy (4.7) shows to be
superior to context-free MI energy by minimizing the distance towards previously
learned intensity distributions.



Chapter 5

Medical Imaging Applications:
Clinical Algorithm Assessment

5.1 Introduction

Medical image processing is widely used within the clinical environment. It has a
strong influence on the clinical decision-making process towards diagnosis, surgery
planning and guidance. As a natural consequence, high accuracy and robustness are
expected from the implied imaging algorithms. However, sources of error are numerous
in medical imaging applications with some being common to any processing method,
such as partial voluming or intrinsic data variability due to patient movement during
the acquisition, and with others being specific to the type of processing, i.e. image
segmentation, registration, or classification.

In this chapter, we describe a systematic approach to validating medical image
registration that follows the proposal for standardization of imaging algorithm valida-
tion in clinical environments by Jannin and colleagues [Jann 06]. In an attempt to
standardize terminology and methodology that will make validation studies and re-
sults comparable, they propose a validation framework consisting of a reference-based
validation procedure and a checklist designed for reporting reference-based validation
studies. The subsequent sections briefly describe this framework and illustrate the
application of the validation procedure to several routine clinical applications. This
systematic validation of achievable registration accuracy and comparison to standard
registration methods on more than 100 clinical PET/CT and SPECT/CT data sets
is, according to the best of our knowledge, one of the largest registration validation
study.

5.2 Systematic Validation of Registration
Algorithms

Medical image processing algorithms are usually embedded in larger imaging systems
and applications that help doctors reach a diagnosis or that support surgeons during
interventional procedures. The algorithms became fundamental blocks of such systems
and their performance may have a substantial impact on the performance of the larger

67
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system or application and consequently on the clinical decision-making. Because of
this central role the systematic analysis of image processing algorithms is nowadays
inevitable to determine whether a theoretically sound method delivers the quality and
accuracy required in clinical practice.

Such an assessment of performance is complex and multi-faceted. In order to
manage the complexity of performance assessment of image processing algorithms (or
any other technology or system), the terms verification, validation and evaluation,
borrowed from software engineering, may be distinguished as follows:

(a) Verification: System Built Correctly?
Assessing whether the system is built according to the given specifications

(b) Validation: Correct System Built?
Assessing whether the system fulfills the purpose for which it is built

(c) Evaluation: System Valuable?
Assessing how the system is being accepted by the end-users.

In this work, we are concerned with the validation of image registration algorithms
rather than verifying, validating, and evaluating the larger application or system in
which they are embedded in. The performance of image registration algorithms depends
on a number of factors, such as imaging modality, image content including degrading
effects such as imaging artifacts, the class of spatial transformation used for registration,
similarity measures, optimization strategies, and details of the implementation. This
complex list of factors makes validation of any registration algorithm challenging and
impedes a standardized comparison across results of the different algorithms.

There are several interesting activities within the medical imaging community to
address these validation concerns by establishing and maintaining a gold standard
for medical image registration techniques. Examples of those activities are the
“Retrospective Image Registration and Evaluation Project” [West 97] and the “Non-
Rigid Image Registration Evaluation Project (NIREP)” [Chri 06].

5.2.1 Algorithm Validation Framework

The model for defining and reporting a reference based validation protocol in im-
age processing by Jannin and colleagues [Jann 06] has been widely accepted in the
community. Their proposed validation framework, as shown in Figure 5.1, and their
checklist for reporting the validation results serve as a strong standardizing ground
work and provide insight into the validation process especially with respect to image
registration algorithms. As a matter of fact, one of the major reasons why we adopt
this model is that we strongly believe in the standardized validation and reporting of
medical image processing algorithms.

Three main components of such a validation framework have been identified and
are critical in designing any clinical validation studies:

I. Validation Objective/Hypothesis

II. Validation Datasets
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Figure 5.1: Functional diagram describing the main components of the reference-based
validation framework proposed by Jannin et al. [Jann 06]

III. Validation Criteria

Let us examine Figure 5.1 for understanding the concepts of such validation studies.
The crucial starting point of every study is the formulation of a validation objective.
It is here where the clinical context determines the goal of the study (top right of Fig.
5.1). After a validation objective (i.e. the hypothesis) is formulated, the proposed
validation framework is utilized to run the experiments on the specified validation
datasets and using any given parameters. Results from the method under validation
are compared with results from the reference method based on a computed validation
criteria (left of Fig. 5.1). It will become clear in later sections that the choice of
this validation criteria or metric is sometimes challenging and will possibly result in
some sort of compromise between feasibility and accuracy. Finally, the comparative
results are tested against the validation objective, and in order to conclude with the
validation results, the hypothesis is either accepted or rejected.

The described components of the validation framework have been derived as a
result of a literature analysis and discussions with experts from the medical imaging
community [Jann 06].

5.2.2 Validation Criteria

As we have seen above, image processing methods can be validated according to
specified performance criteria and specific validation objectives. In most validation
studies found in the technical and clinical literature, validation criteria are assessed
against a “gold standard” that is assumed to be close or equal to the “ground truth”,
e.g. [Guet 07,Jann 06,Spie 09,Joll 10]. In medical image registration, the ground truth
is the geometrical transformation that correctly maps locations in one image to the
anatomically corresponding locations in the other image. In image segmentation, the
ground truth may be the correct anatomical labeling of each pixel or voxel of an image
data set or the true structure boundaries.
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Unfortunately, it is sometimes tremendously challenging or even impossible to
generate such ground truth (e.g. in the case of unconstrained motion patterns such
as breathing or cardiac motion) from clinical data. A valid compromise and feasible
alternative in this scenario is to substitute ground truth among the different processing
types. For example, the ground truth generated to validate image segmentation can
also serve as a ground truth for registration in applications where the medical decision-
making process or algorithm’s accuracy is based on correctly overlapping regions or
organs. Although this strategy does not exhaustively describe the underlying ground
truth, it enables reference-based validation studies where otherwise ground truth
generation is impossible.

In summary, the ground truth or reference may originate from numerous sources.
It can be an exact or approximate solution based on numerical simulations or physical
experiments. It can also be a solution computed using one or several independent
image processing methods. Finally, the ground truth can be an expert-generated
solution or a solution that was generated using a priori knowledge about the ground
truth.

Application Specific Validation Criteria

There could be several criteria employed for determining the performance of registration
algorithms in systematic validation studies. In case sufficient ground truth is available,
such a validation criteria may be expressed as the Euclidean distance to the reference
data such as transformation parameters or mappings of specified anatomical locations
(i.e. anatomical markers). For some clinical applications, however, such ground truth
is not available or there may be more descriptive measures needed than the root-
mean-square (RMS) Euclidean distance. In the case of cardiac studies using hybrid
molecular imaging modalities (SPECT/CT, PET/CT), for example, segmentation
based validation criteria express registration accuracy based on what is required for
the intrinsic application (i.e. accurate alignment of the mediastinum). Some of those
criteria measure a mismatch ratio [Chen 06] or a distance between the centers of
gravity [Han 08] of dedicated segmented regions in both volumes of a multimodal (i.e.
anatomical and molecular) image data set. An application specific validation criteria
that is solely based on molecular image data is the SPECT (or PET) uptake measure
that accumulates the uptake counts in clinically defined sectors of the heart (e.g. the
AHA model [Cerq 02]). This criteria is also known as the quantitative polar plot
measure after image reconstruction using a specific image alignment [Fric 04]. Image
registration quality can then be validated by comparing the respective quantitative
values for different alignments. It will become clear in subsequent section 5.3 how
image alignment and reconstruction are related.

The three latter validation criteria for multimodal image alignment have been
designed in view of a specific application (e.g. cardiovascular function assessment).
Nevertheless, the existing validation criteria measuring cardiac alignment in multi-
modal images lack meaningfulness, precision, and reproducibility. Therefore, we have
developed a cardiac alignment index for SPECT or PET modalities that is designed
to address these issues.
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(a) CT (b) CT segmentations (c) Fused View

Figure 5.2: Visualization of the cardiac alignment metric computation. A cardiac CT
volume (a) is segmented into lung and mediastinum region (b) and then fused with a
SPECT volume (c). The ratio of how much SPECT uptake resides inside the lungs
versus inside the mediastinum suggests how well the two volumes are aligned.

The Cardiac Alignment Index

The proposed validation criteria, referred to as the cardiac alignment index (CAI)
in the following, is designed specifically for validation of image alignment in cardiac
SPECT/CT or PET/CT multimodal imaging. It leverages the fact that SPECT
or PET uptake should be maximal within the mediastinum and minimal inside the
lungs in case SPECT (or PET) and CT volumes are precisely aligned. In case of
misregistration between SPECT or PET and CT images, the uptake activity from
liver or heart smears over the regions of lung creating problems with attenuation
correction in PET or SPECT images. In the following, we derive the CAI on an
example of SPECT/CT data and the derivation for PET/CT data is conferrable.

In order to compute the CAI, we first need to segment the mediastinum and lungs
from CT either manually or automatically. Given the segmentations, see Fig. 5.2,
and a spatially transformed SPECT function fspect(x), the CAI is defined as follows:

CAI = 1−
1

|Blungs|

∑
Ω
Blungs(x)fspect(x+ u(x))

1
|Bmedia|

∑
Ω
Bmedia(x)fspect(x+ u(x))

, |B| ∈ N+, (5.1)

where |B| denotes the size of the respective segmentation, and u : Ω 7→ Ω describes the
deformation field that maps SPECT and CT volumes. The CT segmentation masks
for lungs and mediastinum are defined as binary masks Blungs and Bmedia describing
lung and mediastinum region, respectively:

Borgan(x) =

{
1 x is inside organ
0 otherwise (5.2)

The masks can be generated using a automatic or semi-automatic image segmentation
tool. The generation of our masks was performed using an automatic segmentation tool
that offers an interactive, manual correction of the automatic result. We can observe
that the CAI accumulates intensities that fall into lungs and mediastinum at a given
alignment of CT and SPECT volume and represents the ratio of lung to mediastinum
uptake. For changing SPECT functions fspect dependent on the deformation field
u, the CAI approaches 1, if the SPECT uptake inside the lungs approaches 0 and
becomes infinite inside the mediastinum representing an accurate alignment of SPECT
and CT volume. As opposed to other described cardiac alignment criteria such as



72 CHAPTER 5. MEDICAL IMAGING APPLICATIONS

(a) Tx (b) Ty (c) Tz

Figure 5.3: The CAI criteria as a function of translation parameters Tx, Ty, Tz for a
3-d PET-CT data set. A distinct and unique optimum at accurate alignment can be
observed.

quality control index (QCI) [Chen 06] or quantitative polar plot analysis [Fric 04],
the CAI does not require segmentations from low resolution, noisy SPECT volumes.
More importantly, it accurately captures all kinds of misalignments due to a unique
optimum of uptake value at precise alignment, as shown in Fig. 5.3. The QCI, for
example, cannot detect misalignments that shifted the left ventricle of the SPECT
heart into the right ventricle of the CT heart. The accuracy of non-rigid registration
algorithms in multimodal cardiac applications is objectively measured by employing
an accurate, robust, and physician approved [Chin 08] CAI as a validation criteria.

5.3 Misregistration in Hybrid SPECT/CT Scanners

5.3.1 Problem Definition And Clinical Impact

The use of multi-modality imaging through hardware- or software-based solutions in
clinical practice has become increasingly popular. For example, the, so called, hybrid
SPECT/CT or PET/CT scanners combine low resolution molecular images with
high-resolution CT providing anatomical context and accurate attenuation correction
of SPECT or PET images by placing both (e.g. SPECT and CT) scanners physically
next to each other.

The availability of those scanners generated a new research field of interesting
clinical applications such as the accurate fusion of two complementary modalities
for diagnostic purposes and CT based attenuation correction for enhancing image
reconstruction of molecular image data. The latter is particularly interesting since it
increases specificity of SPECT and PET by providing means for uniform attenuation
correction [Zaid 03]. Image reconstruction algorithms in hybrid scanners can utilize
the CT image as a highly accurate and detailed attenuation map for the attenuation
correction step [Chen 06, Goet 07b]. In standalone PET or SPECT scanners, the
attenuation map needs to be generated through a second scan, i.e. the transmission
scan using Gebd or Cs137 [Cher 03]. This transmission scan requires a significant amount
of scan time to acquire a low resolution map of anatomical structures matching the
radionuclide distribution for AC that is filled with a substantial amount of noise.
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In this section, we are investigating the strengths and weaknesses of the novel
application of CT based AC. Moreover, it will become clear that the usage of high
resolution CT images for molecular image reconstruction needs to be done carefully
in order to prevent the generation of misleading image artifacts. As a matter of fact,
this clinical risk of misregistration induces artifacts is significant enough to motivate
the clinical research community to frequently report on technological issues involving
hybrid scanners. Moreover, the American Society of Nuclear Cardiology (ASNC)
updated their Imaging Guidelines for Nuclear Cardiology Procedures in 2007 to include
the following statement:

It has been made mandatory to check Registration and Attenuation Correc-
tion Accuracy as Quality Control (QC) procedures in hybrid SPECT/CT
and PET/CT scanners [Hell 04, Imag 07].

Assuming this misregistration problem in hybrid scanners is clinically significant
and established, the question of the potential clinical impact resulting from such
a technological failure may be severe. It has been reported, for example, in the
application of quantitative cardiac SPECT/CT analysis that spurious perfusion defect
artifacts are introduced in the CT-based attenuation correction (AC) images of the
SPECT acquisition due to misalignments. The misalignments falsify the uptake
values that are utilized for diagnosis in myocardial perfusion imaging [Fric 04,Krit 05].
Therefore, an accurate registration between the two modalities is imperative to ensure
the diagnostic confidence of physicians.

As a technical solution to the guidelines by the ASNC, registration as a pre-
processing step to CT-based AC SPECT could be used as quality control to ensure
that the modalities are well aligned. Therefore, such a registration tool cannot involve
user interaction or correction. Certain sources of misregistration could be partly
addressed through a stringent acquisition protocol that, nevertheless, is both prone
to errors and complicated to use in clinical practice. A more efficient and promising
approach of ensuring alignment is to utilize a fully automatic registration technique
that is highly accurate and robust.

In order to establish an unbiased summary of literature evidence on the topic of
misregistration in hybrid SPECT/CT scanners we performed a systematic literature
review and report it in [Chin 08]. The following paragraph summarizes the reported
findings of magnitude, etiology, and clinical impact of SPECT/CT misregistration.

The exhaustive search in multiple clinical publication databases yielded 22 out of
121 articles on hybrid SPECT/CT scanners that performed studies on non-phantom
data. In order to infer the problem magnitude, the statistical analysis of a final seven
studies that quantitatively report misregistration in hybrid SPECT/CT scanners was
performed. The result yielded that the weighted average of misregistration occurrence
that is equal to or greater than one SPECT voxel (i.e. approximately 4.79 mm) appears
to be 41.8% of the total clinical cases with the 95% confidence interval ranging from
32.3% to 63.0%. Moreover, it was discovered that the mean magnitude of occurring
misregistration is 8.6± 4.2 mm [Chin 08].

The problem etiology or reported underlying causes for such strong misregistrations
are mainly due to the sequential nature of image acquisition in hybrid scanners
[Chen 06], varying patient positioning between scans, and occurring respiratory, cardiac,
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or patient motion [Tong 06]. As a consequence, the clinical impact of such misalignment
is rather severe. It appears as the danger of a physician incorrectly reporting SPECT
starting at misalignments of one SPECT voxel. This is due to the creation of
artifactual perfusion defects that reduces diagnostic specificity of hybrid SPECT/CT
imaging [Fric 04] and erroneous SPECT uptake quantification that questions the
reliability of SPECT imaging in disease monitoring and the assessment of treatment
response [Tong 05].

5.3.2 Clinical Assessment of Parametric Registration

In section 5.2 we introduced a validation framework that is composed of three main
components: (i) validation hypothesis, (ii) validation data sets, and (iii) validation
criteria. We are using this validation framework by Jannin et al. [Jann 06] in order to
evaluate several suited algorithms for the clinical application of CT based SPECT
AC (Figure 5.4).

Our validation hypothesis is formulated as: “In hybrid CT based SPECT AC,
the best suited multimodal registration algorithm provides accurate results in the
registration of CT and SPECT with a translational error of less than 4.79 mm (i.e.
size of an isotropic voxel in our data) when compared to the physician aligned
ground truth”. We know from our literature review that the creation of artifacts
is prevented during CT based SPECT AC, if a sub-voxel accurate alignment is
ensured [Cahi 07, Goet 07b,Goet 07a]. The hypothesis is tested for three different
parametric (i.e. rigid) registration algorithms: normalized mutual information (NMI)
(i.e. α = 0 in eq. (3.36)), the integrated statistic intensity prior model (JS) (i.e.
replacing eq. (3.35) by (3.34) in (3.36)), and the constrained, or weighted, integrated
SIP model (wJS) (i.e. eq. (3.36)). The validation data sets are comprised of 15
different cardiac SPECT/CT scans that were acquired by a Siemens Symbia T6 scanner.
The field-of-view (FOV) for the SPECT data (128×128×128, 4.79×4.79×4.79 mm3)
includes lungs, heart, and abdomen, whereas the FOV for CT data (512× 512× 25,
0.97× 0.97× 5 mm3) includes only heart and lungs. An expert physician manually
aligned all data sets for a precise match of the heart region and we will use these
alignments as the physician defined ground-truth (i.e. our BRONZE standard) to
which all three algorithms are compared to. Furthermore, 15 different priors were
generated from the expert aligned ground truth and employed during the validation.
The validation criteria or metric will simply be the Euclidean distance to the established
ground truth alignment.

Figure 5.4 summarizes the setup of the cardiac SPECT/CT validation framework
visualizing how the validation studies (i.e. robustness study, prior sensitivity study,
and capture range study) are performed for the different algorithms and later compared
against the expert generated ground truth. A validation study is defined as follows:
for all data sets, a significant number of registrations is performed per data set
with different initial transformations away from ground truth alignment. For each
registration result, the Euclidean distance is computed between the obtained and the
ground truth alignment. Error mean and standard deviation of all registrations are
then compared between the three registration methods under validation.
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15 Hybrid Cardiac SPECT-CT Datasets

Algorithm Reference

wJSJSMI Expert Physician 
Aligned Ground Truth

RMS Error Distance from 
Ground Truth

Error Comparison

3. Capture Range
Using 15 Datasets + 1 Random Prior

Translation

25 Initial Translations in x-/z-axis
[-60mm,+60mm]

2. Prior Sensitivity
Using 1 Random Dataset + 14 Priors

Translation

25 Initial Translations in x-/z-axis
[-60mm,+60mm]

RMS Error

SPECT CT

Image Matrix 128 x 128 x 128 512 x 512 x 25

Pixel Size 4.79mm x 4.79mm x 4.79mm 0.97mm x 0.97mm x 5mm

FOV Lungs, Heart, Abdomen Lungs, Heart

b. Rotationa. Translation
25 Initial Translations in 

x-/z-axis
[-60mm,+60mm]

1. Robustness Study
Using 15 Datasets + 1 Random Prior 

13 Initial Rotations around  
z-axis 

[-30°,+30°]

Figure 5.4: Our validation framework for parametric registration algorithms using
ground truth on 15 clinical cardiac SPECT/CT data sets. The diagram visualizes
multiple validation scenarios for the stated validation hypothesis.
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Figure 5.5: Comparison of error distributions for normalized MI, JS, and wJS over
validation runs for translation (a) and (b), and rotation parameters (c). Integrating
prior and data observations in combination with the newly weighted scheme, wJS,
not only yields the best results but also generalizes well over multiple patients.

Validation Studies

We designed three different validation studies, as shown in Figure 5.4, for the following
reasons. The robustness study was designed to find the most robust method across a
large range of initial transformations from physician defined ground-truth using those
15 data sets. In this study, the prior based methods use a randomly chosen prior from
among the generated priors. The second study, i.e. the prior sensitivity test, aims
at determining the sensitivity of the integrated SIP models towards the chosen prior.
Sensitivity is measured as distance to ground truth for all initializations and all priors.
Needless to say that this study is only performed for the prior based algorithms. The
third study validates the capture range for each method separately.

The initializations range from −60 mm to +60 mm away from our BRONZE stan-
dard in steps of 30 mm in x1-/x3- or in x2-/x3- direction resulting in 25 initializations
for translation and from −30◦ to +30◦ in steps of 5◦ around the x3-axes for 13 initial
rotations. We evaluated translation and rotation initializations separately. The chosen
α value in equation (3.36) is fixed to 0.2 for wJS and to 0.75 for JS for all experiments.

In eq. (3.36), the intensity transformation TI is also estimated during optimization
procedure. All 15 data sets showed minimal differences in the scaling parameter, i.e.
it varied between 0.95 and 1.014, and no translational component was observed.

Validation Results

The results of the robustness and prior sensitivity tests are presented in Figs. 5.5a
and 5.5b showing the mean registration error with respect to translation parameters.
Figure 5.5c displays the mean angular registration errors for the robustness test. It
can be observed that both JS and wJS are more accurate on average than NMI, and
wJS additionally shows a small mean registration error and standard deviation. The
constrained SIP model, wJS, outperforms NMI and the integrated SIP model (JS)
with a mean translation error of 4.19± 0.5 mm. Note that the error is smaller than a
SPECT voxel (i.e. isotropic voxel in our data) showing sub-voxel accuracy for the
constrained SIP model wJS. Normalized MI and JS show a mean error of more than
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Figure 5.6: Registration results for 3 out of 15 patients. The top row shows the
NMI result and the bottom row denotes the wJS results. The images illustrate the
deviations from the optimum for NMI registration and high accuracy achieved by wJS
approach.

2 [9.74± 4.49 mm] and more than 1 [5.9± 3.36 mm] voxel(s), respectively. We further
noticed that optimization of NMI is attracted to local optima and that the global
optimum for NMI deviates from the correct alignment if bright artifacts occur in CT
data.1 The SIP models do not deteriorate in those artifact data sets.

The angular errors further confirm the superiority of wJS over NMI, see Fig. 5.5c.
The generally high observed mean angular error for wJS (6.2◦), JS (7.5◦) and for
NMI (7.4◦) is probably due to the little structural information apparent in SPECT.
The angular error is an accumulation of errors from all three axes. In addition, Fig.
5.6 shows three visual results comparing NMI and wJS presenting the high accuracy
achieved by wJS.

Our systematic validation studies show that the constrained statistical intensity
prior (section 3.4) fulfills the clinical demands for registration accuracy of maximum 1
voxel mis-alignment in CT-based AC for cardiac SPECT, as mentioned in [Fric 04,
Krit 05], and suggest the feasibility to use the approach for automated registration in
hybrid scanners. Therefore, our validation hypothesis can be accepted for algorithm
wJS only.

5.3.3 Clinical Assessment of Non-Parametric Registration

We have seen that parametric registration using statistical intensity priors yields
accurate and robust results. However, in a number of clinical applications, it is not
sufficient to use a parametric transformation model for registration due to its limited
flexibility in dealing with complex motion patterns such as breathing or cardiac
motion. Strongly misaligned local regions after successful parametric registration
are still common in those applications. Figures 5.7a and 5.7d show an optimal rigid
alignment of PET/CT data and significant misalignments resulting from breathing
motion are still observed. As a consequence, there is a need for non-parametric
algorithms that provide and guarantee required clinical accuracy. Furthermore, it can
be shown that these local misalignments have a severe impact in numerous clinical
applications. For example, it has been pointed out by the clinical literature review
in section 5.3.1 that a slight (local) misregistration of more than 1 voxel can cause

1The observation was made during visual inspection of those data sets where the validation studies
resulted in high errors.
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Table 5.1: Phantom and clinical data sets used in the experiments discussed in sections
3.5.2 and 5.3.3.
Name Modality Size Voxels [mm] Scanner Type Patients

P1 PET 1282 × 172 5.152 × 5.15 Siemens ECAT PET 1
CT 5122 × 770 0.652 × 0.5 Siemens Somatom

P2 PET (NAC) 1282 × 303 5.202 × 2.43 Siemens Biograph 1
CT 5122 × 307 0.982 × 2.4 (hybrid)

S1 SPECT 1282 × 128 4.792 × 4.79 Siemens Symbia 24
CT 5122 × 28 0.982 × 5.0 (hybrid)

S2 SPECT 1282 × 128 4.792 × 4.79 Siemens Symbia 58
CT 5122 × 28 0.982 × 5.0 (hybrid)

severe image artifacts in the application of CT based attenuation correction of hybrid
scanner data.

For the clinical assessment of non-parametric registration the previous validation
framework needs to be adapted to this different approach of solving the same clinical
problem. More specifically validation hypothesis and criteria will be newly formu-
lated. In the previous example, ground truth for clinical assessment of parametric
registration was generated by manually translating and rotating the two volumes into
correct alignment. That leads to some inevitable compromises in case the underlying
transformation is of non-rigid nature. Therefore, the observer-dependent ground truth
may vary and may not be expressive enough for the decision whether a non-parametric
registration algorithm prevents the creation of perfusion artifacts. One of the many
challenges in generating ground truth deformations is the lack of convenient manual
tools that make it feasible and effortless to delineate the correct transformation be-
tween misaligned volumes. Besides such challenges and trade-offs, there is no feasible
metric to directly compare the manual parametric ground truth alignment with the
non-parametric result from the algorithms. The previously introduced application
specific CAI measure solves this issue for the application of CT based AC in hybrid
SPECT imaging. Section 5.2.2 describes in detail how the CAI, through the use of
domain knowledge, indirectly compares the computed to the initial alignment and, if
available, to the ground truth of the data set. This ensures a high accuracy validation.

The following section describes the validation strategy for non-rigid registration
algorithms in an application specific manner. Having seen validation on phantom
data and deformations in sections 3.5 and 4.2, we, now, validate the two different
deformable registration algorithms, namely variational registration (i) using NMI and
(ii) using statistical intensity prior models on a large number of clinical data sets.

The goals of the following studies are to reveal the performance of non-parametric
registration using SIP models on clinical patient data and how it compares to standard
methods, to visually present the need for non-parametric registration, and to verify
the choice of the prior influence parameter.

Data Sets

The validation data sets are manifold and constitute 86 patients in total. Table 5.1
provides an overview of each of the four collections of data sets that are used in detail.
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The following can be stated about the contents of the data sets: P1 and P2 data sets
are from PET/CT scanners with the former being CT based attenuation corrected
PET and the latter non-attenuation corrected. The PET/CT images were acquired
with a FOV extending from neck to the upper thigh region. Note the strong effect of
AC on image quality by comparing Figs. 5.7a-5.7c to Figs. 5.7d-5.7f. Data sets S1 and
S2 are both SPECT/CT data sets with a specific field-of-view (FOV) that includes
mainly mediastinum (i.e. heart region) and lungs. Both sets are acquired using the
same scanner type but at different hospital sites and with different imaging protocols.
Data set S1 consists of 24 patients that were scanned using a stress protocol (i.e. the
patient performed extensive physical activity shortly before the image scan), and it
includes some of the abovementioned image artifacts such as windmill reconstruction
artifacts due to metal implants in CT images, low or no uptake scar regions and
extra-cardiac hot spots in SPECT images. The degree of misalignment in S1 was
classified as mild to moderate on visual assessment by an expert physician. Data set S2
contains 58 patients also imaged using the cardiac stress imaging protocol. In addition,
the CT was acquired using a breathing protocol called breath-hold inspiration and the
SPECT data was acquired using ECG gating. Thus the amount of misalignment and
the SPECT uptake values apparent in S2 are significantly larger than in S1.

We applied non-rigid registration using MI only and using the integrated SIP
model to those data sets. Initially, data set P1 has been rigidly aligned, whereas
data sets P2, S1, and S2 were used as acquired by the hybrid scanner. The total
registration time per study varied between 40 and 250 secs averaging at about 93 secs
on an Intel c© Core 2 CPU with 2.33-GHz PC running Windows XP with 2GB RAM.
The highly deviating computational times result from the choice of our convergence
criteria for the gradient descent. It is either of the following three: a stable cost
function value, a cost function value close to zero, or the maximum iteration number.

Qualitative Results

Data sets P1 and P2 illustrate the need for accurate alignment of PET/CT images in
clinical practice, especially in presence of breathing motion during image acquisition
(e.g. Fig. 5.7). The statistical prior for the corrected data (i.e. Figs. 5.7a-5.7c) was
chosen from a similar PET/CT scan of a different patient that has been rigidly aligned
by a physician. Since there is no prior data available for the uncorrected data set
P2 (i.e. Figs. 5.7d-5.7f), we artificially created a prior using the following strategy.
Assuming the original alignment is already close to the correct solution, the prior of
this alignment may as well serve as a self-constraint for registration of extremely noisy
images (e.g. Fig. 5.7d). The statistical intensity prior model allows to use a small
weight on the prior essentially making it less of a constraint and assigning a higher
importance to the observed data (i.e. here α1 = 0.1). For both data sets, the SIP
model achieves a visually better alignment. Similar visual assessments can be made
for patients selected from SPECT/CT data set S2 (Fig.5.8). Here, the statistical prior
was generated from one randomly selected data set that a physician has classified
as accurately aligned. The top row of Fig. 5.8 shows that the quality of cardiac
SPECT/CT registration can be compromised when using mutual information alone.
The reason for the failure of the data driven algorithm in both data sets may not be
obvious at first. In Figures 5.7a-5.7c and the top of Figure 5.8, the mismatch can be
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(a) Before (b) MI (c) MI +
Prior

(d) Before (e) MI (f) MI +
Prior

Figure 5.7: Fused views of attenuation corrected (AC) and non-AC PET/CT data reg-
istered using mutual information (MI) and our proposed integrated SIP model. Adding
prior knowledge increases registration quality where purely data-driven registration
fails.

attributed to local optima of the global data-driven similarity measure. Especially at
the lung-mediastinum border the matching of bright SPECT and dark CT intensities
seems to pose a local optima for MI. In contrary, accuracy and robustness on the same
data sets can be improved significantly by using a prior joint intensity distribution
about the expected alignment as a support for MI (Fig. 5.8 bottom row). Note that
the statistical intensity prior is also a global measure.

Quantitative Results

In general, validation of non-rigid registration algorithms on clinical data sets is very
challenging due to either lack of ground-truth information or an appropriate gold
standard. However, those algorithms can still be assessed by task-specific validation,
e.g. using criteria that depend on an application, [Schn 01,Jann 02,Jann 06]. In this
work, we quantitatively assess non-rigid registration algorithms for the application
of cardiac perfusion imaging using hybrid SPECT/CT. We employ a reproducible,
observer invariant, alignment metric that has been proposed specifically for quantitative
validation of image registration algorithms in SPECT/CT and PET/CT cardiac
data [Chin 08]. The proposed metric, referred to as the cardiac alignment index (CAI)
in the following, leverages the fact that SPECT uptake should be maximal within
the mediastinum and minimal inside the lungs when SPECT and CT volumes are
precisely aligned.

Based on the CAI value of the original alignment it can be determined whether a
method improves the alignment or not. We define registration success as an increased
CAI value after registration as compared to before. Consequently, success is directly
connected to reducing the number and degree of artifacts generated by methods
that build on correct alignment (e.g. CT-based attenuation correction as described
above). We perform our validation experiments separately on data sets S1 and S2
as they originate from different sites. The selected statistical priors for S1 and S2
respectively were generated from one physician aligned data set within each set and
used throughout the experiments.
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Figure 5.8: Top: Fused anterior views of eight cardiac SPECT/CT data sets after
non-rigid registration using mutual information (MI). Most of the registrations failed
due to convergence to a local optimum of MI. Bottom: The fused views of the same
subjects as on top after non-rigid registration using a statistical intensity prior to
support MI. The data sets are now successfully registered through the use of prior
knowledge about correct alignment.

The results are summarized in Table 5.2 and grouped by successful registrations,
failed registrations, and highest CAI value achieved in percent of the total number
of patients within each set. Absolute numbers of data sets are given in parentheses.
While employing the statistical intensity prior model the registration consistently
improves in more and deteriorates in less data sets than without using any prior
knowledge. It further achieves the most accurate results in the majority of patients
(i.e. 83% and 76% in the rightmost column).

For interpretation of the CAI in clinical validation, the relative change of CAI after
the registration was performed is more descriptive than the absolute achieved CAI
value. From this relative change an improvement ratio (i.e. ratio = Final

Initial
CAI) can be

computed to determine how strongly an algorithm improved the initial alignment. In

Data Sets Success Failures Highest CAI
MI SP MI SP MI SP

S1 (24) 67% (16) 80% (20) 23% (8) 16% (4) 12.5% (3) 83% (20)
S2 (58) 81% (47) 95% (55) 17% (10) 3% (2) 22% (13) 76% (44)
Total (82) 77% (63) 92% (75) 22% (18) 7%(6) 20% (16) 78% (64)

Table 5.2: Registration success and failures (as defined in the text) for data sets S1
and S2 evaluated using the CAI. Numbers in brackets refer to absolute number of
data sets.
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Figure 5.9: Validation studies using Cardiac Alignment Index (CAI) for 82 cardiac
SPECT/CT patients from two different hospital sites. The final over initial CAI ratio
plotted against the initial CAI value, (a) and (b), represents the degree of improvement
per registration method. The least-square fit shows that SIP models outperforms
purely data-driven MI significantly for strongly misaligned data sets. Statistics over
accuracies achieved by increasing prior influence, (c), illustrate the balance between
closeness to prior data and observed data. The determined optimal value in 82 clinical
data sets is observed at 30% (i.e. α1 = 0.3).
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the case that no ground truth is available this measure is expressive for determining
the more accurate technology. Figures 5.9a and 5.9b plot the improvement ratio over
the initial CAI for both methods in S1 and S2. For a robust and accurate registration
method, one could expect large improvement ratios for small initial CAI values and
smaller ratios for initial values that are closer to 1.

A general trend of the results from the different algorithms can be visualized by a
least-square-fit to an exponential curve. We discovered that the SIP model consistently
outperforms data-driven MI w.r.t. robustness on data sets S1 and S2(Figs. 5.9a
and 5.9b). Moreover, we performed an experimental validation of the α1-parameter
heuristically on data set S2. Figure 5.9c summarizes the registration of 58 patients
comparing the achieved CAI values as box plot statistics for increasing prior influence.
In this Figure, we observe that although the median CAI increases with higher α1

values, the number of outliers among the data sets also rises. The optimal α1 that
achieves the most accurate results with the smallest variation for all data sets in
S2 is found to be 0.3 (i.e. 30% prior influence) and is consistent with our previous
heuristical findings. The second observation from Figure 5.9c is the SIP model’s
superiority over standard NMI approach on those 58 patient data sets. Although
NMI raises the median CAI value, it also increases the CAI variation and is hence a
less precise and less accurate algorithm. Those findings confirm our expectation that
the α1 parameter, supposedly, should not be the dominant factor for the statistical
intensity prior model in (3.4).

5.4 Imaging Guidance for Ventricular Tachycardia
Ablation Therapy

Physicians traditionally rely on manual comparison of images in clinical applications
that support potentially life-saving interventions. This can lead up to a point where
he or she has to form, in his mind, 3-d organ visualizations and relationships from
multiple two-dimensional modalities using his carefully trained medical association of
anatomy or disease. This is a highly complicated task that requires years of training
and experience and is still prone to errors, because the image data used during the
surgery is incomplete as visualized by the left image of Fig. 5.10. The medical
imaging community currently investigates exciting topics that aim at taking this
burden from the physicians and present an accurate high-end visualization and fusion
of complimentary information to help in planning of, or navigation during these types
of surgery. In Fig. 5.10, we provide an example of a left-ventricle segmentation from
PET and a 4-chamber segmentation from CT scan. The fused visualization is made
possible by establishing correspondence between PET and CT volume.

5.4.1 Description of VT Ablation and Current Clinical Solu-
tion

Ventricular tachycardia (VT) is an electrical abnormality in the cardiac conduction
system that originates in one of the ventricles of the heart. This is a potentially life-
threatening arrhythmia because it may lead to ventricular fibrillation (VF), asystole,



84 CHAPTER 5. MEDICAL IMAGING APPLICATIONS

Figure 5.10: Typical images available during interventional VT ablation therapy.
Original fluoroscopic x-ray image (left) that was previously used to perform ablation
therapy on the heart. Images currently employed during ablation showing (middle) 3-d
segmentation of the heart from CT and (right) PET intensity information projected
onto the segmentation from CT.

and sudden death. Therapy may be directed toward two directions. Either terminating
an episode of the arrhythmia or suppressing a future episode from occurring. The
treatment for stable VT needs to be tailored to the specific patient, with regard to how
well the individual tolerates such episodes of ventricular tachycardia, how frequently
episodes occur, and so on.

Therefore, treatment for frequently occurring arrhythmias are cardioverter defi-
brillators (ICD) that are implanted into one of the ventricles of the patient. An ICD
is the most effective prevention against sudden cardiac death. Due to the prohibitive
cost of ICDs, they are not routinely placed in all individuals.

Indications for ICD placement in the setting of ARVD include:

• Cardiac arrest due to VT or VF

• Symptomatic VT that is not inducible during programmed stimulation

• Failed programmed stimulation-guided drug therapy

• Severe RV involvement with poor tolerance of VT

• Sudden death of immediate family member

• Since ICDs are typically placed via a transvenous approach into the right
ventricle, there are complications associated with ICD placement and follow-up.

After a successful implantation, the progressive nature of the disease may lead to
fibro-fatty replacement of the myocardium at the site of lead placement. This may lead
to under-sensing of the individual’s electrical activity (potentially causing inability to
sense VT or VF), and inability to pace the ventricle. As a consequence, an increasing
number of patients presenting presented with frequent and appropriate implantable
cardioverter-defibrillator firings require VT ablation despite optimal medical therapy.

It has been found that anatomically based “substrate modification” strategies have
to be employed in more than 85% of the patients due to hemodynamic intolerance
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(a) Fluoroscopic X-Ray (b) Voltage Map

Figure 5.11: Fluoroscopic x-ray image of catheters ablating the heart and an endocar-
dial voltage map visualizing voltages across the ventricle using a color-map.

of the VT [Marc 00]. The basic idea of those approaches is to perform a linear
ablation along lines across and along the myocardial scar and its border zone in order
to interrupt conducting channels of surviving myocardium. For these procedures
endocardial voltage mapping is frequently used to define the scar substrate.

Endocardial voltage mapping aims at generating an accurate voltage map of the
endocardium by dense sampling of the ventricles using a steerable catheter with a
distal tip electrode and ring electrode attached to measure the voltage currents. The
4mm tip and 2mm ring electrode are sender and receiver electrodes respectively at a
inter-electrode distance of 4mm. Access to the ventricle is achieved by an invasive
trans-aortic approach [Fuku 08]. Due to the size of the electrodes and the ventricles,
this procedure usually requires several hours of invasive intervention that bears several
risks for the patient. The physician needs to carefully operate the catheter such
that no surrounding tissue is irreversibly injured by the measurement. Nevertheless,
the resulting endocardial voltage map accurately defines healthy, scar (dead), and
borderline scar tissues by applying standard clinical voltage criteria (i.e. scar: < 0.5
mV, abnormal: 0.5−1.5 mV, and normal: > 1.5 mV myocardium) and it is considered
the current clinical gold standard in VT ablation therapy [Tian 08]. The mapping
information is indispensable during VT ablation of surviving myocardium that causes
the abovementioned complications. The imaging feature important to the physician
is the scar borderzone tissue.

Current clinical systems display the endocardial voltage map alongside fluoroscopic
X-ray images that visualize the catheter very well. Neither the map nor the X-ray
images allow the display of 3-d left ventricle (LV) anatomy and embedded 3-d scar
reconstructions. Thus, the physician has to use the clinical knowledge of anatomy
in his or her head to create a visual understanding of physical anatomical and scar
locations on the voltage map. Also, the available information about border zone and
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high-resolution anatomic scar features are not displayed on current systems and hence
not utilized for the surgical procedure. Figure 5.11 shows a typical example of image
information available to physicians in current clinical systems. The information is
available as 2-D views with no anatomical guidance, it is not combined with voltage
map, and scar information is not reconstructed. For successful ablation, the physician
needs to combine the voltage information (Fig. 5.11b) with anatomical knowledge
of the heart in his/her head to steer the ablation catheter (Fig. 5.11a) to the scar
border zone.

Although the endocardial voltage map is the current gold standard for defining scar
substrate, it has limited ability to detect intra-myocardial or epicardial scar, and in
addition, suboptimal catheter contact can result in falsely low voltage measurements
[Tian 08]. All these rather significant downsides of the current mapping systems lead
to a number of technological advancements and active research in VT ablation therapy
to better combine all available information.

5.4.2 VT Ablation Therapy: Technological Advancements

The technological advancements for VT ablation therapy have been in two major
directions. The first one are advancements in the ability to track and navigate the
ablation catheter using new magnetic technologies that allow remote tracking and
navigation. The other direction is exploring the potentials of 3-d image guidance for
VT ablation which will be the focus here. Image guidance in VT ablation is current
being explored using magnet resonance (MR) guidance (i.e. real-time MR or delayed
enhancement MR guided ablation), ultrasound, and PET/CT guidance. A rather
recent statement from within the VT community shows that clinical interest in image
guidance is strong.

Advancements in imaging technology help the electro-physiologists to
ablate not only anatomical lesions but also tissue and molecular targets.
(International Symposium on Ventricular Arrhythmia, Philadelphia, 2007)

Clinical research in this area has further shown that current imaging technologies are
capable to deliver new methodologies that improve on the downsides of endocardial
voltage mapping. For example, Dickfeld and colleagues [Dick 08] reported that current
image integration software can be used to register and display PET/CT derived
myocardial scar as an area of absent voxels (“hole in the wall”) within the reconstructed
left ventricular wall to indicate scar location and size.

The goal of Tian and colleagues [Tian 08] is to move a newly developed, pre-clinical
image integration module, that allows a widespread, clinical use of image-reconstructed
three-dimensional scar maps from PET/CT to guide VT ablations, into clinical practice
by comparing it to the current clinical gold standard. Their study was performed on
10 consecutive ICD patients with an ischemic cardiomyopathy scheduled to undergo
VT ablation.

The integration platform allows the simultaneous visualization of multiple imaging
data sets and of the 3-d scar embedded into 3-d left ventricle myocardium. This
enables the physician to directly identify the substrate tissue with the LV anatomy
and secondly, the use of PET 3-d reconstructions at multiple metabolic thresholds
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allows the characterization of the scar border zone targeted during VT ablation. Last,
but not least important, the registration of the high-resolution CT images enables
the simultaneous display of the detailed substrate anatomy supplementing the intra-
procedural guidance during VT ablations. The image guidance platform is composed
of the following steps:

1. Pre-interventional image acquisition using either a hybrid or two standalone
PET and CT scanners.

2. Multimodal image registration to ensure proper alignment of cardiac PET/CT
data that will later provide more anatomical details for the scar reconstruction
and visualization.

3. Segmentation of the left myocardium in the PET image data and estimation
of scar border zone by multiple thresholding of metabolic activity within the
segmented LV.

4. Four chamber segmentation of the contrast enhanced CT images including the
left ventricle and the aortic arch.

5. The segmentation meshes from CT and PET can now be investigated through a
fused visualization of four chambers, LV PET, and LV PET scar and border
zone.

6. Clinical integration software provides further visualizations of segmentations or
PET intensity projections on the CT segmentation to assists in therapy planning
and in anatomical locating during interventions.

Figure 5.12 visualizes preliminary results of the image guided integration platform
by showing different visualizations of the available segmentations. The fused visu-
alization was made possible by successful application of the constrained statistical
intensity prior model to PET/CT image data (i.e. step 2. above). We will realize
in later sections that the successful application of the constrained model to noisy
SPECT/CT data [Guet 07] translates well to PET/CT scans of patients scheduled
to undergo VT ablation. Subsequent sections report in more detail the challenges
that registration technologies are faced with in such data and presents our systematic
validation procedures. Similarly, the robust segmentation of the left myocardium from
noisy 4-d SPECT sequences using a prior shape model as introduced by Kohlberger
and colleagues [Kohl 06] is well designed to robustly segment the left myocardium
from PET. This approach uses a dynamic shape model of the myocardium and fits it
to the available image data. It robustly segments the myocardium and the scar plus
the scar border zone in step 3. of the image guidance platform.

Comparing Figures 5.11 and 5.12 the technological advancements and advantages
are clearly visible. In conclusion, the fusion of multimodality imaging sets derived
from PET/CT allow an accurate, simultaneous display of LV anatomy and myocardial
scar and can assist in the further metabolic and anatomic characterization of the VT
substrate. This suggests a possible role in facilitating a novel image-guided approach
to substrate-based VT ablations [Tian 08].
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Figure 5.12: Fused visualization (bottom left) of segmented chambers (top left) and
LV (top right) from CT and PET respectively assist the physician in locating the scar
within the anatomy. Projections of PET intensities onto CT segmentation (bottom
right) directly correlate anatomy and function for scar border zone visualization in VT
ablation therapy. (Images are courtesy of Tian et al. [Tian 08], Kohlberger et al. [Kohl 06],
and Biosense Webster, Israel.)
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5.4.3 Challenges for and Clinical Validation of Registration
Technologies

A key element in the previous description of image-guided VT ablation is the registra-
tion of multimodal image data sets. The accurate registration of PET and CT data
allow the simultaneous display of 3-d scar embedded into 3-d LV myocardium and of
the detailed substrate anatomy derived from high-resolution CT images. Physicians
rely on the accuracy of potential registration technologies and base their decisions
on the results derived from the registration. The biggest challenge in designing a
robust registration technology is the quality of the available image data. As previously
described, patients that undergo VT ablation are usually equipped with an implantable
defibrillator or ICD. Such devices create streaky, windmill-like, reconstruction ar-
tifacts in the CT image generating images with a larger-than-expected noise level.
Such artifacts are categorized as patient-based. Even though parametric registration
approaches seem clinically acceptable, the quality of image data is unacceptable for
standard multimodal registration approaches such as NMI.

In this chapter, we will investigate the clinical feasibility of using statistical
intensity priors for the multimodal image registration in image-guided VT ablation.
For that purpose, we leverage the validation framework for the clinical assessment of
registration technology introduced in section 5.2. The following components of the
validation framework have been identified for this application:

Validation Hypothesis In image-guided VT ablation therapy, the best suited mul-
timodal registration algorithm provides accurate results in the registration of
CT and PET with a translational error of less than the size of the PET voxel
(i.e. sub-voxel accurate) when compared to the clinical gold standard.

Validation Data Sets PET/CT data sets of four patients scheduled for VT ablation
and part of the clinical study in [Tian 08]. The image data is described in detail
below.

Validation Criteria Visual assessment of the converged registration results of the
different algorithms. Clinical ground truth was unfortunately not available.

The currently available clinical image data is given by four pathological PET/CT
data sets of size 512× 512× 344 (CT) and 144× 144× 45 (PET). The slice number
varies between the data sets and the size of a voxel is 0.39mm× 0.39mm× 0.45mm
for CT and 4.0mm × 4.0mm × 4.0mm for PET. It can be observed in Figure 5.13
how challenging the data sets in VT ablation therapy are for multimodal registration
technologies. Several bright image reconstruction artifacts due to implanted ICDs,
missing image information in PET due to lack of metabolic activity in the left ventricle,
and a strong difference in resolution between PET and CT are common in VT patient
data sets.

Few image commonalities between diseased PET and CT, large amount of image
artifacts, and low image quality as observed are the main contributors to the failure
of standard data-driven registration techniques such as NMI. On the other hand,
the integrated SIP model, as introduced in chapter 3, promises to cope with such
challenges. Fig. 5.13 plots the registration results as achieved by the SIP model, and
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(a) Left View (b) Head View (c) Anterior View

Figure 5.13: Three orthogonal views of registered and fused PET/CT data sets
from four patients subject to VT ablation therapy. Registration is achieved by the
integrated SIP model using a prior from patient three. Note the inherently challenging
nature of the data, the reason why registration using NMI fails for all four data sets.
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we note that the standard NMI approach did not yield any successful registration on
these data. As a matter of fact, NMI registration failed so strongly for data sets two,
three, and four that the influence of NMI during optimization (e.g. see eq. (3.36)) was
removed, i.e. the α-parameter was chosen to be 1.0, in order to achieve a reasonable
registration. Due to the fact that optimization was performed with respect to only the
prior observations, the registration results for data sets two and four are reasonable,
however, showing small room for improvement. Note that in this experiment the
prior was generated from one of the data sets, i.e. patient three. For data set one, we
could choose the optimal α-parameter, i.e. α = 0.3, as determined by our previous
experiments (e.g. see Fig. 5.9), and the visual result looks highly accurate. Following
the results of our previous experiments, the combination of both previous and current
observations promises to be a robust and accurate model for multimodal registration.

Data set one is the data set that was used throughout this dissertation (e.g.
see Figure 3.1), and we now realized how highly accurate registration is achieved
despite the strong image reconstruction artifacts. According to visual assessment, our
hypothesis of these small use case validation runs is accepted for the integrated SIP
model. This model delivers a robust and accurate solution where common approaches
fail to properly align the data sets.

5.5 Summary
In this chapter, we have introduced a systematic validation framework for the clinical
assessment of multimodal registration technologies. Moreover, we have presented
several validation criteria for parametric and non-parametric image registration that
measure the success or failure of such methods in multimodal data sets. Using these
criteria, we employed the validation framework to assess the performance of statistical
intensity prior models in two major clinical applications, i.e. CT based attenuation
correction in hybrid scanner systems and image-guidance in VT ablation therapy.
After performing several clinical validation studies on more than 82 patient data sets
total, it can be seen that a consistent selection of α1 (i.e. prior influence parameter)
can be made without degrading registration quality. And since the generation of prior
knowledge is effortless, a wide range of applications can be addressed by the SIP
model. Note, it is one of the first glances at the performance of registration algorithms
using prior knowledge on a larger set of clinical image data. The statistical intensity
prior models nicely outperformed traditional methods in a consistent way because
they leverage on more information as purely data-driven approaches. The flexibility
and generality of the introduced models proof advantageous on noisy, degenerate
patient data, an extreme scenario for clinical image data.
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Chapter 6

Conclusion and Future Work

This thesis addressed the problem of establishing correspondence between multimodal
medical images. We introduced two intensity prior models and validated their per-
formance on numerous synthetic and clinical examples. Based on their performance,
we showed the added clinical value by these methods on two specific, routine clinical
applications. This chapter summarizes the achieved results and presents an outlook
into future directions.

6.1 Statistical Intensity Prior Model

In chapter 3, we first introduce a non-parametric statistical intensity prior (SIP) model
that allows to simultaneously consider prior knowledge and current observations.
Though introduced through the use of variational calculus, this intensity prior is
independent of the transformation model. The statistical intensity prior can be used
as additional force for a registration algorithm to robustly align medical images. The
design goal for this model was to introduce a simple, elegant, but efficient prior model
that is best suited as robust support for existing algorithms and that can be integrated
effortlessly into existing systems.

6.1.1 Main Results

1. Traditional intensity-based registration methods deteriorate on noisy, sparse, or
artifacted multimodal medical image data, while SIP models, which also utilize
prior knowledge about the correct intensity mapping, do not.

2. Unlike traditional registration measures, the SIP model shows a large capture
range on a variety of normal and diseased multimodal medical data sets. For
some modalities, a simple intensity correction model can be used as part of the
SIP model.

3. Artificial constraints on possible intensity mapping resulting from a restricted
transformation model can be bypassed by evaluating only on intensity mappings
of interest in the SIP model. These mappings can be specific to a particular
organ.

93
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6.1.2 Future Work

Future investigations into the general use of SIP models are guaranteed. In particular,
it would help to fully understand the SIP parameter α1, perhaps finding a way to
learn it from the training data such that it becomes optimal for a particular modality
combination. Finally, an investigation into other data terms might be useful in further
understanding the full practical potential of SIP models.

6.2 Generalized Statistical Intensity Prior Model
In chapter 4, we developed a generalization of the SIP formulation called general
statistical intensity prior (GSIP) that allows to incorporate any amount of prior
knowledge. The new formulation of a multimodal prior can produce a more accurate,
unbiased prior model that allows for an automatic adjustment of confidence in the
prior. We further note the applicability of GSIP to medical and non-medical data in
our experimental results.

6.2.1 Main Results

1. The formulation of a non-parametric GSIP model allows for an accurate and
flexible description of the underlying manifold of joint intensity probability
distributions.

2. The GSIP model formulation, further, eliminates the need for a deterministic
specification of intensity prior influence through an automatic estimation of the
current confidence into the prior model. This parameter is well derived from
available prior data.

3. Simulations show that the formulation of a multimodal prior allows for utilizing
prior knowledge from multiple intensity-based sources, and maintains other
desirable properties such as an extended capture range.

4. On a series of experiments, we compared the performance of traditional MI-based,
unimodal prior-based, and multimodal prior-based registration algorithms. The
GSIP remains the only algorithm that delivers accurate registration on occluded
image data.

5. Simulations results show that the multimodal prior is more flexible than a
unimodal prior demonstrating an increased robustness and an elimination of a
bias towards the prior model.

6.2.2 Future Work

In future research, we would like to study the effect of large numbers of prior samples on
the performance of GSIP and when it will become redundant to have an additional data
term included in the formulation. Also, further investigation in different deformation
priors and possible finding of its mathematical relationship to intensity priors may
shed new light on the research of statistical prior model formulations. The current
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formulation is based on kernel density estimation. It would be interesting to investigate
the possibility of extending or connecting its formulation to traditional unsupervised
approaches in machine learning. Finally, drawing connections between GSIP with
other applications in image processing and computer vision might provide some new
insight or even new solutions to existing problems.

6.3 Clinical Validation and Applications

In chapter 5, we described a systematic validation framework for the clinical as-
sessment of multimodal image registration algorithms. This framework allows to
evaluate an algorithm with respect to other algorithms as well as clinical ground
truth, and it provides an understanding of the added clinical value by a particular
multimodal registration algorithm. We, further, successfully applied SIP and GSIP
models to routine clinical application of CT-based Attenuation Correction in Hybrid
Scanners and to a pre-clinical application of Image Guidance in Ventricular Tachycar-
dia Ablation Therapy adding tangible clinical value by providing robust and accurate
correspondences in these multimodal medical images.

6.3.1 Main Results

1. The systematic literature review and utilization of a systematic validation
framework not only provides thorough validation of SIP and GSIP, but also
defines an added clinical value by those approaches.

2. The introduction of an application-specific validation metric, called Cardiac
Alignment Index, allows for the validation of registration algorithms independent
of the transformation model. We also demonstrate the need for non-rigid or
deformable registration algorithms in such clinical applications.

3. Both SIP and GSIP systematically outperform traditional statistical registration
methods on a wide collection of one hundred clinical data sets by decreasing
registration failure rates to 7% and increasing registration accuracy ratings from
20% (MI) to 78% (SIP).

4. On routine clinical data, statistical intensity prior models remain within-voxel
accurate and, therefore, eliminate image reconstruction artifacts in SPECT data
induced by misaligned hybrid scanner data. These results suggest the feasibility
of both models for automated multimodal image registration.

5. Besides an implementation on the GPU of SIP and GSIP that achieves in-
teractive performance of non-rigid registration of standard clinical data sets,
the implementation of both models on a standard Windows system achieves
clinically acceptable computational performance between 40 and 250 seconds
averaging around 93 seconds.
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6.3.2 Future Work

In future work, we would like to investigate the performance of SIP and GSIP on
other modality combinations including but not limited to MR/PET, MR/US, or
CT/US. It would further be interesting to explore the benefit of GSIP in general,
clinical applications such as MR perfusion studies, neurological studies using fMRI
data, Oncology lesion follow-up studies, and so on. The full clinical potential has, by
far, not been explored yet. We would like to further increase the accuracy ratings by
utilizing GSIP instead of SIP in more applications.

6.4 Outlook
The main goal of the work presented in this thesis has been to contribute to ro-
bustly establishing correspondence in data sets from multiple modalities through
the development of efficient statistical intensity prior models. Furthermore, it has
been made our first priority to investigate and proof the feasibility of those methods
in clinical registration problems involving challenging, clinical data from CT, MRI,
PET, and SPECT images. The research presented herein can hopefully deepen the
understanding of statistical intensity prior models, the relationship with currently
observed data, and points out new directions for designing better intensity prior
models and extending their application into other areas of medical image analysis and
computer vision.

The majority of current clinical applications leverage the pair-wise registration
of multimodal data sets. As a consequence of increasing amounts of medical data
and the abilities to fuse any type of image modality, future research directions will be
directed towards robustly registering of multiple multimodality data sets. This could
be in the context of multimodal population registration approaches or the sequential
pair-wise multimodal registration depending on the goals of the application. The
physician, however, is eager to leverage all available clinical information such that he
or she can make the most informed decision on the final diagnosis. The methods and
their validation presented in this thesis presumably offer a starting point for these
future registration needs.

Furthermore, automation of registration procedures is of high demand due to the
tremendous amount of clinical data that makes a manual interaction a very inefficient
tool to revert to for doctors and technicians.
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