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Abstract

Tino Haderlein, Elmar Nöth, Anton Batliner, Ulrich Eysholdt, Frank Rosanowski 

Automatic Intelligibility Assessment of Pathologic Speech over the Telephone

Objective  assessment  of  intelligibility  on  the  telephone  is  desirable  for  voice  and speech 
assessment and rehabilitation. 82 patients after partial laryngectomy read a standardized text 
which was synchronously recorded by a headset and via telephone. Five experienced raters 
assessed intelligibility perceptually on a 5-point scale. Objective evaluation was performed by 
Support  Vector  Regression on the word accuracy (WA) and word correctness  (WR) of  a 
speech  recognition  system,  and  a  set  of  prosodic  features.  WA and WR alone  exhibited 
correlations to human evaluation between |r|=0.57 and |r|=0.75. The correlation was r=0.79 for 
headset and r=0.86 for telephone recordings when prosodic features and WR were combined. 
The best feature subset was optimal for both signal qualities. It consists of WR, the average 
duration  of  the  silent  pauses  before  a  word,  the  standard  deviation  of  the  fundamental 
frequency on the entire sample, the standard deviation of jitter, and the ratio of the durations 
of the voiced sections and the entire recording.

Keywords Laryngectomy,  Telephone  Speech,  Automatic  Speech  Recognition,  Prosodic 
Analysis, Intelligibility Assessment
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Introduction

Perceptual voice and speech evaluation for clinical and scientific purposes is biased and time-
consuming.  Automatically  computed,  objective  measures  help  to  reduce  costs,  and  the 
problem of inter- and intra-rater variability is eliminated, because an automated evaluation 
algorithm always yields the same result for one specific speech recording. In this way, it can 
be used as objective assessment method during voice and speech rehabilitation therapy. This 
article introduces such a method which is independent of a particular therapist’s experience.

Although a basic protocol for functional assessment of voice pathology was established (1), 
there  is  still  no final  decision  about  which  automatic  methods  should be  applied  for  this 
purpose.  Currently  available  software  usually  evaluates  isolated  voice  properties  but  not 
speech  aspects  (2,3,4).  However,  the  necessity  for  the  analysis  of  more  complex  speech 
elements than vowels, especially for criteria like speech intelligibility or prosodic aspects, has 
been pointed out in the literature (5,6,7,8,9). Intelligibility may not only be affected by the 
communication partners but also by the transmission channel between them: The telephone is 
a crucial part of modern communication society, especially for the social life of elderly people 
whose physical  abilities  are  restricted.  For this  reason,  intelligibility on a  telephone is  an 
aspect of everyday communication which is already assessed in self-evaluation questionnaires 
on voice-related quality of life (10). 

In order  to rate  intelligibility of pathologic  speakers,  automatic  speech recognition  (ASR) 
systems  can  be  applied  (11,12,13,14).  Additionally,  prosodic  analysis  is  widely  used  in 
automatic speech analysis on normal voices (15,16,17,18,19). However, it was also proved 
applicable  to  evaluate  voice  and  speech  disorders  (20,21).  Even  for  telephone  speech  of 
partially laryngectomized persons, prosodic measures were applied (11). The combination of 
a speech recognition system and a “prosody module”, however, has not been tested until now 
and will be presented in this article.

The goal of this study was the identification of a set of measures from speech recognition and 
prosodic  analysis  which  allows  evaluation  of  intelligibility  both  on  high-quality  speech 
recordings and telephone recordings. This set was supposed to be applicable to a broad range 
of  voice  pathology  degrees.  For  this  reason,  the  study  was  performed  with  partially 
laryngectomized persons.

Material and Methods 

Patient Group

82 persons (68 men and 14 women) after partial laryngectomy were involved in this study. 
Their average age was 62.3SD8.8 years; the youngest speaker was 41.1, the oldest one was 
86.1 years old. In most cases, only a small tumor had been removed (T1: N=48, T2: N=19, 
T3: N=11, T4: N=4). At the time of investigation, none of the persons suffered from recurrent 
tumor growth or metastases. Informed consent had been obtained by all participants prior to 
the  examination.  The  study  respected  the  principles  of  the  World  Medical  Association 
(WMA) Declaration of Helsinki on ethical principles for medical research involving human 
subjects (22) and has been approved by the ethics committee of the University of Erlangen-
Nuremberg.  The participants read the German version of the tale “The North Wind and the 
Sun” (23) which is widely used in medical speech evaluation in German-speaking and other 
countries. It consists of 71 disjoint words and 108 words in total (172 syllables). 
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The patients were recorded simultaneously by a close-talk microphone (Logitech Premium 
Stereo Headset 980369-0914) and via a landline telephone.  For the close-talk samples,  16 
kHz sampling frequency and 16 bit linear amplitude resolution were applied. This is standard 
in many applications using automatic speech recognition. It captures all important frequencies 
and  time-related  phenomena  occurring  in  human  speech.  The  telephone  samples,  which 
underwent  the  usual  a-law  companding  used  in  telephone  transmission,  were  afterward 
resampled to 8 kHz and 16 bit.

Perceptual Evaluation

Five  experienced  voice  professionals  evaluated  the  intelligibility  of  each  recording.  The 
speech samples were played to the experts once via loudspeakers in a quiet seminar room 
without disturbing noise or echoes. Forty-four recordings of the headset and the telephone 
data were evaluated a second time after four weeks in order to compute intra-rater correlation. 
Rating was performed on a five-point Likert  scale.  For computation of average scores for 
each  patient,  these grades  were converted  to  integer  values  (1 = “very high”,  2 = “rather 
high”, 3 = “medium”, 4 = “rather low”, 5 = “very low”). 

Recognition System

The speech recognition system used for the experiments (24) is based on semi-continuous 
Hidden Markov Models (HMM) which define a statistical model for each different phoneme 
to  be  recognized.  The  basic  acoustic  measures  (features)  for  the  recognition  are  Mel-
Frequency Cepstrum Coefficients which are also used for voice assessment (25). For speech 
recognition with our system, they are computed for each section of 16 ms duration. Their 
purpose is to extract those patterns which are characteristic for a certain phoneme but speaker-
independent from the sample. Many features representing the same phoneme form a cluster in 
the multi-dimensional feature space. The position of this cluster is described by a weighted 
sum of Gaussians which is determined during the training phase of the system. Hence, the 
parameters of those Gaussians define the model of a phoneme. During the recognition phase, 
it is tested for each feature vector of a recording to which cluster and phoneme it belongs.

The phoneme models are context-dependent. They take into account coarticulation effects and 
train e.g. different models for the core phone [I] in the phone context /v[I]n/ (as in “win” or 
“winning”) or /k[I]d/ (as in “kid”, “kidney”, etc.). We use special “polyphone” models (26) 
where the context can be chosen arbitrarily large. The basic training set for the acoustic phone 
models for this study were broadband recordings. The 578 training speakers (304 male, 274 
female) were normal speakers from all over Germany. In this way a normal voice was defined 
as the reference for automatic evaluation. The average age of these persons was 27 years. 
About 80% of them were between 20 and 29 years old, less than 10% were over 40. In order 
to extend the evaluation to telephone speech, a second recognizer was trained. We resampled 
the original training data with 8 kHz and applied a band-pass filter (300 to 3400 Hz). This 
simulates telephone speech quality. 

For speech recognition, the recognized phones are combined to words according to the list of 
the words in “The North Wind and the Sun” (24). The word accuracy (WA) and the word 
correctness (WR) are obtained from the comparison between the recognized word sequence 
and the reference  text  consisting of nall=108 words.  With  the number  of  words that  were 
wrongly substituted (nsub), deleted (ndel) and inserted (nins) by the system, the word accuracy is 
given as

WA [%] = [1 - (nsub + ndel + nins)/nall] ∙ 100 .                                                                            (1)
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The word correctness omits the wrongly inserted words:

WR [%] = [1 - (nsub + ndel)/nall] ∙ 100                                                                                        (2)

Although both measures are usually given in percent, a high nins can cause the WA to become 
negative.  This  happens  only  for  very  severely  distorted  voices  or  recordings  when  the 
recognizer identifies a large number of short words where actually longer words were uttered. 
In the data for this study,  this case did not occur.  The negative values do not restrict  the 
usability of the data for statistical processing in any way.

In order to reduce the computational complexity in the recognition phase, a “language model” 
of  possible  speech  input  is  usually  added  as  another  source  of  information.  It  contains 
probabilities about word sequences occurring in natural language. Hence, many errors from 
the pure acoustic recognition phase can be eliminated. However, for the purpose of automatic 
assessment of intelligibility, this is a disadvantage. The more errors are corrected by using 
linguistic knowledge, the worse match human and automatic evaluation (12). This makes WA 
and WR useless as measures for intelligibility. For this reason, our recognizer did not have 
information about word pairs, triples,  or longer phrases.  It  used only a unigram language 
model  instead,  i.e.  the frequency of occurrence of single  words in  the text  reference was 
known to the recognizer. 

Prosodic Features

For each word provided by the speech recognizer, a vector of prosodic features is computed 
by the prosody module. There are three basic groups of features. Duration features represent 
word  and  pause  durations.  Energy  features  contain  information  about  maximum  and 
minimum energy, their respective positions in the word, the energy regression coefficient and 
mean square error. Similarly the F0 features, based on the detected fundamental frequency, 
comprise information about the extremal F0 values and their positions, voice onset and offset 
with  their  positions,  and  also  the  regression  coefficient  and  mean  square  error  of  the  F0 

trajectory. Duration, energy, and F0 values are stored as absolute and normalized values. The 
28 basic features are computed in different contexts, i.e.  in intervals  containing the single 
word or pause only or a word-pause-word interval. In this way, 95 features are computed for 
each word (16,21,27).

Besides the 95 local features per word, 16 “global” features are computed for intervals of 15 
words length each. They are derived from jitter (fluctuations of F0), shimmer (fluctuations of 
intensity), and the number of detected voiced and unvoiced sections in the speech signal (16). 
They cover the means and standard deviations of jitter and shimmer, the number, length and 
maximum length of voiced and unvoiced sections, the ratio of the numbers of voiced and 
unvoiced sections, the ratio of the length of the voiced sections to the length of the signal, and 
the same for unvoiced sections. The standard deviation of the F0 was measured in two ways: It 
was computed over the voiced sections and also over all sections of the speech recordings. In 
the latter  case,  each unvoiced frame contributed a value of 0. Hence,  it  incorporated also 
information about the percentage of frames where no regular voice signal was detected. Since 
all patients read the same text, this was supposed to indicate the degree of pathology.

The speech experts gave ratings for the entire text. In order to receive also one single value 
for each feature that could be compared to the human ratings, the average of each prosodic 
feature over the entire recording served as a final feature value. 
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Support Vector Regression

A  Support Vector Machine (SVM) performs a binary classification based on a hyperplane 
separation between two class areas in a multi-dimensional feature space. SVMs can also be 
used for Support Vector Regression (SVR, 28).  The general idea of regression is to use the 
element vectors of the training set to approximate a function which tries to predict the target 
value of a given vector of the test set.  For this study, the  sequential minimal optimization 
algorithm  (SMO,  28)  of  the  Weka  toolbox  (29)  was  applied  for  this  purpose.  The 
automatically computed measures WA, WR, and all prosodic features served as the training 
set  for the regression, and the test  set consisted of the perceptually assessed intelligibility 
scores. 

In order to find the best subset of WA, WR, and the prosodic features to model the subjective 
ratings,  a  correlation-based  feature  selection  method  (20,  p.59-61)  was  applied.  It was 
performed  separately  for  close-talk  and  telephone  speech  in  a  10-fold  cross-validation 
manner. The features with the highest ranks were then used as input for the SVR.

Results 

Intelligibility was rated lower for the telephone recordings by the speech recognizer (47.0% 
WA,  53.9% WR;  see  tables  I  and  II)  and  the  raters  (score  3.25)  than  for  the  close-talk 
recordings  (51.8%  WA,  57.2%  WR,  score  2.91).  The  differences,  however,  are  not 
significant.  The  differences  between  the  single  raters  are  also  not  significant.  This  was 
confirmed by the average inter-rater correlation between one rater and the four others which 
was r=0.84 (table  III).  The worst  value was r=0.79 in  this  case.  Likewise,  the intra-rater 
correlation was high (table IV). The average was r=0.83 for both data sets. All the single 
raters differed only slightly from this average, except for rater R1 who exhibited the smallest 
value of all (r=0.73) for the close-talk recordings and the maximum of all raters (r=0.90) for 
the telephone data. The average correlation between the intelligibility rating of the headset 
and the corresponding telephone samples amounted to r=0.77 (table V). For rater R1, it was 
only r=0.71 while the other experts did not differ significantly from the average.

[Insert Table I about here.]
[Insert Table II about here.]
[Insert Table III about here.]
[Insert Table IV about here.]
[Insert Table V about here.]

The correlation between perceptual and automatic evaluation is shown in table VI. WA and 
WR  alone  featured  correlations  to  human  evaluation  between  r=-0.57  and  r=-0.75.  The 
coefficient is negative because high recognition rates came from “good” voices with a low 
score number and vice versa. The human-machine correlation rose significantly (p<0.01) to 
values of r=0.79 for headset and r=0.86 for telephone recording when prosodic features and 
WR were combined. The best subset that was identified was optimal for both signal qualities. 
It  consists  of  WR,  the  average  duration  of  the  silent  pause  before  a  word,  the  standard 
deviation  of F0 on the entire  sample,  the standard deviation  of jitter,  and the ratio  of the 
durations of the voiced sections and the entire recording. The weighting factors of the single 
features in the regression formula between human and machine rating are given in table VII.

[Insert Table VI about here.]
[Insert Table VII about here.]
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Discussion 

The Best Feature Set 

The best feature subset for the agreement between experts and automatic evaluation (table 
VII) contains only five measures which are the same for close-talk and telephone speech. The 
contribution of the word correctness to the human-machine correlation is obvious. The more 
words a human listener understands, the more also the machine identifies correctly. This has 
been demonstrated for other pathologies before (11,12,13). The reason why WR and not WA 
is better here might be the smaller degree of pathology in comparison to, for instance, total 
laryngectomees.  For  that  person  group,  the  recognition  results  are  very  bad  with  a  high 
percentage of wrongly inserted words. This number may be the key to the good correlation 
with  the  low  perceptual  intelligibility  scores.  In  partially  laryngectomized  patients,  this 
measure loses its expressiveness because recognition performs generally better. This is also 
the reason why WA or WR alone cannot capture the complex phenomenon of intelligibility 
(table VI).

Intelligibility  is  also related  to  speaking  rate  and voice  quality  since  the  best  feature  set 
contains  duration-based  features  and features  measuring  regularity.  The duration  of  silent 
pauses between words reflects the speaking rate. We assume that speakers with longer pauses 
have to put more effort into speaking. This may be caused by severe alterations to the voicing 
organs.  For  instance,  in  incomplete  glottal  closure,  the  speaker  needs  to  breath  more 
frequently because of the loss of air through the glottal gap and has a breathy voice. This, in 
turn, has also a negative effect on intelligibility. However, the weighting factor for this feature 
in  the  regression  formula  (table  VII)  was  rather  low.  Hence,  it  does  not  have  the  most 
important impact on intelligibility.

A similar reason holds for the relevance of the ratio of durations of the voiced sections in the 
recording and the entire recording. Highly irregular voices show a lower portion of harmonic 
segments and usually lower intelligibility. 

The contribution of the standard deviation of jitter to automatic intelligibility rating is also 
based upon irregularities in voicing. It describes how much jitter is varying during the voiced 
sections of the text recording. A low value would point out a more or less regular voice while 
high values describe, in addition to varying F0, that also the variation of F0 is not regular. The 
standard deviation of F0  over the entire sample incorporates information about irregularity in 
two ways: It measures the F0 variation and takes into account the number of frames that were 
classified as voiced. When the standard deviation of F0  was computed on the voiced frames 
only, the feature was not even selected into the best feature set.

Measuring Intelligibility by Analyzing Text Recordings

For the purpose of this study, patients read a standard text, and voice professionals evaluated 
intelligibility.  It  is  often  argued  that  intelligibility  should  be  evaluated  by  an  “inverse 
intelligibility test”: The patient utters a subset of words and sentences from a carefully built 
corpus.  A naïve  listener  writes  down what  he  or  she  heard.  The  percentage  of  correctly 
understood words is a measure for the intelligibility of the patient. In a study on the German 
Post-Laryngectomy Telephone Test (PLTT, 30), however, it was shown that one naïve rater 
alone is not enough to achieve reliable results because the perceptually assessed results differ 
too much among the raters  (31). Our intention is  also to design an automatic  support  for 
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speech therapy, so the reference data have to be obtained from trained listeners first.

There  is  another  important  reason  for  using  a  standard  text:  When  automatic  speech 
evaluation  is  performed  for  instance  with  respect  to  prosodic  phenomena,  such  as  word 
durations or percentage of voiced segments, then comparable results for all patients can only 
be  achieved  when  all  the  patients  read  the  same  defined  words  or  text.  An  inverse 
intelligibility test can no longer be performed then, and intelligibility has to be rated on a 
grading scale instead. However, the inter-rater correlation between an objective,  automatic 
evaluation method and expert raters who rated intelligibility on a 5-point scale was well above 
0.8 (11). For an objective, automatic version of the PLTT, correlations between the average 
naïve listener and the automatic results were in the same range (31). Hence, the text-based 
evaluation performed by trained listeners is as reliable as the inverse intelligibility test with 
naïve raters.

Recognition System

For this study, polyphone-based recognizers were used because they yield better results in not 
severely  deteriorated  voices  (11).  The  training  set  of  the  recognizer  for  the  8  kHz  data 
consisted of down-sampled broadband speech and not real telephone data. We chose this way 
instead of using real telephone speech for training since we wanted the telephone recognizer 
to be trained with the same recordings as the recognizer for the broadband data, just with 
another  signal  quality.  This  was  done  in  order  to  reduce  the  confounding  factors  on  the 
recognition  result  to  a  minimum.  The  acoustic  difference  to  real  telephone  speech  was 
assumed marginal in comparison to the difference between normal and pathologic speech. 
The  a-law  companding  function  of  the  telephone  channel  was  also  shown  to  be  not 
disadvantageous for human-machine correlation (11). 

The WA and WR values were rather low. However, their absolute values are not crucial. It is 
their  range that is  important  for an adequate  representation of the perceptual  ratings.  The 
important measure for the success of the method is the human-machine correlation. The low 
WA  and  WR  values  were  mainly  caused  by  the  training  set  of  the  speech  recognizer 
consisting of the speech of young adults. On the one hand, there were not enough data to train 
a recognizer with pathologic  speech only.  Another aspect that  has to be considered is the 
average age of the patients.  There is an influence of age on automatic speech recognition 
results which was presented in a study by Wilpon and Jacobsen (32). When they trained their 
system with 19- to 34-year-old persons, which fits approximately the training speakers of our 
recognizers,  they  measured  a  word  error  rate  of  2.4% on  test  speakers  of  the  same  age 
category.  For  test  speakers  of  the  age  category  60+,  the  error  rate  was  4.7%.  This  was 
obtained in a digit recognition test, i.e. with a very small recognition vocabulary. For larger 
vocabularies, the error rates will be higher. However, the natural influence of age on the voice 
is in most cases much smaller than the influence that the patient’s voice pathology has. For 
this reason, age is not the most critical factor in this method. Due to the limited amount of 
data, we could not examine age effects on pathologic speakers in detail so far. For the design 
of a recognizer for practical clinical application, this aspect will have to be taken into account. 
On the other hand, in view of the rehabilitation process of the patients, it is important to use a 
system that represents a reference for average normal speech (also with respect to age) in 
order to compute the difference between this reference and the pathology of the respective 
patient.

Conclusion

Objective evaluation of intelligibility by automatic speech recognition and prosodic features 
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is possible for close-talk speech and for telephone speech, even for pathologies with a broad 
range of degree. There is a high and significant correlation between subjective ratings and the 
automatic  measures.  The  human-machine  correlation  is  as  high  as  the  average  inter-rater 
correlation among speech therapists. Hence, the method is suitable as basis for an automatic, 
objective, and easily applicable support for voice and speech assessment. In this article, it has 
been evaluated using  speech data from laryngectomized patients. However, it can easily be 
transferred onto other types of pathology. Thus, it can serve as reliable “second opinion” for 
voice and speech therapy where usually one single therapist treats the patient.
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Tables

Table I
Perceptual intelligibility measures of 5 raters for 82 patients after partial laryngectomy (mean 
and standard deviation); “Avg.” is the average over all raters. 
Rater R1 R2 R3 R4 R5 Avg. 
Headset 2.98SD1.22 2.73SD1.30 3.00SD0.99 2.91SD1.28 2.91SD1.15 2.91SD1.07
Telephone 3.21SD1.20 3.13SD1.39 3.38SD1.01 3.23SD1.26 3.32SD1.29 3.25SD1.10

Table II
Word  accuracy  (WA)  and  word  correctness  (WR)  values  for  82  patients  after  partial 
laryngectomy
Data Sample Freq. Measure Mean St. Dev. Minimum Maximum

Headset 16 kHz WA 51.8 19.2 0.0 82.4

WR 57.2 16.5 14.9 84.3

Telephone 8 kHz WA 47.0 19.6 -2.7 79.6

WR 53.9 17.0 8.6 83.3

Table III
Inter-rater correlation between a single raters’ intelligibility scores and the average of the 4 
other raters, evaluated on 82 recordings; “Avg.” is the average over all raters. 
Rater R1 R2 R3 R4 R5  Avg. 
r(Headset)  0.79  0.85  0.83  0.84  0.88  0.84
r(Telephone)  0.85  0.82  0.87  0.79  0.85  0.84
 
Table IV
Intra-rater correlation for the raters’ intelligibility scores, evaluated on 44 recordings; “Avg.” 
is the average over all raters. 
Rater R1 R2 R3 R4 R5  Avg. 
r(Headset)  0.73  0.86  0.86  0.85  0.85  0.83
r(Telephone)  0.90  0.78  0.83  0.82  0.83  0.83
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Table V
Intra-rater  correlation  between  the  headset  and  telephone  recordings  for  the  raters’ 
intelligibility scores, evaluated on 82 recordings; “Avg.” is the average over all raters. 
Rater R1 R2 R3 R4 R5  Avg. 
r(Headset vs. Telephone)  0.71  0.77  0.81  0.82  0.75  0.77

Table VI
Human-machine correlation for headset and telephone recordings; the left column specifies 
the set of measures that was used to compute the correlation to the average human listener.
Measures Headset Telephone

WA only -0.57 -0.69

WR only -0.62 -0.75

Best set +0.79 +0.86

Table VII
Weighting factors of the elements of the best feature set for human-machine correlation; the 
higher  the  absolute  weighting  factor  is  in  the regression formula  between perceptual  and 
automatic evaluation, the more important is the feature.
Feature Headset Telephone

Duration of silent pause before word 0.291 0.221

Standard deviation of F0 (all frames) 0.616 0.350

Standard deviation of jitter 0.243 0.332

Ratio of durations: voiced sections/entire recording -0.916 -0.775

WR -0.476 -0.641


