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Abstract. For voice rehabilitation, speech intelligibility is an impor-
tant criterion. Automatic evaluation of intelligibility has been shown to
be successful for automatic speech recognition methods combined with
prosodic analysis. In this paper, this method is extended by using mea-
sures based on the Cepstral Peak Prominence (CPP). 73 hoarse patients
(48.3± 16.8 years) uttered the vowel /e/ and read the German version
of the text “The North Wind and the Sun”. Their intelligibility was
evaluated perceptually by 5 speech therapists and physicians according
to a 5-point scale. Support Vector Regression (SVR) revealed a feature
set with a human-machine correlation of r =0.85 consisting of the word
accuracy, smoothed CPP computed from a speech section, and three
prosodic features (normalized energy of word-pause-word intervals, F0

value at voice offset in a word, and standard deviation of jitter). The
average human-human correlation was r =0.82. Hence, the automatic
method can be a meaningful objective support for perceptual analysis.

1 Introduction

Chronic voice diseases cause enormous costs for modern communication so-
ciety [14]. A standardized, efficient method for voice assessment is therefore
needed. Despite many attempts for automation, perception-based methods are
still the basis for the evaluation of voice pathologies. This, however, is too incon-
sistent among single raters to establish a standardized and unified classification.

Perception experiments are usually applied to spontaneous speech, standard
sentences, or standard texts. Automatic analysis relies mostly on sustained vow-
els [11]. The advantage of speech recordings is that they contain phonation
onsets, variation of F0 and pauses [13]. Furthermore, they allow to evaluate
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speech-related criteria, such as intelligibility. This paper focuses on automatic
intelligibility assessment of chronically hoarse persons by means of automatic
speech recognition, prosodic and cepstral analysis.

Most studies on automatic voice evaluation use perturbation-based param-
eters, such as jitter, shimmer, or the noise-to-harmonicity ratio (NHR, [11]).
However, perturbation parameters have a substantial disadvantage. They re-
quire exact determination of the cycles of the fundamental frequency F0. In
severe dysphonia it is difficult to find an F0 due to the irregularity of phonation.
This drawback can be eliminated by using the Cepstral Peak Prominence (CPP)
and the Smoothed Cepstral Peak Prominence (CPPS) which represent spectral
noise. They do not require F0 detection and showed high human-machine corre-
lations in previous studies [1, 5, 8]. It is obvious that CPP expresses voice quality
rather than intelligibility, but these two perceptual criteria are highly correlated
with each other in voice pathologies [4]. Hence, CPP may also provide a better
modeling of the perceptual concept of intelligibility.

The questions addressed in this paper are the following: How can cepstral-
based evaluation support the established evaluation of intelligibility by a speech
recognizer and prosodic analysis [4, 10]? Are there significant differences between
the results of automatic vowel and text evaluation?

In Sect. 2, the audio data and perceptive evaluation will be introduced. Sec-
tion 3 will give some information about the cepstral analysis, Sect. 4 describes
the speech recognizer. An overview of the prosodic analysis and Support Vector
Regression will be presented in Sect. 5 and 6, and Sect. 7 will discuss the results.

2 Test Data and Subjective Evaluation

73 German persons with chronic hoarseness (24 men and 49 women) between 19
and 85 years of age participated in this study. The average age was 48.3 years
with a standard deviation of 16.8 years. Patients suffering from cancer were
excluded. Each person uttered the vowel /e/ and read the text “Der Nordwind
und die Sonne” (“The North Wind and the Sun”, [9]), a phonetically balanced
standard text which is frequently used in medical speech evaluation in German-
speaking countries. It contains 108 words (71 distinct) with 172 syllables. The
data were recorded with a sampling frequency of 16 kHz and 16 bit amplitude
resolution by a microphone AKG C 420.

Five experienced phoniatricians and speech scientists evaluated each speaker’s
intelligibility in each recording according to a 5-point scale with the labels “very
high”, “high”, “moderate”, “low”, and “none”. Each rater’s decision for each
patient was converted to an integer number between 1 and 5. The average of all
raters served as the reference for the automatic evaluation.

3 Cepstral Analysis

The Cepstral Peak Prominence (CPP) is the logarithmic ratio between the
cepstral peak and the regression line over the entire cepstrum at this que-
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frency (Fig. 1). A strongly distorted voice has a flat cepstrum and a low CPP due
to its inharmonic structure. The computation of CPP and the Smoothed Cepstral
Peak Prominence (CPPS) was performed by the free software “cpps” [7] which
implements the algorithm introduced by Hillenbrand and Houde [8]. The cep-
strum was computed for each 10ms frame, CPPS was averaged over 10 frames
and 10 cepstrum bins. The vowel-based results will be denoted by “CPP-v”
and “CPPS-v”. For the automatic speech evaluations (“CPP-NW” and “CPPS-
NW”), the first sentence only (approx. 8-12 seconds, 27 words, 44 syllables) of
the read-out text was used. Sections in which the patients laughed or cleared
their throat were removed from the recording.
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Fig. 1. Logarithmic power spectrum (left) and cepstrum (right) of a vowel section with
Cepstral Peak Prominence (CPP)

4 The Speech Recognition System

The speech recognition system used for the experiments is described in detail
in [17]. It is based on semi-continuous Hidden Markov Models (HMM) and can
handle spontaneous speech with mid-sized vocabularies up to 10,000 words. It
can model phones in any context size that is statistically useful and thus forms
the so-called polyphones, a generalization of the well-known bi- or triphones.
The HMMs for each polyphone have three to four states; the codebook had 500
Gaussians with full covariance matrices. The short-time analysis applies a Ham-
ming window with a length of 16ms, the frame rate is 10ms. The filterbank for
the Mel-spectrum consists of 25 triangle filters. For each frame, a 24-dimensional
feature vector is computed. It contains short-time energy, 11 Mel-frequency cep-
stral coefficients, and the first-order derivatives of these 12 static features. The
derivatives are approximated by the slope of a linear regression line over 5 con-
secutive frames (56ms).

The baseline system for the experiments in this paper was trained on Ger-
man dialogues of non-pathologic speakers from the Verbmobil project [18].
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The data had been recorded with a close-talking microphone at a sampling
frequency of 16 kHz and quantized with 16 bit. About 80% of the 578 train-
ing speakers (304 male, 274 female) were between 20 and 29 years old, less than
10% were over 40. 11,714 utterances (257,810 words) of the Verbmobil-German
data (12,030 utterances, 263,633 words, 27.7 hours of speech) were used for train-
ing and 48 samples (1042 words) for the validation set, i.e. the corpus partitions
were the same as in [17].

The recognition vocabulary of the recognizer was changed to the 71 words of
the standard text. The word accuracy and the word correctness were used as ba-
sic automatic measures for intelligibility since they had been successful for other
voice and speech pathologies [4, 10]. They are computed from the comparison
between the recognized word sequence and the reference text consisting of the
nall =108 words of the read text. With the number of words that were wrongly
substituted (nsub), deleted (ndel) and inserted (nins) by the recognizer, the word
accuracy in percent is given as

WA = [1 − (nsub + ndel + nins)/nall] · 100

while the word correctness omits the wrongly inserted words:

WR = [1 − (nsub + ndel)/nall] · 100

Only a unigram language model was used so that the results mainly depend on
the acoustic models. A higher-order model would correct too many recognition
errors and thus make WA and WR useless as measures for intelligibility.

5 Prosodic Features

In order to find automatically computable counterparts for intelligibility, also a
“prosody module” was used to compute features based upon frequency, duration
and speech energy (intensity) measures. This is state-of-the-art in automatic
speech analysis on normal voices [3, 12, 15].

The prosody module processes the output of the word recognition module
and the speech signal itself. Hence, the time-alignment of the recognizer and the
information about the underlying phoneme classes can be used by the module.
For each speech unit of interest (here: words), a fixed reference point has to be
chosen for the computation of the prosodic features. This point was chosen at
the end of a word because the word is a well–defined unit in word recognition, it
can be provided by any standard word recognizer, and because this point can be
more easily defined than, for example, the middle of the syllable nucleus in word
accent position. For each reference point, 95 prosodic features are computed from
28 base features over intervals which contain one single word, a word-pause-word
interval or the pause between two words. A full description of the features used
is beyond the scope of this paper; details and further references are given in [2].

In addition to the 95 local features per word, 15 global features were com-
puted from jitter, shimmer and the number of voiced/unvoiced decisions for each
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15-word interval. They cover the means and standard deviations for jitter and
shimmer, the number, length and maximum length each for voiced and unvoiced
sections, the ratio of the numbers of voiced and unvoiced sections, the ratio of
length of voiced sections to the length of the signal and the same for unvoiced
sections. The last global feature is the standard deviation of the F0.

6 Support Vector Regression (SVR)

In order to find the best subset of word accuracy, word correctness, the prosodic
features and cepstral measures to model the subjective ratings, Support Vector
Regression (SVR, [16]) was used. The general idea of regression is to use the vec-
tors of a training set to approximate a function which tries to predict the target
value of a given vector of the test set. Here, the training set are the automati-
cally computed measures, and the test set consists of the subjective intelligibility
scores. For this study, the sequential minimal optimization algorithm (SMO, [16])
of the Weka toolbox [19] was applied in a 10-fold cross-validation manner.

The pre-defined correlation-based feature selection algorithm [6] had been
altered so that the number of matrix inversions was substantially reduced at the
cost of a slightly worse selection result [10, pp. 59-61]. The features with the
highest ranks were used as input for the SVR.

7 Results and Discussion

The correlations between the perceptual evaluation and single automatic mea-
sures are given in Table 1. The human-machine correlations of these measures
alone are not as good as the inter-rater correlation of a panel of experts (Table 2).
But it appears that WA outperforms WR, and the text-based cepstral measures
are clearly better than the vowel-based ones. The correlations are negative be-
cause high recognition rates and cepstral peaks came from “good” voices with a
low score and vice versa. The values did not change significantly throughout the
study when Spearman’s rank-order correlation ρ was computed. For this reason,
only Pearson’s r is given.

By using WA, WR, the CPP measures, and the prosodic features as input for
SVR, higher correlations to the subjective intelligibility score were obtained (Ta-
ble 3). The WR and the vowel-based CPP measures did not appear in the selected
feature list. A human-machine correlation of r = 0.85 was achieved for the set
of WA, CPPS-NW, the normalized energy of word-pause-word intervals (En-
NormWPW), the F0 value at the voice offset in a word (F0OffWord), and the
standard deviation of jitter (StandDevJitter). With the latter three prosodic fea-
tures alone, r =0.79 was measured. CPPS-NW and WA together reach r =0.83.
The other selected experiments given in Table 3 show that for a human-machine
correlation of r≥ 0.80 either WA or CPPS-NW are needed in any case.

The energy value EnNormWPW is normalized with respect to a pre-computed
speaker list. If the person has a hoarse and irregular voice, then the energy level
especially in the high frequency portions is raised. For this reason, this feature
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may contribute strongly to the best feature set. The impact of the F0 value can
be explained by the noisy speech that causes octave errors during F0 detection,
i.e. instead of the real fundamental frequency, one of its harmonics is found.
With more “noisy speech”, this may influence the F0 trajectory and hence the
correlation to the subjective results. It is not clear so far, however, why only the
end of the voiced sections causes a noticeable effect. There may be a connec-
tion to changes in the airstream between the beginning and the end of words
or phrases. It may have its reason in the high speaking effort which leads to
more irregularities especially in these positions, but this has to be confirmed by
more detailed experiments. Jitter is one of the established measures for voice
pathology. However, a certain amount of jitter and regular changes thereof are
present in normal voices. When changes of jitter over time become irregular, this
may also be an indicator for a less intelligible voice. Note that the prosody mod-
ule computes the F0 and jitter values only on sections which it has previously
identified as voiced.

The correlations between the feature values of the best subset are given in
Table 4. A high EnNormWPW correlates significantly with a low CPPS-NW and
a low WA. Likewise, jitter and its standard deviation are higher which correlates
negatively with CPPS-NW. The low CPPS-NW in a distorted voice correlates
with a low recognition rate.

Table 1. Subjective and objective evaluation results for 73 hoarse speakers: intelligibil-
ity, word accuracy (WA) and word correctness (WR), and the cepstral peak measures;
the rightmost column shows the correlation r between the human evaluation and the
respective automatic measure

measure unit mean st. dev. min. max. r

intell. points 2.5 1.0 1.0 5.0 1.00

WA % 69.3 14.3 27.8 90.1 –0.74

WR % 73.5 12.0 28.9 90.1 –0.69

CPP-v dB 17.2 4.3 8.8 25.3 –0.61

CPPS-v dB 6.1 2.2 0.9 11.1 –0.58

CPP-NW dB 12.1 1.6 9.1 16.3 –0.69

CPPS-NW dB 4.1 1.0 1.9 6.3 –0.74

Table 2. Inter-rater correlation r for intelligibility between each rater and the average
of the remaining raters

rater K R S T V avg.

r 0.78 0.84 0.88 0.75 0.84 0.82
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Table 3. SVR regression weights for the best subset (experiment 1) and selected other
subsets, and their correlation r to the subjective intelligibility scores (last row)

feature exp. 1 exp. 2 exp. 3 exp. 4 exp. 5 exp. 6 exp. 7

EnNormWPW 0.228 0.980 0.840 0.345 0.660

F0OffWord –0.146 –0.428

StandDevJitter 0.167 0.522 0.549 0.168 0.343 0.178

CPPS-NW –0.412 –0.485 –0.524 –0.632

WA –0.431 –0.579 –0.532 –0.539

correlation r 0.85 0.79 0.74 0.84 0.83 0.81 0.83

Table 4. Correlation of the feature values of the best feature set for all 73 speakers

feature F0OffWord StandDevJitter CPPS-NW WA

EnNormWPW –0.03 0.23 –0.56 –0.74

F0OffWord –0.10 0.26 0.09

StandDevJitter –0.58 –0.30

CPPS-NW 0.56

For this study, patients read a standard text, and voice professionals evalu-
ated intelligibility. It is often argued that intelligibility should be evaluated by an
“inverse intelligibility test”: The patient utters a subset of words and sentences
from a carefully built corpus. A näıve listener writes down what he or she heard.
The percentage of correctly understood words is a measure for the intelligibil-
ity of the patient. However, when automatic speech evaluation is performed for
instance with respect to prosodic phenomena, such as word durations or per-
centage of voiced segments, then comparable results for all patients can only be
achieved when all the patients read the same defined words or text. This means
that an inverse intelligibility test can no longer be performed, and intelligibility
has to be rated on a grading scale instead.

The results obtained in this study allow for the following conclusions: There is
a significant correlation between subjective rating of intelligibility and automatic
evaluation. The human-machine correlation is better than the average inter-rater
correlation among speech experts. Cepstral-based measures improve the human-
machine correlation, but only when they are computed from a speech recording
and not from a sustained vowel only. The method can serve as the basis for an
automatic, objective system that can support voice rehabilitation.
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