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Abstract
This paper studies how prosodic features can help in the auto-
matic detection of alcoholic intoxication. We compute features
that have recently been proposed to model speech rhythm such
as the pair-wise variability index for consonantal and vocalic
segments (PVI) and study their aptness for the task. Further,
we use a large prosodic feature vector modelling the usual can-
didates – pitch, intensity, and duration – and apply it onto dif-
ferent units such as words, syllables and stressed syllables to
create generalizations of the rhythm features mentioned. The
results show that the prosodic features computed are suitable
for detecting alcoholic intoxication and add complementary in-
formation to state-of-the-art features. The database is the intox-
ication database provided by the organizers of the 2011 Inter-
speech Speaker State Challenge.
Index Terms: prosody, rhythm, alcohol intoxication

1. Introduction
To improve classification performance for phenomena that –
hopefully – manifest themselves within the speech signal, be
this, e. g. age, gender, emotion, or intoxication, we can try to
optimise with regard to several aspects, e. g., classifiers, fea-
ture reduction or selection, and, of course, the types of features
themselves. The acoustic feature vector provided by the orga-
nizers of the Interspeech 2011 Speaker State Challenge [1] is
fairly complete, which makes it even more challenging trying to
improve its performance, by adding information obtained with
other types of features. In this vein, we use a large prosodic
feature vector for the challenge task that has been proven to be
efficient for the automatic assessment of non-native speech [2].
The obvious idea is that intoxication is just a variety of speech
(register), the same way as any other idiosyncrasy or non-native
trait is; as for considerations along similar lines, cf. [3].

The authors of the present paper are all affiliated with and
partly identical with the organizers of the Challenge. Thus, they
do not contribute in the Challenge. To ensure comparability of
results, we strictly follow the procedures defined within [1], and
we do not use any data or information that were not available to
all competitors.

2. Database
The database used is the ALCOHOL LANGUAGE CORPUS
(ALC) [3] which has been provided by the organizers of the
Interspeech 2011 Speaker State Challenge. In accordance with
the etiquette of the Challenge, we do not describe further de-
tails and refer to [1]. The data is divided into three partitions
and into NAL/AL (non-alcoholised with BAC≤ 0.5 per mill vs.

alcoholised with BAC > 0.5 per mill); in parentheses, number
of cases which we will call (segmented) chunks is given: Train
(3750/1650), Develop (2790/1170), and Test (1620/1380). All
162 speakers were recorded in three different speech registers:
read speech, spontaneous speech, and command & control. The
speech register is not given in the Challenge distribution.

3. Features
To start with, we use the extended set of 4368 openSMILE fea-
tures provided by the organizers of the challenge and described
in [1]; it is fairly representative for state-of-the-art acoustic fea-
tures. In addition, we compute a large number of features mod-
elling different prosodic traits. All processing is done fully au-
tomatic; however, we use the phonemic transcription of the spo-
ken words which is provided with the database.

3.1. Identification of Stressed Syllables

For some of the prosodic features that will be described below,
it is necessary to know which syllables are stressed. A syllable
is considered as stressed if

(a) it is a mono-syllabic word bearing a primary or sec-
ondary phrase accent, or if

(b) it is part of a multi-syllabic word, having either sec-
ondary or primary word accent.

The provided distribution of ALC includes word stresses
and a classification into (non-)function-words for Train and De-
velop. However, no phrase accents are marked, and the cat-
egorization into (non-)function-words can only be used as an
approximate substitute. Most importantly, both word stress and
function word categorization are missing for Test.

We therefore resort to an automatic classification system
based on [2]. It comprises an acoustic component that estimates
the conditional probability for each syllable to be stressed, and
an n-gram for modelling a priori probabilities for stress se-
quences. The acoustic component applies Linear Discrimina-
tion Analysis (LDA) to a feature vector (see Section 3.3) com-
puted from the nuclei of the current and±2 neighbouring sylla-
bles. A syllable stress 4-gram models the a priori probabilities1.
The acoustic likelihoods and n-gram probabilities have equal
weight; an estimate of the most likely sequence of stressed and
unstressed syllables is decoded with the help of a Viterbi beam
search. The system is trained with two hours of accordingly an-
notated read speech from four speakers (a German version of

1For example, an utterance composed of two syllables has an a priori
probability of 62.5% for a singular stress on the first syllable, while a
singular stress on the second syllable has 29.2%.



the native data used in [2]); the weighted average recall for the
binary classification problem stressed vs. unstressed is 78.8%
(unweighted: 78.0%) in a leave-one-speaker-out evaluation.

Prior to the computation of the features, the DC offset is
removed from each chunk and the maximal amplitude is nor-
malised. Short-time energy and fundamental frequency (F0)
are computed on a frame-by-frame basis (step size 10 msec).
For estimation, F0 is assumed to range between 59 and 550
Hz; frame size is 3 times the largest assumed fundamental pe-
riod, i. e. around 50 msec. F0 is logarithmised and normalised
(per chunk), and interpolated during non-voiced segments. Al-
though phoneme alignments are provided by the database, seg-
ment boundaries are re-estimated from a forced alignment of
the transcribed phonemes using cross-word triphone HMMs.
The reason for re-estimating the segmentation is to achieve seg-
mentations as similar as possible to the training material of the
syllable stress classification module described above.

In the following, we shortly describe the different types of
prosodic features implemented.

3.2. Specialised Prosodic Feature Sets

Duration Measures (Duration): A basic but fundamental
property of speech is how fast something is said. We compute
the total duration of the chunk, and the average duration of all
vocalic segments for each chunk (two features).

Isochrony Features (Iso): In order to capture possible
isochrony properties [4], we calculate the distances between the
centers of consecutive stressed and consecutive unstressed syl-
lables. The centers are identified as the frames with maximal
short-time energy within a nucleus. We compute six chunk-
level features: mean distances between stressed and between
unstressed syllables, standard deviations of those distances, and
the ratio of means and standard deviations.

Variability Indices (PVI): Following [5], we identify vo-
calic and consonantal segments and calculate the raw Pairwise
Variability Index (rPVI) which is defined as the absolute dif-
ference in duration of consecutive segments and its normalised
version nPVI (rPVI divided by the mean duration of the seg-
ments) for vocalic and consonantal segments (four features).

Global Interval Proportions (GPI): Following [6], we
compute the percentage of vocalic intervals (of the total du-
ration of vocalic and consonantal segments), and the standard
deviation of the duration of vocalic and consonantal segments
of a speech segment (three features).

In the experimental evaluation, the feature groups described
in this Sub-Section are either analysed individually or pooled
into Rhythm-All (17 features).

3.3. General-Purpose Prosodic Features

In addition to the specialised features, we apply our comprehen-
sive general-purpose prosody module which has already been
successfully applied to as diverse problems as phrase accent and
phrase boundary recognition [7], word accent position classifi-
cation [2], and emotion recognition [8]. The features are based
on duration, energy, pitch, and pauses, and can be applied to
arbitrary units of speech (here, the units used are words, sylla-
bles, and nuclei). Some of the energy and duration based fea-
tures are normalised versions of a quantity, e. g. the duration of
a word divided by the average duration of that specific word.
The statistics necessary for these normalization measures have
been estimated on the same data that has been used for the syl-
lable stress classification module described above. Trying to be

Table 1: Prosodic features and their context. Filled circles in-
dicate which contexts in columns 2–6 are used for the 31 lo-
cal features; for the 100 context-capturing features, additionally
the contexts indicated by empty circles are used. Curly brackets
indicate that all the features displayed in these three rows are
computed for all contexts in the three rows in columns 2–6.

features for the actual unit ‘0’ context size
computed from up to ± units -2 -1 0 1 2

Dur: Norm, Abs; En: RegCoeff, ◦ • ◦
MseReg, Mean, Abs, Norm; }{ ◦ •
F0: RegCoeff, MseReg, Mean ◦ ◦
En: Max, MaxPos ◦ • ◦
F0: Max, MaxPos, Min, MinPos ◦ • ◦
F0: Off, Offpos ◦ •
F0: On, Onpos • ◦
Pause-before ◦ ◦
Pause-after • ◦

as exhaustive as possible, we use a highly redundant feature set
leaving it to data-driven methods to find out the relevant fea-
tures. However, the procedure is based on knowledge and not
on brute force. Features are extracted from a context of one or
two units. A varying number of neighbouring units are used to
extract features for the current unit: For a local variant, the cur-
rent unit and the context including the current and the following
unit are used for feature extraction. A context-capturing vari-
ant uses contexts up to ±2 neighbouring units. This process is
detailed in Table 1. The features are abbreviated as follows: du-
ration features ‘Dur’: absolute (Abs) and normalised (Norm);
energy features ‘En’: regression coefficient (RegCoeff) with its
mean square error (MseReg); mean (Mean), maximum (Max)
with its position on the time axis (MaxPos), absolute (Abs) and
normalised (Norm) values; F0 features ‘F0’: regression coeffi-
cient (RegCoeff) with its mean square error (MseReg); mean
(Mean), maximum (Max), minimum (Min), onset (On), and
offset (Off) values as well as the position of Max (MaxPos),
Min (MinPos), On (OnPos), and Off (OffPos) on the time axis;
length of pauses ‘Pause’: silent pause before (Pause-before) and
after (Pause-after).

Additionally, we compute four features over a larger con-
text of ±7 units (or less, if the utterance is shorter), repre-
senting local estimates of global properties: RateOfSpeech (av-
erage speech rate), DurTauLoc (average duration), EnTauLoc
(average energy) and F0MeanGlob (average fundamental fre-
quency). These are appended to both the local and context-
capturing configuration, ending up with 35 and 104 features per
unit, respectively. A more detailed overview of the prosodic
features is given in [7].

We now use all these prosodic features computed over dif-
ferent units and contexts to construct (again highly redundant)
extensions of the Iso, PVI and GPI features (in total 523):

(1) we compute the context-capturing features for all
stressed syllables and nuclei of stressed syllables, and
the local features for all words, syllables and nuclei,
and use the mean values of these features as speaker-
level extended Iso features (2*104 + 3*35 = 313 fea-
tures); words, syllables and nuclei at the start and end
of the chunks that do not provide enough context units
are skipped;



(2) for the extended PVI features, the mean absolute differ-
ence of the local features of consecutive words, syllables
and nuclei (3*35 = 105 features) is computed;

(3) the standard deviations of the local features of all words,
syllables and nuclei (3*35 = 105 features) represent the
extended GPI features.

A last group of 11 global features reflects number and
length of voiced and unvoiced segments (as evident from F0
extraction, not from phoneme segmentation), ratios of that num-
bers, and the standard deviation of F0.

In the experimental evaluation, the features described in this
Sub-Section are grouped into

(a) Pros-Normal: those 326 features that do not need infor-
mation about syllable stress,

(b) Pros-Stressed: those 208 features that do, and

(c) Pros-All: all 534 features.

Similarly, all features described throughout this whole Section
are grouped into All-Normal (335 features) and All-Stressed
(216 features). The total set of the 551 supra-segmental features
described here is called SUPRA.

4. Experiments and Results
In order to study the aptness of the proposed feature groups for
the task, we evaluate the classification performance on Develop
when training with Train. We compare two classifiers: LDA
and SVM2 (linear kernel, C = 1). As the performance criterion
of the Challenge is unweighted average, we have to account
for the unbalanced classes in Train. For LDA, this is trivially
done by setting equal a priori class probabilities. For SVM,
we achieve a balanced training set by keeping all instances of
the more infrequent AL class and randomly sampling the same
number of instances from the more frequency NAL class.

The results for the different feature groups are detailed in
Table 2. In general, both classifiers seem to be equally suited for
this task and these features. It is evident that none of the individ-
ual rhythm feature groups Duration, Iso, PVI and GPI achieves
much more than random guessing (50%) for both classifiers.
However, combining them improves the results, achieving at
least 56.2% with LDA. The generic prosody module features
achieve somewhat higher classification accuracies, and it is ob-
vious that including information about the syllable stress pays
off (e. g. LDA on Pros-All, 62.6% versus Pros-Normal, 61.3%).
Finally, the combination of all proposed features results in a
further improvement for the SVM, which scores 62.4%.

The reported classification results are well above chance but
clearly below those reported in [1] for the baseline openSMILE
feature set (65.3%, for Train vs. Develop). Therefore, we tried
to combine our proposed features with the openSMILE feature
set to find out whether we can add complementary information.

For the openSMILE features, LDA was well below SVM
in terms of classification performance, so we used SVM3 only
for the remaining experiments. To start with, we compared our
features, the openSMILE features, and a late fusion4 of both

2C = 1 was found optimal among the powers of ten for perfor-
mance of the SUPRA features on Develop

3We chose C = 0.01 for the openSMILE SVM system, the opti-
mum among the powers of ten for the performance on Develop.

4We fitted logistic models to the output in order to achieve probabil-
ity estimates. Fusion was done by multiplying the class probabilities,
exponentially weighted with weights optimised on Develop.

Table 2: Unweighted average recall in % on Develop when
training with Train, for different groups of the proposed supra-
segmental features.

Features LDA SVM

Duration 52.2 52.3
Iso 53.4 52.4
PVI 51.9 52.4
GPI 51.7 52.4
Rhythm-All 56.2 53.8

Pros-Normal 61.3 61.4
Pros-Stressed 60.2 58.5
Pros-All 62.6 62.3

All-Normal 61.2 61.1
All-Stressed 60.3 59.3
SUPRA = All 62.3 62.4

SVM systems on Develop when training with Train (see first
column with figures in Table 3). For openSMILE, we obtained
a slightly lower score of 64.8% than reported in [1], which can
be explained by our simpler resampling scheme. The fusion
of both systems yields a marked improvement to 67.0% which
indeed indicates that our features contribute useful information.

Next, we compared the performances on Test when train-
ing with Train+Develop (see second column with figures in Ta-
ble 3; an overview of all results on Test is given in Table 4).
Surprisingly, we observed a pronounced degradation in the per-
formance of our features here: They yield only 57.9% vs. 65.9%
in [1], and even hurt in the fusion system (64.2%).

In search for an explanation for this mismatch results, we
began inspecting the transliteration of the database. While each
speaker has 90 chunks in Train and Develop, there are only 60
chunks contained per speaker in Test. Each of the 90 chunks
in Train and Develop has an ID that identifies the prompt used
to elicit speech (e. g. * A * 002.wav, according to the tran-
scripts, was a prompt asking the speaker about his or her last
holiday). That ID is obfuscated for Test, but we were able to
identify 30 prompts that – according to the transcripts – did not
occur at all in Test, i. e. there’s a mismatch with respect to the
spoken texts between Train and Develop on the one hand, and
Test on the other hand. By removing those 30 prompts from
Train and Develop, we obtained the versions Train-matched and
Develop-matched which are smaller but better matched to Test.
Interestingly, all these 30 prompts are from the sober record-
ing sessions (IDs matching * N *.wav). That means that
Train-matched is also better balanced (1650 AL vs. 1950 NAL
chunks) than Train (1650 AL vs. 3750 NAL), and that given
our resampling scheme, the number of used training instances
is the same for Train and Train-matched (2 ·1650). It will also
be relevant for the individual classification performance on the
two classes NAL and AL (end of this Section).

When training with Train-matched and testing with
Develop-matched (third column with figures in Table 3), the
systems behave similar to Train/Develop, but on a lower
level: openSMILE (61.4%) is better than SUPRA (56.8%)
but the fusion again is best (62.6%). Employing Train-
matched+Develop-matched to score for Test is indeed helpful
(last column in Table 3): again, openSMILE (66.3%) is better
than SUPRA (60.4%), but the fusion (67.6%) is best. Thus, we



Table 3: Unweighted average recall of SVM in % for the openSMILE and the SUPRA feature set, and their (late) fusion. (*) is the
openSMILE baseline performance as reported in [1].

Training on: Train Train+Dev. Train-matched Train+Dev.-matched
Evaluation on: Develop Test Dev.-matched Test

openSMILE 64.8 65.9* 61.4 66.3
SUPRA 62.4 57.9 56.8 60.4
openSMILE + SUPRA 67.0 64.2 62.6 67.6

Table 4: Unweighted average recall (UA), weighted average recall (WA), and recall for the classes NAL and AL, of SVM on Test for
the different constellations: Condition ‘orig’ refers to training with the original Train and Develop set; condition ‘matched’ to using
Train-matched and Develop-matched. ‘openSMILE + SUPRA’ refers to the (late) fusion of the SVM systems using openSMILE and
SUPRA, respectively.

Constellation Condition % UA % WA % NAL % AL

Baseline openSMILE [1] orig 65.9 66.4 - -
SUPRA orig 57.9 56.9 45.6 70.1
openSMILE + SUPRA orig 64.2 63.7 57.7 70.7

openSMILE matched 66.3 66.8 72.0 60.6
SUPRA matched 60.4 60.3 59.6 61.2
openSMILE + SUPRA matched 67.6 68.0 72.4 62.8

have shown that our features really add useful information and
further improve performance of state-of-the-art features. How-
ever, our features seem to be more susceptible to a mismatch
between training and test with respect to speech material.

Table 4 details recall for the classes NAL and AL. It is inter-
esting that for the original training set, NAL is recognized con-
siderably worse than AL (last two columns, upper rows in Table
4), while there is a reverse tendency for the matched training set
(last two columns, lower rows in Table 4). An explanation for
this could be that the NAL class is particularly affected by the
train/test mismatch because all of the 30 prompts contained only
in Train/Develop are from the sober recording sessions.

5. Conclusion and Outlook
Read and spontaneous speech differ in several respect [9]; as far
as prosody is concerned, this relates, e.g., to number of place-
ment of accents and boundaries, speech rate and – most proba-
bly in trading relation – number of reduction phenomena (schwa
etc.). This might even hold for different narratives. Thus it is
possible that a mismatch between train and test set with respect
to these phenomena makes it more difficult to compute reliable
estimations for our prosody and rhythm based features. In con-
trast, the openSMILE features used for the baseline are frame-
based and computed for larger segments (here: chunks) whose
boundaries are obtained automatically [1]; thus they do not take
into account the internal phrasal and accentual structuring of
speech – this makes them less affected by the mismatch.

We have shown that – given matched conditions with re-
spect to the type of spoken utterances – this vector adds in-
formation and classification performance: It grooves. A next
step will be a close look at the characteristics of our prosodic-
rhythmic features, in order to find out whether intoxicated
speech really stumbles somehow, in relation to ‘normal’ speech,
or whether the (prosodic) language model used is simply sus-
ceptible to linguistic structures not seen in the training data.
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