
Comparing performance of many-core CPUs and GPUs for static
and motion compensated reconstruction of C-arm CT data

Hannes G. Hofmann,a� Benjamin Keck, and Christopher Rohkohl
Pattern Recognition Laboratory, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

Joachim Hornegger
Pattern Recognition Laboratory, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
and Erlangen Graduate School in Advanced Optical Technologies (SAOT), 91058 Erlangen, Germany

�Received 4 June 2010; revised 12 November 2010; accepted for publication 16 November 2010;
published 29 December 2010�

Purpose: Interventional reconstruction of 3-D volumetric data from C-arm CT projections is a
computationally demanding task. Hardware optimization is not an option but mandatory for inter-
ventional image processing and, in particular, for image reconstruction due to the high demands on
performance. Several groups have published fast analytical 3-D reconstruction on highly parallel
hardware such as GPUs to mitigate this issue. The authors show that the performance of modern
CPU-based systems is in the same order as current GPUs for static 3-D reconstruction and outper-
forms them for a recent motion compensated �3-D+time� image reconstruction algorithm.
Methods: This work investigates two algorithms: Static 3-D reconstruction as well as a recent
motion compensated algorithm. The evaluation was performed using a standardized reconstruction
benchmark, RABBITCT, to get comparable results and two additional clinical data sets.
Results: The authors demonstrate for a parametric B-spline motion estimation scheme that the
derivative computation, which requires many write operations to memory, performs poorly on the
GPU and can highly benefit from modern CPU architectures with large caches. Moreover, on a
32-core Intel® Xeon® server system, the authors achieve linear scaling with the number of cores
used and reconstruction times almost in the same range as current GPUs.
Conclusions: Algorithmic innovations in the field of motion compensated image reconstruction
may lead to a shift back to CPUs in the future. For analytical 3-D reconstruction, the authors show
that the gap between GPUs and CPUs became smaller. It can be performed in less than 20 s
�on-the-fly� using a 32-core server. © 2011 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3525838�

Key words: GPU, multi-core, CBCT, recon, high-performance
I. INTRODUCTION

Recent C-arm systems with flat panel detectors allow the
rotational acquisition of high-resolution projection images
for 3-D volume reconstruction.1 The additional intraproce-
dural 3-D information enables advanced techniques for diag-
nosis �e.g., perfusion imaging�, planning, navigation, treat-
ment, and follow-up. Recently, the reconstruction of moving
structures has also become a matter of research. Time re-
solved image data can support complex interventional proce-
dures in cardiology, such as transcutaneous valve replace-
ment, implantation of biventricular pacemakers, and the
assessment of myocardial perfusion.2

For seamless integration into clinical workflows, it is
highly desirable to introduce as little time penalty as pos-
sible. Therefore, the 3-D reconstruction has to be performed
concurrently with the acquisition of the projection images
�on-the-fly�, finishing just after the acquisition. Table I lists
common clinical protocols that show the targeted time range.
In order to fulfill these real-time requirements, hardware ac-
celeration is mandatory. Of course, the real-time requirement

is valid for the complete image processing chain from image

468 Med. Phys. 38 „1…, January 2011 0094-2405/2011/38„
acquisition over preprocessing to 3-D reconstruction. How-
ever, since the reconstruction step is the major bottleneck, we
focus on that part in this work.

Hardware acceleration has been an issue of high impor-
tance in the recent past in all areas of medical image com-
puting, e.g., registration,3 segmentation,4 and reconstruction.5

The decision for the most suitable hardware platform is
domain-specific and depends on the amount of data, the
computational load, and the parallelism in the algorithm.
Standard reconstruction algorithms are embarrassingly paral-
lel and hence can exploit the high level of parallelism pro-
vided by modern hardware, such as the vector processing
units of current CPUs, the eight processing elements of
IBM’s CELL processor,6 or the many shader cores of modern
graphics processing units �GPUs�. For 3-D reconstruction,
recent publications have demonstrated that GPUs have quite
a speed advantage over CPUs for standard algorithms.7 How-
ever, algorithmic innovations in the field of motion compen-
sated �3-D+time� image reconstruction8–10 may lead to a
shift back to CPUs in the future. The reduced degree of
parallelism in these novel methods results from various is-
sues, e.g., irregular memory access patterns or data depen-

dencies.

4681…/468/6/$30.00 © 2011 Am. Assoc. Phys. Med.

http://dx.doi.org/10.1118/1.3525838
http://dx.doi.org/10.1118/1.3525838
http://dx.doi.org/10.1118/1.3525838

469 Hofmann et al.: Comparing performance of many-core CPUs and GPUs 469
The main contribution of this paper is twofold. First, we
show that the gap between GPUs and CPUs becomes smaller
for static 3-D reconstruction due to CPU evolution. Second,
we demonstrate that novel more complex algorithms can
highly benefit from modern CPU architectures with large
caches.

II. METHODS AND MATERIALS

II.A. Medical image computing architectures:
CPU vs GPU

Computing performance is affected by several factors.
Hardware performance depends highly on the number of
computing elements, its clock speed, and the memory hier-
archy. On the other hand, the performance of a specific algo-
rithm depends, e.g., on the ratio of read and write operations
or the ratio of memory accesses and compute operations. For
comparing high-end CPUs and GPUs we examine two cur-
rent GPUs from NVIDIA® and three different Intel® Xeon®

servers �cf. Table II�. In the following, we give a brief over-
view of both architectures and the implications for algorith-
mic performance.

CPUs have always been general purpose processors able
to execute arbitrary computing tasks. Over time, parallel ex-
ecution units were added. Current CPUs are able to perform
a single instruction on four data elements simultaneously
�single instruction, multiple data �SIMD�� with their vector
units and feature up to eight cores on a single chip, with four
chips in a PC that makes 32 cores in a single unit. CPUs
feature a cache hierarchy of three levels of increasing size
and access to the huge main memory. Cache sizes are up to
16 MB on a single chip and main memory can comprise
hundreds of GB.

GPUs were developed for one specific task: Rasterization.
Only recently have they become usable for generic compu-
tations, thanks to their programmable shaders. Current GPUs

TABLE I. Common C-arm CT scan protocols, accor
Low-contrast�.

Name Binning
Matrix size

�px�

Head �HC� 2�2 1240�960
Body �HC� 2�2 1240�960
Head �LC� 2�2 1240�960
Body �LC� 4�4 620�480

TABLE II. Main characteristics of the five computer sy
�CPU� system are omitted.

Xeon®5500 Xeon®X7460

Cores/shaders 2�4=8 4�6=24
Clock �GHz� 2.66 2.66

Microarchitecture Nehalem Core
RAM Size �GB� 12 32

RAM type DDR3–1066 DDR2–1066
Medical Physics, Vol. 38, No. 1, January 2011
feature up to 448 stream processors corresponding to the
individual lanes of traditional SIMD units. GPUs provide
shared memory and read-only caches for texture memory and

Algorithm 1: Basic steps for back-projection of image Ii.

foreach voxel x� do
project x� onto detector plane;
�pre-�fetch 4 projection values;
wait for projection values;
bilinear interpolation;
update fFDK�x��;

end

Algorithm 2: Basic steps of 4-D reconstruction of
image Ii.

foreach voxel x� do
compute motion vector→x��;
project x�� onto detector plane;
�pre-�fetch 4 projection values;
wait for projection values;
bilinear interpolation;
compute gradients of projection image;
for z=0 to 3 do

for y=0 to 3 do
for x=0 to 3 do

for t=0 to 3 do
update motion field gradients;

end
end

end
end
update fFDK�x��;

end

constant data. Shared memory is fast but relatively small;
8/16 processing units share only 16/48 KB �GT200/Fermi
architecture�. The GPU chip is located on an extension board

to Strobel et al. �Ref. 1� �HC: High-contrast; LC:

No. frames
f s−1

�s−1�
Scan time

�s�

133 30 5
133 30 5
496 30 20
397 60 8

s used. For the Tesla™ systems, numbers for the host

Xeon®32-core Tesla™C1060 Tesla™C2050

4�8=32 240 448
2.27 1.3 1.15

Nehalem GT200 Fermi
64 4 3

DDR3–1066 GDDR3 GDDR5
ding
stem

470 Hofmann et al.: Comparing performance of many-core CPUs and GPUs 470
equipped with its own memory, introducing an extra level in
the memory hierarchy. The GPU’s memory has a very high
bandwidth but is smaller than main memory �up to 6 GB�.

Medical image processing algorithms consist of several
common patterns which benefit differently from each plat-
form. Data interpolation is a part of most algorithms, e.g., in
registration, reconstruction, and segmentation. GPUs with
their dedicated texture sampling hardware can greatly accel-
erate this operation. A prominent example is ray-casting with
trilinear interpolation.11 Typical medical data sets comprise a
huge amount of data. The high memory bandwidth of GPUs
is beneficial if the size is sufficient. However, the data have
to be transferred from the main memory to the device and
back. CPUs benefit from their huge caches, allowing fast
read and write access to data from main memory.

II.B. Impact of CPU evolution on static 3-D
reconstruction

Today’s reconstruction implementations are usually based
on the FDK method.12 We focused on the backprojection and
measured the performance of already preprocessed data sets.
This preprocessing includes physical corrections �beam hard-
ening and scatter�, redundancy weighting, and filtering ac-
cording to Strobel et al.1 As reported in literature13 it makes
up only about 10% of the total runtime.

Algorithm 1 shows the basic steps of the backprojection
of one projection image. For each projection image, all vox-
els x� = �x ,y ,z� are updated with the corresponding detector
value which is determined by perspective projection of the
voxel onto the detector. The FDK method is embarrassingly
parallel and hence can exploit the high level of parallelism
provided by modern hardware. On GPUs, it benefits from
hardware-supported interpolation of projection images and
the high memory bandwidth. However, several aspects of
CPU development have increased their performance to a
similar level. The number of cores was raised to 32 in one
system, which, with four times SIMD, equal 128 GPU pro-
cessing units. Current CPUs feature an increased memory
bandwidth due to their integrated memory controllers and
faster RAM technology.

We applied various optimization techniques to the FDK
algorithm to exploit the parallel processing capabilities of
current CPUs and GPUs. They are detailed below.

II.B.1. CPU-optimization techniques

The backprojection problem is embarrassingly parallel
since there are no data dependencies between the voxels. For
each projection image all voxels can be updated indepen-
dently from all others. Only concurrent updates of the same
voxel from different viewing directions have to be avoided
since this could cause incorrect results.

II.B.1.a. Multithreading and vectorization. Multithreading
was implemented using Intel’s Threading Building Blocks
library by partitioning the reconstructed volume into many
subvolumes that were processed by individual computing
threads. Critical code parts, i.e., the inner loop, were manu-

ally vectorized using SIMD intrinsics.

Medical Physics, Vol. 38, No. 1, January 2011
II.B.1.b. Loop transformations. Loop transformations
�loop unrolling, loop fusion� can reduce the number of
branches in the code and enable the compiler to schedule
instructions better, such that latencies are hidden and overall
instruction throughput is improved.

II.B.1.c. Temporal blocking. Temporal blocking is a tech-
nique to improve the use of the fast caches. Voxels are up-
dated several times before storing them back to main
memory. Consequently, the bandwidth requirements of the
algorithm are reduced. Since backprojection is bandwidth-
limited on most platforms, temporal blocking can signifi-
cantly reduce overall execution time.

II.B.1.d. Early termination. As mentioned before, subvol-
umes were used for multithreading. For each subvolume, the
computation is aborted early if it is not in the field-of-view
�FOV� of the current projection image. To check this, the
eight corner voxels are projected into the detector plane.
Then, the area of intersection between this “shadow” and the
detector is calculated.

II.B.2. GPU-optimization techniques

Some of the CPU-optimization strategies �see Sec. II B 1�
were also applied on the GPU. GPUs are able to switch
threads fast and thereby hide memory latency. Therefore, the
volume was partitioned into many chunks which are pro-
cessed in parallel. The parallelization and optimization strat-
egies are adapted from Scherl et al.14 First of all, the hard-
ware texture interpolation units were utilized for projection
access. Further, memory accesses must be coalesced on
GPUs to get good throughput. Therefore, the problem was
reorganized as a 2-D problem, where every kernel loops over
all voxels in the y-direction. Further details can be found in
the original paper.14

II.C. Motion estimation for 3-D+time reconstruction

In a last year’s MICCAI contribution,9 a novel algorithm
was presented that is able to estimate 4-D nonperiodic mo-
tion patterns using a time-continuous cubic B-spline motion
model. The most time-consuming part of this method is the
motion estimation as illustrated in Algorithm 2. Here, x� is the
�x ,y ,z� coordinate on the control grid, x�� denotes the trans-
formed position, and t refers to the time. In each iteration of
the optimization procedure, the derivative of the FDK recon-
struction formula with respect to the motion model param-
eters has to be computed. This computation is analogous to a
FDK reconstruction. However, instead of accumulating
voxel values in the innermost loop, the derivative of the
B-spline tensor product is evaluated in four dimensions. Cu-
bic B-splines depend on four sample points in each dimen-
sion. In total, this results in 256 �44� times more data to be
stored. For the application of interest �cardiac vasculature
reconstruction�, only a sparse set of voxels has to be consid-
ered, ranging from 0.1% to 2%. However, for future appli-
cations and other algorithms, the number of voxels can be as
high as 100%. A GPU implementation requires sparse sam-
pling if high-resolution volumes are to be reconstructed. In

general, GPUs have less memory than CPUs and therefore,

471 Hofmann et al.: Comparing performance of many-core CPUs and GPUs 471
CPUs will be able to handle larger volumes. This can be
nicely illustrated by the state-of-the-art Tesla™ C2070 GPU
which is equipped with 6 GB onboard memory. For the pre-
sented problem, it allows only the derivative of a 1843 dense
volume to be completely stored in the device memory
�4 byte�256�1843=5.94 GB�.

II.C.1. CPU-optimization techniques

Optimization was straightforward, analogous to the static
case �cf. Sec. II B�. The inner loop now contains the compu-
tation of the derivative for each voxel with respect to the
B-spline model parameters. On the CPU, multithreading was
implemented using OpenMP. The sparse set of voxels was
distributed equally among all computing threads. The inner
loops within the derivative computation were unrolled.

II.C.2. GPU-optimization techniques

The volume and the current projection are stored in the
GPU device memory to avoid frequent data transfers over
the PCIe bus. A sparse representation of the volume was used
to reduce the memory requirements. The backprojection part
was optimized analogous to the static case �cf. Sec. II B�,
e.g., use of texture units. In contrast, coalesced memory ac-
cess cannot be used, since the offset of the memory access
depends on the motion.

III. EXPERIMENTAL SETUP

III.A. Computer systems

All methods were benchmarked on three CPU-based
many-core systems from Intel and on two NVIDIA® Tesla™
GPUs. The main specs of all four systems are summarized in
Table II. The first CPU system comprises two Xeon® 5550
quad-core processors �eight cores total�. The second one fea-
tures four Xeon® X7460 hexacore processors �24 cores�. The
third one has four Xeon® eight-core processors �32 cores�.
Hyperthreading was enabled on the eight-core and 32-core
systems, hence they exposed twice as many virtual proces-

TABLE III. Description of the three data sets used.

Data set Number of projections Projection size

�A� 496 1240�960
�B� 543 1240�960
�C� 414 1024�1024

TABLE IV. Runtimes �in seconds� for the static reconstruction on four system
was 5123 and the subvolume size 128�64�4.

Data set

Xeon® 5500 Xeon® X7460

Base Cache E.term Base Cache E.te

�A� 84.71 80.28 61.38 60.53 42.89 31
�B� 92.89 87.56 67.39 66.04 48.77 35
�C� 70.54 68.23 54.54 50.59 36.05 29
Medical Physics, Vol. 38, No. 1, January 2011
sors to the operating system. Additionally to the CPU-based
systems, we ran the tests on two workstations, each equipped
with a NVIDIA® Tesla™ accelerator card �C1060 and
C2050� with CUDA 3.1.

All tests on CPUs were performed using 64-bit Linux and
the Intel compilers in version 11.1. All CPU-based systems
used in this report are preproduction systems. Production
hardware is expected to deliver similar performance levels.

III.B. Static 3-D reconstruction

The evaluation of our implementation of static 3-D recon-
struction was performed using the open reconstruction
benchmark RABBITCT.15 It comprises a public data set and a
test framework that allow for presentation of comparable re-
sults. The task of RABBITCT is to implement a standard FDK
algorithm and reconstruct volumes of sizes 2563, 5123, or
10243 voxels from a standardized data set. Additionally to
performance measurements, it allows easy verification of the
implementation’s correctness.

In this work, we reconstructed a volume size of 5123 vox-
els. Three different data sets were used for evaluation and
verification of the optimized static 3-D reconstruction �cf.
Table III�. Data set �A� is the publicly available RABBITCT
data set and data sets �B� and �C� are clinical cases acquired
with a Siemens C-arm system. Table III lists the number of
projections and the dimensions of the projection images for
all three data sets.

We evaluated three different optimization levels. The
baseline was defined by our vectorized and multithreaded
implementation16 �“Base” in Table IV�. “Cache” denotes a
cache-optimized implementation with added temporal block-
ing. Finally, “E.term” is the most optimized version with
temporal blocking and early termination. The subvolume size
for Cache and E.term was empirically chosen to be 128
�64�4 as this configuration performed best over all archi-
tectures and data sets.

III.C. Motion estimation for 3-D+time reconstruction

The experiment for this paper was modeled after a clinical
protocol used in Ref. 9. The B-spline motion model was
parametrized by 53 control points in space and 35 in time
resulting in a total of 3�53�35 degrees of freedom. We used
133 projection images with a size of 960�960 pixels. The
reconstructed volume had a size of 2563 voxels. The sam-
pling of the volume was set to 5%. The mean execution time

d three implementations �“Base,” “Cache,” and “E.term”�. The volume size

32-core Xeon®

Tesla™ C1060 Tesla™ C1060Base Cache E.term

27.71 24.13 18.82 14.33 8.97
30.36 26.64 20.58 17.30 9.55
23.19 20.00 16.42 12.17 6.88
s an

rm

.96

.08

.21

472 Hofmann et al.: Comparing performance of many-core CPUs and GPUs 472
for one iteration was measured by averaging 100 iterations.
A typical reconstruction would require 50–100 iterations.

IV. RESULTS AND DISCUSSION

IV.A. Static 3-D reconstruction

Table IV shows the results for all four computer systems
and for three different optimization methods. Depending on
the system under investigation, the optimization techniques
have varying impact. The effect of optimized cache usage
due to temporal blocking correlates with the relative memory
bandwidth available to each core. The eight-core Intel®

Xeon® 5500 server has sufficient bandwidth and thus the
speed-up was only up to 1.06�. On the 32-core Intel®

Xeon® server, we observed a speed-up of at least 1.14�.
Finally, the 24-core X7460 system is really bandwidth-
starving, hence the good result of at least 1.35�. This obser-
vation demonstrates the impact of the higher memory band-
width of the Nehalem microarchitecture. The proposed
method of early termination further reduced the reconstruc-
tion time to about 72%–82% compared to the cache-
optimized version on all three systems �1.22–1.39��. The
effectiveness of the approach can be seen by looking at the
numbers of a single data set, e.g., �A�. With the chosen size
of 128�64�4 voxels, about 24% of the subvolumes are
outside of the FOV. The reconstruction time is 75%–78% of
the Cache implementation s on all systems. In the end, the
newest GPU �Tesla™ C2050� was the fastest system, more
than twice as fast as the best CPU system.

IV.B. Motion estimation for 3-D+time reconstruction

Figure 1 shows the results for the three CPU-based sys-
tems with varying numbers of threads. All three CPU sys-
tems performed better than the GPU. We observed an almost
linear speed-up with the number of threads used. On
Nehalem-based systems, the maximum speed-up was even
higher than the physical number of cores due to hyperthread-
ing. The 32-core Intel® Xeon® server outperformed the fast-
est GPU �C1060� by a factor of 63.26 when using 64 threads.
Note that the C2050 performed worse than the C1060 be-
cause the drivers and compiler optimizations for the Fermi
architecture are still under development. We further observed
side effects of pinning threads to specific CPU cores, which

6.2 s (19.29×)

2.9 s (41.16×)

1.9 s (63.26×)

120.2 s (1.00×)

157.7 s (0.76×)

0 5 10 15 20 25 30 35 40 45 50 55 60 65

0

20

40

60

80

Number of threads

S
p
ee
d
-u
p
v
s.

T
es
la

T
M
C
1
0
6
0 Tesla C1060

Tesla C2050
Xeon 5500
Xeon X7460
32-core Xeon

FIG. 1. Speed-up for motion estimation on the three Xeon® servers using a
varying number of threads compared to the Tesla™ C1060. Note that the
Tesla™ C2050 performed worse �0.76��.
is usually done to increase performance. When using only

Medical Physics, Vol. 38, No. 1, January 2011
one or two threads on the Xeon® 5500 system, pinning re-
sulted in plummeting performance. We suppose this to hap-
pen because the cores with threads pinned to them get too
hot, disabling the built-in overclocking mechanism �“Turbo-
Mode”�.

The relatively bad performance of the GPU may be ex-
plained by the frequent memory write-access operations.
Due to its architecture �cf. Sec. II A�, the CPU benefits from
its fast caches which are not present on current GPUs. Fur-
ther, the four nested inner loops of the derivative computa-
tion cause a high register pressure on the GPU. Conse-
quently, less threads could be executed simultaneously,
reducing the ability to hide memory latency.

V. CONCLUSION AND OUTLOOK

In this paper, we have shown two things. First, we have
shown that static 3-D reconstruction can be computed on-
the-fly on a high-end multi-CPU server, although GPUs are
still faster. Our study only investigated the major part of the
reconstruction, the backprojection, which accounts for more
than 90% of the computation time. Regarding the real-time
requirements in a realistic scenario, additional preprocessing
and data transfer has to be performed. As an example, we
consider the most demanding protocol from Table I �Head
�LC��, with an acquisition time of 20 s. Preprocessing
roughly adds 1–2 s to the 18.82 s on the CPU or 8.98 s on the
C2050, respectively. Data transfer does not need to be con-
sidered as it can be hidden by streaming projections from the
system to the workstation in the background. Further, we
demonstrated that a more complex algorithm, in our example
a motion compensated 3-D+time reconstruction, can highly
benefit from the large caches of modern CPU architectures.

A Tesla™ C2050 GPU was 2.1 times faster for the static
problem and the 32-core Intel® Xeon® server more than 60
times faster for the motion estimation part of the motion
compensated algorithm. This illustrates nicely that for com-
plex algorithms, a careful combination of both acceleration
platforms can lead to an optimal result. This point is also
reflected in the future hardware development of two major
vendors, Intel® and NVIDIA®, which indicates that CPUs
and GPUs are becoming more akin. Our results suggest that
to achieve maximum performance, an expensive high-end
server is necessary. However, even an off-the-shelf quad-
core workstation is able to outperform a Tesla™ C1060 GPU
by more than four times.

In summary, we could show that the ever increasing com-
plexity of medical image computing algorithms requires pay-
ing close attention on the hardware architecture in order to
enable their integration into the clinical workflow.

ACKNOWLEDGMENTS

Thanks to the Regional Computing Center Erlangen
�RRZE� for support and hardware access. Thanks to the staff
and facilities of the Intel® Manycore Testing Lab �http://
software.intel.com/en-us/articles/intel-many-core-testing-

lab/�. This work was funded by a research grant from Intel.

473 Hofmann et al.: Comparing performance of many-core CPUs and GPUs 473
a�Electronic addresses: hannes.hofmann@cs.fau.de
1N. Strobel et al., “3D imaging with flat-detector C-arm systems,” in Mul-
tislice CT, 3rd ed. �Springer, Berlin, 2009�, pp. 33–51.

2H. Hetterich, T. Redel, G. Lauritsch, C. Rohkohl, and J. Rieber, “New
X-ray imaging modalities and their integration with intravascular imaging
and interventions,” The International Journal of Cardiovascular Imaging
26�7�, 797–808 �2010�.

3J. Rohrer, L. Gong, and G. Szekely, in Parallel Mutual Information
Based 3D Non-Rigid Registration on a Multi-Core Platform, Proceedings
of High-Performance Medical Image Computing and Computer-Aided
Intervention �HP-MICCAI� �New York, 2008�.

4J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao, in Speculative Moves:
Multithreading Markov Chain Monte Carlo Programs, Proceedings of
High-Performance Medical Image Computing and Computer-Aided Inter-
vention �HP-MICCAI� �New York, 2008�.

5P. B. Noël, A. Walczak, K. R. Hoffmann, J. Xu, J. J. Corso, and S.
Schafer, in Clinical Evaluation of GPU-Based Cone Beam Computed
Tomography, Proceedings of High-Performance Medical Image Comput-
ing and Computer-Aided Intervention �HP-MICCAI� �New York, 2008�.

6M. Kachelrieß, M. Knaup, and O. Bockenbach, “Hyperfast parallel-beam
and cone-beam back-projection using the CELL general purpose hard-
ware,” Med. Phys. 34�4�, 1474–1486 �2007�.

7K. Mueller, F. Xu, and N. Neophytou, in Why do Commodity Graphics
Hardware Boards (GPUs) Work So Well for Acceleration of Computed
Tomography?, SPIE Electronic Imaging Conference, San Diego, Vol.
6498, 2007.

8E. Hansis, D. Schäfer, O. Dössel, and M. Grass, “Projection-based motion
compensation for gated coronary artery reconstruction from rotational
x-ray angiograms,” Phys. Med. Biol. 53�14�, 3807–3820 �2008�.

9C. Rohkohl, G. Lauritsch, M. Prümmer, and J. Hornegger, in Interven-

tional 4–D Motion Estimation and Reconstruction of Cardiac Vasculature

Medical Physics, Vol. 38, No. 1, January 2011
Without Motion Periodicity Assumption, Medical Image Computing and
Computer-Assisted Intervention—MICCAI 2009, edited by G. Z. Yang,
D. Hawkes, D. Rueckert, A. Noble, and C. Taylor �Springer, Berlin/
Heidelberg, 2009�; �Lect. Notes Comput. Sci. 5761, 132–139 �2009��

10A. Keil, J. Vogel, G. Lauritsch, and N. Navab, in Dynamic Cone Beam
Reconstruction using a New Level Set Formulation, Medical Image Com-
puting and Computer-Assisted Intervention—MICCAI 2009, edited by
G.Z. Yang, D. Hawkes, D. Rueckert, A. Noble, and C. Taylor �Springer,
Berlin/Heidelberg, 2009�; �Lect. Notes Comput. Sci., 5762, 389–397
�2009��.

11B. Keck, H. Hofmann, H. Scherl, M. Kowarschik, and J. Hornegger, in
GPU-Accelerated SART Reconstruction using the CUDA Programming
Environment, SPIE Medical Imaging Conference Proceedings, Lake
Buena Vista, 7258, 72582B.1–72582B.9 �2009�.

12L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J.
Opt. Soc. Am. A 1�6�, 612–619 �1984�.

13B. Heigl and M. Kowarschik, in High-Speed reconstruction for C-Arm
Computed Tomography, Ninth International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine
�Lindau, 2007�, pp. 25–28.

14H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, in Fast GPU-
Based CT Reconstruction using the Common Unified Device Architecture
(CUDA), Nuclear Science Symposium Conference Record, edited by E.
C. Frey, Honolulu, Vol. 6, pp. 4464–4466, 2007.

15C. Rohkohl, B. Keck, H. G. Hofmann, and J. Hornegger, “CT—An open
platform for benchmarking 3D cone-beam reconstruction algorithms,”
Med. Phys. 36�9�, 3940–3944 �2009�.

16H. G. Hofmann, B. Keck, C. Rohkohl, and J. Hornegger, PARS-
Mitteilungen, 26 �Gesellschaft für Informatik e.V., Bonn, 2009�, pp. 91–

100.

http://dx.doi.org/10.1007/s10554-009-9529-z
http://dx.doi.org/10.1118/1.2710328
http://dx.doi.org/10.1088/0031-9155/53/14/007
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1118/1.3180956

