Edge Detection in Multispectral Images Using the N-Dimensional Self-Organizing Map

September 14, 2011

Johannes Jordan Elli Angelopoulou

Pattern Recognition Lab (CS 5) Friedrich-Alexander-University Erlangen-Nuremberg

Motivation

62

Motivation

1000 000000000000000000000000000000000	0 - 20 0 - 20 0 - 20 0 - 20 - 20 - 20	(2-20 4-80 	- 232 - 232	10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2
33 3 40 2 40 2 40	10-20 10-20 10-20	2010 2010 2010 2010	2 - 2 - 2 - 1 2 - 2 - 1 - 2 - 1 2 -	10-20 20-00 20-00

Motivation

Problem: Traditional edge detection works on monochromatic images.

- Multispectral images: vectors of 7 to 200 dimensions per pixel
- Reducing dimensionality not trivial
- No extensive research on edge-detection in this domain

Problem: Traditional edge detection works on monochromatic images.

3 / 20

- Multispectral images: vectors of 7 to 200 dimensions per pixel
- Reducing dimensionality not trivial
- No extensive research on edge-detection in this domain

State of the art: Toivanen et al., *Edge detection in multispectral images using the self-organizing map*, 2003

Underlying idea: global pixel ordering

Problem: Traditional edge detection works on monochromatic images.

- Multispectral images: vectors of 7 to 200 dimensions per pixel
- Reducing dimensionality not trivial
- No extensive research on edge-detection in this domain

State of the art: Toivanen et al., *Edge detection in multispectral images using the self-organizing map*, 2003

Underlying idea: global pixel ordering

Our contribution:

- Examine Toivanen's method on recent data
- A new method with improved performance

The *Self Organizing Map (SOM)* is an artificial neural network that reduces dimensionality.

- 1D array or 2D grid of model vectors (neurons)
- Mapping: spectral vector \rightarrow model vector (L_2 distance)
- Ordering provided by model vector coordinates

Self Organizing Map

The *Self Organizing Map (SOM)* is an artificial neural network that reduces dimensionality.

- 1D array or 2D grid of *model vectors (neurons)*
- Mapping: spectral vector \rightarrow model vector (L_2 distance)
- Ordering provided by model vector coordinates

Training:

SOM for Edge Detection 1D

Input image in sRGB

A 1D SOM is trained on the image

- Then, each image pixel is mapped to a neuron
- Neuron indices are interpreted as intensities
- Canny is applied on intensity map

Trained SOM with 32 neurons in sRGB

Trained SOM with 256 neurons in sRGB

SOM for Edge Detection 1D

Input image in sRGB

A 1D SOM is trained on the image

- Then, each image pixel is mapped to a neuron
- Neuron indices are interpreted as intensities
- Canny is applied on intensity map

Intensity map

Canny output

6 / 20

Problems with this approach

Input image in sRGB

Intensity map (64 neurons)

Problems with this approach

Input image in sRGB

Intensity map (64 neurons)

Trained SOM with 256 neurons in sRGB

SOM for Edge Detection 2D

A 2D SOM is trained, then a 1D indexing is generated.

Problems with this approach

New Method

Observation: For Canny to work, we only need differential data!

10 / 20

- We omit the creation of an intensity map, linearization
- Difference between pixels is defined by neuron distance (L_2)

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

 $\left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{array}\right)$

11 / 20

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

 $\left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{array}\right)$

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

 $\left(\begin{array}{rrrr}1&2&1\\0&0&0\\-1&-2&-1\end{array}\right)$

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

 $\left(\begin{array}{rrrr}1&2&1\\0&0&0\\-1&-2&-1\end{array}\right)$

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

 $\left(\begin{array}{rrrr}1&2&1\\0&0&0\\-1&-2&-1\end{array}\right)$

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.


```
\left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{array}\right)
```

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

 $\left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{array}\right)$

Solution: We compute weighted means from the neuron positions of adjoining pixels. From these we take the distance.

$$\left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{array}\right)$$

Evaluation

Testing data:

- Images from the CAVE Multispectral Image Database
- Objects of different materials in a laboratory setting
- \blacksquare High quality, $512~\times~512$ pixels, $400\,{\rm nm}$ $700\,{\rm nm}$ in 31 bands

Evaluation

Testing data:

- Images from the CAVE Multispectral Image Database
- Objects of different materials in a laboratory setting
- \blacksquare High quality, $512\,\times\,512$ pixels, $400\,{\rm nm}$ $700\,{\rm nm}$ in 31 bands

Canny parametrization:

- Thresholds selected per image and method
- Two goals: Maximum edge preservation vs. Minimum noise

Results Fake and Real Food

Input image in sRGB

Canny output, 1D-SOM (64 neurons)

Results Fake and Real Food (2)

Canny output, 2D-SOM (16x16 neurons)

Canny output, new method (16x16 neurons)

Results Fake and Real Food (3)

Canny output, 2D-SOM (16x16 neurons)

Canny output, new method (16x16 neurons)

Results Egyptian Statue

Input image in sRGB

Canny output, 1D-SOM (64 neurons)

Results *Egyptian Statue* (2)

Canny output, 2D-SOM (16x16 neurons)

Canny output, new method (16x16 neurons)

Results *Egyptian Statue* (3)

Canny output, 2D-SOM (16x16 neurons)

Canny output, new method (16x16 neurons)

We examined edge detection on multispectral images.

- Self Organizing Maps do provide usable results
- Previous methods suffer from pixel ordering artifacts

We examined edge detection on multispectral images.

- Self Organizing Maps do provide usable results
- Previous methods suffer from pixel ordering artifacts

Our method provides:

- Better edge detection quality
- More reliable results
- Higher flexibility

Thank you for your attention!

Source code will be released as free software as part of the *Gerbil* framework: http://gerbil.sf.net/

