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Problem: Traditional edge detection works on monochromatic images.

m Multispectral images: vectors of 7 to 200 dimensions per pixel
m Reducing dimensionality not trivial

m No extensive research on edge-detection in this domain

State of the art:
, 2003

m Underlying idea: global pixel ordering

Our contribution:

m Examine Toivanen's method on recent data

m A new method with improved performance
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Self Organizing Map /g

The Self Organizing Map (SOM) is an artificial neural network that
reduces dimensionality.

m 1D array or 2D grid of model vectors (neurons)

m Mapping: spectral vector — model vector (Lg distance)

m Ordering provided by model vector coordinates
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Self Organizing Map
The Self Organizing Map (SOM) is an artificial neural network that
reduces dimensionality.

m 1D array or 2D grid of model vectors (neurons)

m Mapping: spectral vector — model vector (Lo distance)

m Ordering provided by model vector coordinates

Training:
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SOM for Edge Detection 1D

m A 1D SOM is trained on the image
m Then, each image pixel is mapped to a neuron

m Neuron indices are interpreted as intensities

4 m Canny is applied on intensity map
Input image in sRGB

EE_———— B
Trained SOM with 32 neurons in sSRGB
]

I
Trained SOM with 256 neurons in sRGB
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SOM for Edge Detection 1D

m A 1D SOM is trained on the image
m Then, each image pixel is mapped to a neuron

m Neuron indices are interpreted as intensities

4 m Canny is applied on intensity map

Input image in sRGB
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SOM for Edge Detection 2D

Input image
in sRGB

Trained SOM
in sRGB

A 2D SOM is trained, then a 1D indexing is generated.
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Problems with this approach ™M

Intensity map

Input image
(16x16 neurons)

in sSRGB

Canny output,
new method

Canny output, | T
2D SOM |12
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New Method o4

Observation: For Canny to work, we only need differential data!

m We omit the creation of an intensity map, linearization

m Difference between pixels is defined by neuron distance (L2)
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Method details

1 2 1
Problem: 0 0 O
Canny expects input from Sobel operator o A |

Solution: We compute weighted means from the neuron positions of
adjoining pixels. From these we take the distance.
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Method details

1 2 1
Problem: 0 0 O
Canny expects input from Sobel operator o A |

Solution: We compute weighted means from the neuron positions of
adjoining pixels. From these we take the distance.

Trained SOM
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Evaluation Mg

Testing data:

m Images from the CAVE Multispectral Image Database
m Objects of different materials in a laboratory setting
m High quality, 512 x 512 pixels, 400 nm - 700 nm in 31 bands
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Evaluation

Testing data:

m Images from the CAVE Multispectral Image Database
m Objects of different materials in a laboratory setting
m High quality, 512 x 512 pixels, 400 nm - 700 nm in 31 bands

Canny parametrization:

m Thresholds selected per image and method

m Two goals: Maximum edge preservation vs. Minimum noise
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Results Fake and Real Food
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Canny output, 1D-SOM (64 neurons)



Results Fake and Real Food (2)
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Canny output, 2D-SOM (16x16 neurons) Canny output, new method (16x16 neurons)
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Results Fake and Real Food (3) g
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Results Egyptian Statue
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Canny output, 1D-SOM (64 neurons)

Input image in sRGB
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Canny output, new method (16x16 neurons)
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Results Egyptian Statue (2)

Canny output, 2D-SOM (16x16 neurons)
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Results Egyptian Statue (3)
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Canny output, 2D-SOM (16x16 neurons)
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Conclusions g

We examined edge detection on multispectral images.

m Self Organizing Maps do provide usable results

m Previous methods suffer from pixel ordering artifacts
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Conclusions

We examined edge detection on multispectral images.

m Self Organizing Maps do provide usable results

m Previous methods suffer from pixel ordering artifacts

Our method provides:

m Better edge detection quality
m More reliable results

m Higher flexibility
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Thank you for your attention!

Source code will be released as free software as part of the
Gerbil framework:

———— —

420 440 450 480 500 520 540 S60 580 600 620 640 660 680

425 445 465 485 505 525 545 565 S5 605 625 645 665 685
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