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ABSTRACT

We propose a new method for performing edge detection in multi-
spectral images based on the self-organizing map (SOM) concept.
Previously, 1-dimensional or 2-dimensional SOMs were trained to
provide a linear mapping of high-dimensional multispectral vectors.
Then, edge detection was applied on that mapping. However, the
1-dimensional SOM may not converge on a suitable global order for
images with rich content. Likewise, the 2-dimensional SOM intro-
duces false edges due to linearization artifacts. Our method feeds the
edge detector without linearization. Instead, it exploits directly the
distances of SOM neurons. This avoids the aforementioned draw-
backs and is more general, as a SOM of arbitrary dimensionality
can be used. We show that our method achieves significantly bet-
ter edge detection results than previous work on a high-resolution
multispectral image database.

Index Terms— Multispectral imaging, Image edge detection,
Self organizing feature maps, Machine Vision

1. INTRODUCTION

Edge detection is a well-understood preprocessing step for computer
vision applications. The Canny operator dates back to 1986 [1], but
is still widely in use. However, common methods are limited to
monochromatic images. Adapting them to multispectral or hyper-
spectral images, where each pixel holds a high-dimensional spectral
vector is a difficult problem. Previous approaches are either based on
the image gradient [2] or on pixel ordering [3]. Gradient-based meth-
ods may fail to detect edges in the case of opposing gradients present
in different spectral bands [4, 3]. To avoid this problem, ordering-
based methods determine edge probability by a local R-ordering of
adjacent pixels. However, it has been shown that like gradient-based
methods, R-ordering edge detection is also prone to missing edges
[5]. Due to the locality of the ordering, pixels holding different values
may be mapped to the same scalar.

In this paper, we take a closer look at the method by Toivanen et al.
[5]. It employs a Self-Organizing Map (SOM) [6] to generate a global
ordering of spectral vectors. With a global ordering, a one-to-one
correspondence between pixel values and scalars is guaranteed. The
edge probability is only determined by the adjacent pixels, invariant
to regional characteristics.

While this method solves problems present in previous ap-
proaches, it is highly dependent on a good global ordering. As such
an ordering is hard, if not impossible to find for complex scenes, it
suffers from edge artifacts. We discuss this observation in detail and
provide a solution to the problem. We show that our variant performs
better on images from the high-quality CAVE multispectral image
database [7], which is of higher resolution than previously tested
images.

2. SELF-ORGANIZING MAPS FOR EDGE DETECTION

Toivanen et al. introduced the Self-Organizing Map to the applica-
tion of edge detection, which is a concept formulated first by Koho-
nen [6]. This artificial neural network is trained using unsupervised
learning to convert the nonlinear statistical relationship between high-
dimensional data into simpler geometric relationships. In other words,
observed spectra are put into a topological relation that is exploitable
for data ordering.

We define the data of a multispectral image in the form vx,y ∈
Rd, whereas d is the number of spectral bands present in the input
image and vx,y corresponds to an image pixel at position x, y. The
SOM consists of n model vectors mi ∈ Rd (also called neurons). Let
d(vx,y,mi) denote a distance function for vx,y and mi. The best fit
of vx,y in the SOM, and therefore its match mc, has the index

cx,y = argmin
i

d(vx,y,mi) . (1)

We use the Euclidean distance for d(·). During training, s vectors
from the input image (or any other source) are randomly selected and
fed into the SOM. After the match of input vx(t),y(t) (1 ≤ t ≤ s)
is determined, a neighborhood function hci defines the influence of
vx(t),y(t) on the model vectors mi. As suggested in the literature [6],
we use

hci(t) = α(t) · exp

„
−‖rc − ri‖2

2σ2(t)

«
, (2)

where rc, ri are the location vectors of neurons c and i, respectively.
The location rc of a neuron mc in the SOM is determined by the SOM
topology and is a bijective mapping of c. The learning-rate factor α(t)
is a user-adjustable parameter that is monotonically decreasing. The
kernel width σ(t) describes how far the influence of a sample vector
reaches in the SOM topology and is also monotonically decreasing.
While in the early training phase the SOM should seek a rough global
ordering, in the later phase local regions are smoothed out. In our
experiments, α(1) = 0.1, α(s) = 0.001 and σ(1) = n

4
, σ(s) = 0.

Toivanen et al. used location scalars ri ∈ N or vectors ri ∈
N2, resulting in a 1-dimensional SOM (2-connected topology) or
2-dimensional SOM (4-connected topology), respectively. While the
former provides a natural way of obtaining a linear order, the latter is
better suited for larger SOMs that strive to cover more the complex
relationships often found in the input data.

2.1. The 1-dimensional case

The order of spectral vectors can be easily generated if neurons of a
SOM with size n are ordered by a scalar location index 1 ≤ ri ≤ n.
We obtain a monochromatic image for edge detection as follows. For
each pixel vx,y of the input image, we determine its match mc. The



(a) Original image in sRGB (b) Rank image from 1D SOM

Fig. 1. Example multispectral image illustrating the weakness of 1D-
SOM. The rank image has outliers dominating other rank transitions;
the strongest edges to be detected are false.

location rc is directly used as an intensity value in the rank image R.
The edge detector works on R which is expected to provide a strong
gradient between pixels of significantly different spectral responses.

The quality of the obtained ordering depends on the SOM organi-
zation. In a well-organized SOM you see smooth transitions between
spectra of adjoining neurons as well as a good global clustering of
similar spectra. This means that slightly different shades of the same
material observed in the scene are expected to be represented by neu-
rons close to each other. In the 1-dimensional SOM, this is violated
for images depicting more complex scenes. Each model vector can
only be part of two neighborhoods that express a specific proximity
relationship in the input data space. For more complex clusters of
data in the input space, some proximity relationships are distorted or
lost; vectors from one cluster will end up in several distinct locations
of the SOM. This can result in edges introduced between pixels that
are part of such a cluster. Figure 1 shows an example image from the
CAVE database [7] and the rank image obtained by a 1-dimensional
SOM. The SOM with n = 64 neurons was trained with 100 000
random samples from the image. It does not relate well the different
reflectance effects in the scene.

Due to this aforementioned limitation, the 1-dimensional SOM is
not advisable in a larger scale regarding its number of neurons n. On
the other hand, SOMs of larger n are trained to cover variation in the
spectra in more detail and enable a more fine-grained edge detection.
A better coverage of detail changes in the image is traded with higher
risk of false edges based on amplified location discrepancy.

2.2. The 2-dimensional case

The problem of the 1-dimensional SOM described in the previous
section may be the reason why SOMs are typically applied with a 2-
dimensional, 4-connected topology. For spectral vector ordering, this
introduces the need for a linearization on the 2-dimensional lattice.
Toivanen et al. employ space filling curves [8]. The Hilbert curve and
Peano curve describe a recursive rule for traversing a 2-dimensional
lattice of size 2a × 2a, and 3a × 3a, respectively (a ∈ N).

These curves are designed to provide a close linear index for
each pair of 2-dimensional coordinates which would also be close
according to their Euclidean distance. The drawback of this method
lies in the portion of coordinates where this relationship analogy to
the Euclidean distance is violated. Due to the recursive nature of
the space filling curve, neurons that are adjacent in the SOM can
end up with a difference in the linear index of over 0.8n. Therefore,
the topological organization of the SOM is not well covered by the
resulting order and associated intensity values that are used for edge

(a) Original image in sRGB (b) Rank image from orig. 2D SOM

(c) Canny result, orig. 2D SOM (d) Canny result, new method

Fig. 2. Example multispectral image illustrating the weakness of
2D-SOM. The rank image shows inconsistent ranks for similar pixels.
As a result, false edge artifacts can not be avoided without loosing
valuable edge information. The new method shows a very consistent
edge detection.

detection. This problem is significant, as can be seen in Figure 2.
Depicted results were obtained with parameters set as described in
Section 4 (p. 3). Again, strong edges are obtained between pixels of
similar spectra. The edge detector cannot prevent false edges without
loosing valuable edge information.

3. NEW METHOD

The SOM is a useful tool for reducing the high dimensionality of
a multispectral image in a data-driven fashion. It provides a low-
dimensional topological representation of the contained spectra and
their relationship. To make it more usable for the task of edge de-
tection, we must overcome the need of linearization. In fact, the
ordering of spectral vectors is not needed for edge detection. To gain
differential information that is input to the Canny operator, we can
directly exploit the topological information of the SOM.

We create differential maps for the x-direction and the y-direction
which replace the first derivatives as input to Canny. To make the
Canny operator work as expected, we mimic the 3× 3 Sobel operator.
First, each pixel vx,y in the image is assigned to its match mc ac-
cording to Equation 1, resulting in the index map C. Then, we create
the differential maps G(H) and G(V ) using

g
(H)
x,y =

‚‚‚ rcx−1,y−1+2rcx−1,y
+rcx−1,y+1

4

−
rcx+1,y−1+2rcx+1,y

+rcx+1,y+1
4

‚‚‚ ,
(3)

g
(V )
x,y =

‚‚‚ rcx−1,y−1+2rcx,y−1+rcx+1,y−1
4

−
rcx−1,y+1+2rcx,y+1+rcx+1,y+1

4

‚‚‚ ,
(4)



(a) Original image (pseudo-color) (b) Toivanen et. al, 64x1 SOM

(c) Orig. method, 16x16 SOM (d) Our method, 16x16 SOM

Fig. 3. Aviris image used for evaluation in [5]. (b) is taken from the
original publication, (c) shows the result from our implementation of
the original method, (d) our new method using the same parameters.

where ‖·‖ is the norm used in the neighborhood function (see Equa-
tion 2).

In the case of a 1-dimensional topology, this yields the same
behavior as before. With a 2-dimensional topology, linearization
is omitted and the topological relationship of neurons is the sole
origin of G(H), G(V ). Besides avoiding artifacts introduced by a
linearization, this approach bears two significant advantages that
make it a generalization of the previous approaches. First, in the
2-dimensional case we can lift the restrictions on SOM size that were
imposed by the space filling curves. SOM size can now be arbitrary
instead of being bound to a power of 4 or 9. Second, the SOM
topology can be of higher dimensionality. We deem it reasonable to
use a 3-dimensional, 6-connected topology for larger-sized SOMs.

4. EVALUATION

A rigorous evaluation of the SOM methodology for multispectral
edge detection is lacking in current literature. Toivanen et al. showed
results on two remote sensing images of a spatial resolution of nearly
150 × 150 pixels [5]. One of which is hyperspectral (220 bands
in the range 400nm − 2500nm) and of known source [9]. While
this image shows the practicability of the method for hyperspectral
data, images of higher resolution and a better controlled scene might
help to get further insights when comparing different variants of the
method. To test our method on the image, we trained SOMs with
n = 256 (16 × 16), s = 200 000. In our experiments, the training
input is always randomly sampled from the same image without
further pre-processing. Figure 3 shows how our method performs
compared to the result published in [5]. One can observe that our
method helps to better discern the edges present in the image, most

(a) Original image in sRGB (b) 256x1 SOM

(c) Orig. method, 16x16 SOM; A (d) Our method, 16x16 SOM; A

(e) Orig. method, 16x16 SOM; B (f) Our method, 16x16 SOM; B

Fig. 4. Edge detection results. Canny parameter criteria: A) best ob-
ject contour preservation; B) minimum fine-grained noise introduced
by object/background texture.

visible at the track on the top. Also, the rectangular structures are
better reflected.

4.1. Images from CAVE database

We compared our proposed method with previous work on the CAVE
multispectral image database. This is a set of high-quality multispec-
tral images that depict objects of different materials in a laboratory
setting. Images have a spatial resolution of 512 × 512 pixels and
cover the spectral range of 400nm−700nm in 31 bands. We trained
SOMs with the same parameters as before.

Figure 4 shows results on an image depicting fake and real food
items. We observe that the 1-dimensional SOM provides a clear
picture, but edges detected due to geometry effects distract from the
object boundaries. For the 2-dimensional SOMs (16× 16), we depict
edge images created with Canny hysteresis parameters chosen for two
different criteria. We observe that due to linearization artifacts, the
original method introduces many edges on originally smooth shade



changes. Based on Canny parametrization, object contours are either
not well-distinguishable or missed in the edge image. Contrary, the
new method embosses object contours as well as specular highlights,
enabling a good interpretation for scene understanding.

Figure 5 shows results on an image depicting an Egyptian statue
next to a stuffed toy. As can be seen in the second row, the SOM
manages to preserve structure that is in shadow and only perceptible
in a small amount of spectral bands (marked in red). With the 1-
dimensional SOM, the contour of the shadowed throat is lost while
smooth transitions in the face still lead to edges. A similar effect
is visible with the 2-dimensional SOM using a space filling curve.
Contrary, the new method manages to expose characteristics of face,
hat and toy while maintaining a low noise level.

4.2. Discussion

Toivanen et al. found that on their two remote sensing images, a
1-dimensional SOM and a 2-dimensional SOM both give comparable
results [5]. However, given the image size, they can only observe
a considerably small amount of different spectral vectors. When
testing on newer images, we have a significantly higher variety of the
data which may not be well-represented by a small-sized SOM. We
observe that the 1-dimensional SOM performs worse and the original
2-dimensional SOM suffers from linearization artifacts. As a result,
our proposed method achieves better edge detection on the tested
images. The quality we obtain shows that SOMs are a useful tool for
multispectral edge detection also on images with higher resolution.

5. CONCLUSIONS

Edge detection on multispectral and hyperspectral images is an is-
sue that has not yet been sufficiently addressed. Previous work
on R-ordering was an important step in better reflecting the high-
dimensional characteristics of the data when compared to gradient-
based methods. With the Self-Organizing Map we have a promising
methodology at hand that already provides usable results. However,
the method as previously presented suffered from its ties to pixel
ordering. Our method omits linearization and uses the SOM more
efficiently for edge detection while also retaining greater flexibility.
Our experiments demonstrate that artifacts introduced by lineariza-
tion can be avoided without a disadvantage in algorithm performance.
Good edge maps can be found on images that reflect the current state
of multispectral imaging.

The implementation of this method was integrated into the Gerbil
multispectral analysis framework [10] and will be released as free
software on http://gerbil.sf.net.
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