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Abstract—The amount of automotive software functions is
continuously growing. With their interactions and dependencies
increasing, the diagnosis’ task of differencing between symptoms
indicating a fault, the fault cause itself and uncorrelated data
gets enormously difficult and complex. For instance, up to 40%
of automotive software functions are contributable to diagnos-
tic functions, resulting in approximately three million lines of
diagnostic code. The diagnosis’ complexity is additionally in-
creased by legal requirements forcing automotive manufacturers
maintaining the diagnosis of their cars for 15 years after the
end of the car’s series production. Clearly, maintaining these
complex functions over such an extend time span is a difficult
and tedious task. Since data from diagnosis incidents has been
transferred back to the OEMs for some years, analysing this
data with statistic techniques promises a huge facilitation of the
diagnosis’ maintenance. In this paper we use multivariate split-
analysis to filter diagnosis data for symptoms having real impact
on faults and their repair measures, thus detecting diagnosis
functions which have to be updated as they contain irrelevant
or erroneous observations and/or repair measurements. A key
factor for performing an unbiased split analysis is to determine
an ideally representative control data set for a given test data
set showing some property whose influence is to be studied. In
this paper, we present a performant algorithm for creating such
a representative control data set out of a very large initial data
collection. This approach facilitates the analysis and maintenance
of diagnosis functions. It has been successfully evaluated on case
studies and is part of BMW’s continuous improvement process
for automotive diagnosis.

Keywords-Software maintenance; automotive diagnosis; multi-
variate analysis; split analysis

I. Introduction

The amount of software functions and electronic control
units (ECU) in automobiles has been steadily increasing
since their first introduction in the 1970’s. The autonomously
operating ECUs from the early years of automotive electronics
have subsequently been replaced by functions distributed over
several ECUs collaborating over bus-systems, and in the last
years by highly integrated components hosting dozens of
functions. Both developments have led to a high complexity

of the car’s system architecture. For instance, modern luxury
cars consist of up to 100 ECU hosting hundreds of functions
communicating over five different bus-systems (cf. [1]). Recent
studies estimate such cars having several millions lines of
source-code [2]. With software functions taking over more and
more (safety-relevant) functions in modern cars, their possible
faulty behaviour has to be detected and dangerous effects
prevented or mitigated. Additionally, information about the
fault’s root cause has to be provided to support repairs in the
garage. These are the central tasks of automotive diagnosis.
For the remainder of this paper we will make use of the
terminology for errors, faults and failures as defined in [3].

II. Motivation

Legal requirements (e. g. §§133, 157 and 242 German BGB
[4]) force OEM such as the BMW Group to support the after
sales service of their cars and its components for 15 years
after the end of the car’s series production, effectively making
diagnosis a significant economic factor in a car’s life-cycle.
For a detailed description of the car’s life-cycle refer to [5].
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Fig. 1. Diagnosis incident and paper’s contribution, based on [6]

Figure 1 shows a sequential overview of a diagnosis incident
happening in the after sales service period as well as this
paper’s contribution. Diagnosis detects faults by taking obser-
vations and comparing the system’s observed with its specified
behaviour. In case of detected deviations, diagnostic trouble
codes (DTC) [7] are stored in the ECU’s electrically erasable
programmable read-only memory (EEPROM) as symptoms to
aid a later repair. Repair incidents for electronic components
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in garages start with the Tester, the off-board diagnosis system,
reading out the car’s stored DTCs and on-board measurements.
Additionally, the Tester hosts off-board diagnosis functions
aiding the garage in vehicle repairs. Therefore the transmitted
ECU data is analysed and complemented with additional ob-
servations such as reported customer complaints or garage off-
board measurements. Based on these observations the Tester
reasons for present faults and then suggests repair measures.
Functional interconnectivity, hidden interactions or dependen-
cies between on-board functions as well as propagating faults
make the diagnosis’ task of differencing between symptoms
indicating a fault, the fault root cause itself and uncorrelated
data increasingly difficult and complex. Selected data from
repair incidents has been transferred back to the OEMs for
several years now. Amongst the transferred data are diagnostic
observations as well as repair measures. This data offers a
very thorough insight into the cars’ after sales behaviour for
the OEM’s quality departments, but with approximately 5 GB
transmitted data each day (cf. [6]) very difficult to overview let
alone analyse. Hence, without automatic support an efficient
maintenance of thousands of diagnosis functions over such an
extended life span -that almost equals the working life of an
engineer- is very challenging.

III. RelatedWork

Several approaches have been used for statistical analysis in
our problem domain. In this section we sum up related work
partly done by other OEM. Buddhakulsomsiri and Zakarian [8]
use data mining on warranty data but do not include on-
board-diagnosis data. Blumenstock et al. [9] focus on on-
board-diagnosis data to investigate specific failures occurring
within a car while omitting warranty data. Both papers do not
include off-board diagnosis. Müller et al. [10] merge diagnosis
and warranty data, but do not create rules to detect repeat
repairs. It aims to detect the garage’s significant interactions
to build rules which can then be distributed to all other
garages. Sankavaram et al. [11] include all available data such
as on- and off-board data as well as customer complaints.
However, their use of unsupervised learning techniques obtains
many faulty so called spurious correlations. In conclusion,
the mentioned papers do not include all available data for
their data basis and do not aim to detect insufficient diagnosis
functions.

IV. Contribution

In this section we detail this paper’s contribution. We
propose a statistical approach improving the maintenance of
diagnosis functions. We use multivariate split analysis on the
data transmitted back to the OEM to automatically detect
improvable off-board diagnosis functions, thus facilitating the
diagnosis maintenance. A diagnosis function has to be main-
tained if its assigned repair measures, symptoms or related
data are erroneous or insufficient. As mentioned before, with
our domain’s special characteristics such as hidden interactions
and dependencies detecting such functions clearly is a tedious
task. The contribution of this paper is an automatic detection
of the significant symptom and fault pattern for a repair

measure. Additionally, we introduce an algorithm filtering out
all irrelevant data for a diagnosis function enhancing the split
analysis’ quality.

A. Discussing statistical analysis techniques

The choice of the statistical analysis method is strongly
influenced by our domain’s special characteristics. In this sec-
tion we introduce these characteristics and discuss statistical
approaches on their usability. With a huge amount of different
variables which can be in relation to each other such as on-
and off-board measurements as well as repair measures, we
have to use multivariate analysis (cf. [12]). In a multivariate
data analysis, a data subset is defined within a large data
collection by restricting the value ranges of several data
attributes to certain values or intervals, e.g. cars with defined
failures or observation patterns occurring in a certain month.
Although we seek relations between variables in the data, we
focus on single variables instead of clusters, thus ruling out
cluster analysis [13]. Clearly, the considerable data asks for an
efficient analysis method which does not build redundancies,
contradicting techniques such as decision tree learning [14]
or association analysis [15]. Hypothesis verification by split
analysis (test-control data analysis) [16] compares a ’test’ data
set having a certain property with a ’control’ data set not
displaying that property. χ2-tests can be applied for verifying
whether or not the test data significantly differs from the
control data, for example comparing the average warranty cost
per vehicle. Due to the huge amount of independent variables
(more than 1.000 covariates) the problem of multicollinearity
occurs. Because of that most of the above mentioned models
are very unstable and yield to a very low rate of variance that
is predicted. This also results from numerically instable com-
pensation effects between almost collinear predictor variables:
in the generated models, some variables have huge negative
coefficients, other variables huge positive coefficients, and the
net effect on the entire model output is almost zero. The split
analysis method is able to deal with those problems very well
so we use this technique to determine the related car data to
repair measures.

B. Challenges applying the split analysis

We apply the split analysis to detect interrelations between
technical vehicle information such as DTC and observable
faulty car behaviour remedied with repair measures and
recorded by textual repair findings. For each DTC we compare
the car’s repair events in which the DTC is found (test data)
to the car’s repair events in which this DTC is not found
(control data). If the split analysis finds a significant corre-
lation between the DTC’s occurrences and repair measures, in
particular multiple applications of specific repair measures, the
DTC seems to be ’relevant’. If not, the DTC seems ’irrelevant’
and should be removed from the diagnostic function. Prob-
lematic, however, when applying this approach is that test and
control data can differ in an uncontrollable way due to many
other environmental variables E1, . . . , En (e.g. vehicle type or
age, car extras, interactions with other functions,...). These
variables might affect both the vehicle’s data and observed
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faulty behaviour. For instance, it might appear a certain DTC
has an impact on a certain fault, but in fact -due to the
car’s functional connectivity- both of them have been caused
by a third parameter such as an extremely low temperature,
resulting in a non-causal relation between DTC and fault.
Another example for this is diagnosis data from convertible
cars liable to seasonal effects. Hence, the challenge is to filter
out potential side-effects and cross-correlations which might
have an impact on the analysis’ ’target’ property. Therefore,
the challenge when applying split analysis method is to make
the control data exactly representative for the test data with
respect to all potential influence factors Ek which might be
correlated with the occurrence of certain DTCs as well as the
appearance of certain faults. In this case representative means
that Ek’s distribution is identical within test and control data.

C. Algorithm to create ’representative’ control data subsets

As discussed above, the pre-existing control data is most
likely not representative for the test data. With iteration step i,
Ci denoting the control data after step i, Ni the amount of data
records in Ci, Distrk,i the value distribution of variable Ek in
the test data, Distrk,0 being Ek’s initial distribution, di f f as
variable to measure the difference between two distributions
of identical sets of values or classes (e.g. sum of squared
differences of the values’ relative occurence probabilities), ∆

denoting di f f ’s maximum possible reduction obtainable by
removing one data record from one of the distributions, Ni the
number of data sets after optimisation step i has been applied
and Nstop a user defined limit for the minimal amount of data
records, we define an iterative algorithm to create a control
data sample representative for the test data:

∆ = 0
di f f =

∑
k(Distrk,0 − Distrk,T )

while (( Ni >= Nstop) && (∆ <= 0) &&
(di f f stat. signif. > 0)){
foreach (data record r j in Ci){

Ci+1, j = Ci \ r j

Distrk,i+1, j = Ek’s value distribution in Ci+1, j
di f fi+1, j =

∑
k(Distrk,i+1, j − Distrk,T )

∆ j = di f fi+1, j − di f f
}

jbest = choose j for which ∆ j is minimal
∆ = ∆ jbest

di f f = di f fi+1, jbest

Ci+1 = Ci+1, jbest

i++

}

Alg. 1: Determine representable sample

In short, as long as we can reduce the overall difference
of the environment variables’ value distributions between test
and control data by removing one single data record from the
control data, we do so and remove the record which maximally
reduces the difference. We stop if either the difference has
fallen below a significance threshold or if the control data
has reached a predefined size limit Nstop. One possible way
for defining the criterion diff is significantly > 0 is to use a

χ2-significance test [16]: di f f is significantly larger than 0 if
a χ2-significance test with the null-hypothesis all Ek’s value
distributions are identical on the test and the control data is
rejected at a confidence level of more than 95%.
Conclusively, the algorithm removes data noise such as uncor-
related symptoms from the split sample.

D. Performance considerations

The basic algorithm described in the preceding section
suffers from one serious disadvantage: its complexity is O(N2)
with N the original number of data records in the control data.
With the control data having several hundreds of millions data
records in our domain, this basic algorithm does not deliver
acceptable response times on currently available computer
hardware. In order to overcome this problem, one of us
designed a more sophisticated version of the above algorithm
which is of complexity O(N4/3). This improved algorithm was
implemented into the module split analysis of the software
Interactive Analyzer [17].

V. Evaluation
We evaluated our methodology on the automotive com-

ponent Adaptive Cruise Control [18] with the Interactive
Analyzer [17]. Table I shows run time measurements we
performed with the Interactive Analyzer on a data set com-
prising vehicles whose internally recorded problem in form of
DTC and warning history in form of on-board-measurements
were read out each time a car came to the garage to
fix a car’s defect. The data set contains 6 columns vehi-
cle readout identifier, repair cost, repair date, set-valued
DTC, vehicle type, amount previous readouts.

scale factor 1/4 1/2 1 4 8
data size in MB 57 113 225 900 1800
cars read out 39854 79708 159416 637664 1.28*106

DTC in million 1.23 2.46 4.92 19.7 39.4
runtime in secs 0.7 1.6 3.2 21 55
exp. runtime 0.5 1.3 3.2 20 51

TABLE I
Performance analysis algorithm 1

Fig. 2. Most frequent set DTC in case of repeated application of repair
measure exchange ACC

Typically, between 30 and 200 recorded measurements can
be found per car per read-out. As mentioned, the split analysis
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aimed to detect whether one single DTC occurring in 30% of
all readouts, has a significant impact on repairs and repair
cost. The three environmental parameters e1 for the car’s
readout date, e2 denoting the vehicle type and e3 the amount
previous readouts serve to eliminate side-effects caused by
differences in time/season/weather conditions, vehicle model
type, and the overall vehicle quality (repair history). That
means, the first step of the split analysis is to take a sample
from the original control data of about 70% of the entire data.
The sample should have exactly the same value distributions
in the dimensions e1, e2, e3 as the test data set of about 30%
of the entire data. The original data base has a size of 225
MB and consists of 159416 readouts containing 4.92 million
DTCs. We scaled our data sets ranging from 1/4 to eight times
its original size to measure our sampling algorithm’s runtime
and its scalability. We ran our algorithm on a Dell Inspiron
1525 notebook with 2GB RAM and Intel Core(TM)2 Duo
2.00GHz CPU.

Conclusively, our sampling algorithm’s runtime behaviour
approximates O(n4/3). Additionally, it demonstrates the algo-
rithm’s capability enabling live analyses even on huge data
with response times less than a minute, such as in our case
study analysing the repair history of about 1 Million cars over
24 months.

Figure 2 shows an excerpt of an Interactive Analyzer anal-
ysis of the most frequent set DTCs when the repair measure
exchange ACC was unsuccessfully taken and a repeat repair
of the car occured. The DTCs are denoted with their number
and by which ECU they were set. By analyzing the relations
between set DTCs by different ECUs, we can determine a
fault’s propagation chain which is very useful when analysing
functional interactions. In this case the analysis points out
that DTC 25303 which has the description ”‘LDM shut down
because of ACC sensor”’, set by the ECU LDM 90, which
controls the vehicle’s longitudinal dynamics, is clearly related
to the ACC.

We analyzed and discussed the results of our methodology
with the responsible diagnosis engineers and could validate
about 80% of our results. Additionally, we were able to find
new relations between DTC of different interacting compo-
nents from diverse suppliers thus helping the OEM’s diagnosis
departments in analysing propagating faults.

VI. Conclusion and future work

In this paper we introduced a methodology for an automatic
detection of improvable diagnosis functions which have to
be updated. Since the evaluations proved very promising, we
integrated it into the reports for field data which are part
of BMW’s continuous improvement process for automotive
diagnosis.

Our next goal is to include the shown approach into the
development process for the off-board diagnosis for all auto-
motive components for an overall evaluation.

Furthermore, we are discussing with the developing depart-
ments how to increase the extent of our analysis with the
future goal to create a fully automated closed-loop diagnosis
feedback process. We are convinced that our approach can be

of great benefit to increase the off-board diagnosis’ quality
thus reducing warranty costs and repair time.
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[5] Schäuffele, J. and Zurawka, T., Automotive Software Engineering. SAE

International, 2005.
[6] Meinzer, S., Prenninger, J., Eberl, M., and Eren, T.,

“Durch Predictive Analytics von Diagnosedaten zu fundierten
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heit,” in Text- und Data Mining für die Qualitätsanalyse in der
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