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Abstract— In this work we propose the application of state-
of-the-art feature descriptors into a Particle Filter framework
for the lane detection task. The key idea lies on the comparison
of image features extracted from the actual measurement with
a priori calculated descriptors. First, we demonstrate how
a feature expectation can be extracted based on a particle
hypothesis. We then propose to define the likelihood function
in terms of the distance between the expected feature and
the features calculated from the current measurement. We
select the Histogram of Oriented Gradients as a descriptor
and the Battacharyya distance as a metric. We show that this
simple approach is powerful in terms of pattern discrimination
and that it opens a new set of possibilities for increasing the
robustness of lane detectors.

I. INTRODUCTION

In many Driver Assistance Systems, the analysis of vehicle
surroundings plays an important role. Among all the ele-
ments around the car, the driving lanes can be seen as a base
component for applications like Lane Departure Warning,
Lane Keeping Assistance, Curve Speed Warning and others.
For applications involving obstacle avoidance, as for example
Adaptive Cruise Control or Collision Warning System, lane
information is essential in supporting the assessment of the
relevance of targets and determining the associated risk. For
these reasons, a robust lane detection system is necessary.
Approaches to detect lanes from video images dates back
to the 1980s. However, due to an extensive variation of
environmental conditions and variability of road types, there
are still several challenges to be solved or alleviated. A
wide range of algorithms has been proposed so far, applying
different types of sensors, models, features, estimation and
tracking techniques. The reader is referred e.g. to [15] and
[11] for reviews on lane estimation systems. Since the work
of Southall and Taylor [16] and Apostoloff and Zelinsky
[1], the use of Particle Filters as a framework for detection
and tracking of lane boundaries gained significant momen-
tum. These filters offer a number of advantages. They are
based on a probabilistic framework and can handle arbitrary
distribution types. Additionally, incorporating new cues to
enhance the robustness of the estimation is straightforward.
Recently, Zhou et al [17] proposed a maximum a posteriori
formulation for the lane detection, applying a Particle Filter
framework to simultaneously track lane shape and vehicle
position. Franke et al [7] applied such a framework to the
recognition of country roads, and Loose et al [13] for rural
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roads. In [10], Kim mentions that due to vehicle vibration,
tracking the motion of lane boundaries is more appropriately
modeled with a Particle Filter rather than a Kalman Filter.
In [12], Liu et al propose a combination of statistical Hough
transform to Particle Filters. More recently, in [6], Danescu
e Nedevschi studied the appliance of a complex lane model
(11 dimensions) as well as stereo vision cues into a Particle
Filter based lane tracking.

In contrast to previous approaches, we concentrate on a
new definition for the likelihood estimation process. The
main contribution of our approach is to apply state-of-the-
art feature descriptors and distance metrics directly to the
weighting process of a particle. The presentation follows
the typical steps of Particle Filter design. First, our pa-
rameter space is defined in Section II-A, consisting of our
lane model. Then, we concentrate on the derivation of the
likelihood model, where the concept of feature templates
is introduced. The evaluation of the posterior distribution
is discussed subsequently. We conclude the description by
defining resampling and update processes.

II. METHOD

In this work we perform lane detection based on a single
monocular camera. Images are undistorted and warped to a
virtual view where the ground plane is parallel to the image
plane (also called Inverse Perspective Mapping [14], or Bird
Eye View). Camera parameters are derived from an offline
calibration process. The lane detection algorithm operates on
a Particle Filter [9] framework. Compared to Kalman Filters,
Particle Filters are not bounded to Gaussian distributions,
and represent a more appropriate framework for the lane de-
tection task, which essentially is a multi-modal problem. For
instance, in the case of road splitting and merging situations,
multi-lanes, or the presence of mismatching patterns, more
than two lanes can be observed. We base our method on the
well established Sample Importance Resampling algorithm
[9], with adaptations on the resampling strategy. For the final
estimates, we segment the posterior distribution using the
Mean-Shift [4] algorithm and select the distribution modes
as output models.

A. Lane Model

Our lane model is composed of two second order curves
representing the left and right lane boundaries. The curves
are defined similarly to the widely applied Clothoid models.
However, we discard the component allowing the variable
curvature. Thus,

xL(d) = d (1)
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cl,r · d2
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± w

2
, (2)

where x(d) and yl,r(d) are an approximation of the Cartesian
coordinates of the point at a distance d along the curve.
The indexes l and r indicate left and right lane boundaries,
respectively. cl,r is the curvature parameter and w the lane
width. The superscript L denotes the lane coordinate system,
defined on the road plane. Mapping to the vehicle coordinate
system (superscript V ) is achieved through an in-plane
rotation and a translation with respect to the y-axis, thus

[
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yVl,r

]
=

[
cosα − sinα
sinα cosα

] [
0
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] [
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yLl,r

]
, (3)

where α is the yaw angle and yoff represents the lateral
offset of the lane with respect to the vehicle. The vehicle
coordinate system is defined also on the road plane with its
x-axis aligned at the vehicle center in the driving direction.
This model offers the advantage of relaxing the assumption
of parallel markers, while keeping the parameter space
relatively small (5 degrees of freedom). In fact, lanes are
forced to be parallel only in their origin, once both parabolas
share the same rotation angle. The parameters of equations
(1) to (3) define the ith particle vector:

pi =
[
yioff α

i wi cil c
i
r

]
(4)

B. Measurement Model

In this work, a probabilistic framework is used to derive
the current lane model. The goal is to estimate a Probability
Density Function (PDF) on the parameter space, and based
on that, to derive the actual lane parameters. In a Particle
Filter framework, this PDF is estimated by a set of discrete
samples weighted proportionally to their probability of lying
on a lane (see e.g. [2] and [3] for details). The definition
of the sample weighting is a key step of a Particle Filter
based system. The main component of this definition is the
so called Likelihood function, which depicts the probability
a measurement describes a given state. In this paper we
propose a simple, yet powerful idea to apply state-of-the-
art computer vision descriptors and metrics in the definition
of this Likelihood function. The key insight is that, once the
state to be evaluated is given in a Particle Filter, it is also
possible to derive an expectation of how an image feature
should look like given this state. Therefore, a Likelihood
function can be derived by comparing expected and measured
features through some distance metric. Besides its simplicity,
one of the main advantages of such an approach is that
measurement descriptors can be shared while evaluating mul-
tiple descriptors (or patterns, respectively). Sharing can also
occur among applications, for example in the classification
of further road surface markings.

1) Grid and Window Selection: For efficiency purposes,
measurements are taken on a discrete grid in image space.
Every feature descriptor is computed over a sliding window
which is composed of multiple grid cells (see Fig. 1). Image
borders are excluded from the window calculation. This grid

and window structure together with the particle hypothesis
are essential in relating templates and measurements. This
is done as follows. Each particle hypothesis is expressed
in terms of the vehicle coordinate system using equations
(1) to (3) and then further projected to the image space.
The intersection of such hypothesis with the horizontal
grid borders is defined as a key point. Then, given our
fixed window size (i.e. here more specifically the height
of the window), we obtain several possible entry-exit key
point pairs. Each entry-exit pair defines a line and thus a
corresponding template. Since windows overlap, we select as
measurement window the one in which the entry key point is
located closest to its center. As we expect only small slopes,
the target pattern will therefore be approximately centered in
the window. This is illustrated in Figure 1.

Fig. 1. Left: grid, window and overlayed particle model. Circles represents
the intersection points applied for selecting template descriptors. Right:
example of considered windows for a given particle hypothesis. Note that
windows overlap.

2) Template Generation: The process of generating fea-
ture templates is executed offline. By assuming the orthogo-
nal projection of the ground plane resulting from the Bird’s
Eye View, only a small subset of rotation and translation
combinations of the marker inside a window needs to
have its feature descriptors calculated. These transformations
represent however a continuous space, thus necessitating
of discretization. For simplicity, we round (to an inte-
ger representation) the intersection points between window
boundaries and the hypothesized model. Centered at these
points, a template image of a simple white marker on a
white background is generated. The points are first projected
into the road coordinate system, and marker patterns of a
given width (in our case, 15cm or 30cm) are calculated. The
resulting marker is back projected into image space, where
finally the drawing into the template image is performed.
From this image, the features are calculated. Examples for
template images are shown in Figure 2.

Fig. 2. Example of synthetic images applied for generating feature
templates.
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3) Feature Descriptor: Histograms of Oriented Gradient
(HoG) [5] were selected as feature descriptors, due to their
shape description properties and their robustness to varying
illumination conditions. Lane markers are expected to exhibit
higher brightness than the surrounding road. Histogram bins
are spread in the entire 360 ◦ range. The selection of the cell
size is therefore related to the image resolution and marker
size. Recall that the descriptor drops spatial information of
edge positions inside a cell. This aspect is important for lane
detection, as the distance between edges is a very discrimi-
native feature. To ensure sufficient spatial discrimination of
the lane edges, a smaller cell width is preferred. To reduce
the amount of histograms in the descriptor, we omit block
normalization and instead normalize over the entire window.

4) Distance Metric: Histograms are discrete represen-
tations of a distribution. Thus, in principle, any metric
measuring distances between distributions could be applied
in this context. However, by the nature of our problem,
especially with the presence of synthetic templates, a number
of these histograms contain only zero entries in their bins.
This is an expected effect, which indicates that the road
region contains no texture. However, many metrics (e.g.
Bhattacharyya, Kullback-Leibler divergence and others) are
not defined when one of the distributions is uniformly zero.
Instead of simply selecting a metric that is resilient to such
problems (e.g. the L2 norm), or to circumvent each case
individually (e.g. by applying small constants in the zero
entries case), we rather prefer to make our templates (a
little) more similar to what it is expected in real images.
This is achieved by applying a minimal amount of noise
to each synthetic image, causing the descriptor to reflect
it in its entries. We iterate this process several times, and
select the average of the descriptors as our feature template.
As distance metric, we empirically chose the Bhattacharyya
distance:

ζ
(
h1,h2

)
=

√√√√√√1−
∑
b∈B

√
h1
bh2
b√∑

b∈B
h1
b ·
∑
b∈B

h2
b

, (5)

which compares the distance between two normalized his-
tograms h1 and h2. B denotes the number of bins in the
histogram, and hb represents the value stored in its b-th bin.
From this distance we define the i-th particle weight ηil,r of
the left l or right r boundaries as

ηil,r =
∑
N

∑
H

e
−
ζ

(
hm,i,ht,i

)
2λ2m , (6)

where λm is a parameter representing the degree of con-
fidence of the measurement term. N is the number of
evaluated windows, as selected through the intersection of
the particle with the measuring grid, H is the number
of histograms contained in one feature vector. The terms
hm,i and ht,i are one of the histograms associated with
respectively, the measurement and the template for the given
window and particle hypothesis. Note that no normalization

is applied with respect to the number of windows, therefore
particles whose projections lie on the image area are favored.
While this can be seen as a bias in the estimation, it is an
important factor in penalizing particles that diverge from the
measurement boundaries (e.g. a particle with only one edge
hitting the image).

(a) (b) (c) (d)

Fig. 3. Two examples of distance metric response for vertical markers. (a)
and (c) are the Bird’s Eye View of the captured images. (b) and (d) are the
respective likelihood estimates (normalized for visualization purposes).

Figure 3 shows typical responses of the distance metric,
when applied with a single, vertical, 30cm wide marker
template into the entire measurement grid. In the images,
it is possible to observe the discriminating effect (or filtering
performance) achieved through this approach. Note that,
although shown in the picture, measurements hitting the
borders of the black triangular regions at the bottom are not
considered for the likelihood calculation.

5) Penalty Terms: Penalty terms are necessary in order
to constrain the particle movements into plausible search
space regions. The first imposed restriction refers to the
lane width. It is important to allow the variability of this
parameter to cope with variations on road construction or
with measurement errors (e.g. caused by inaccuracies in the
calibration). On the other hand, we are not interested in
the whole range of parameters that can be represented by
our model. In other words, we want to avoid very large, or
very small lane width variants. To avoid these situations we
propose the use of a sigmoid function to impose a parameter
boundary into our likelihood function. We define the width
penalty γiw as a function of particle pi as:

γiw =
1

1 + e(w
i−wnom)2−δ2cut

, (7)

where wnom is the nominal lane width (about 4m), wi is the
width component of the given particle, δcut is the allowed
variation. This function will force 50% penalty at wnom ±
δcut. We select 2m as the cut point.

A second penalty term refers to the lane parallelism. It
represents a strong cue while filtering non-plausible hypothe-
ses, once measurements from both boundaries contribute
to reduce the uncertainty. However, in several road situa-
tions (e.g. split and merge conditions, or due to calibration
variability) the parallel marker assumption is broken, which
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requires relaxing this constraint. A system capable of han-
dling both situations would be ideal. In this work we tackle
this problem in two steps. We first relax the parallelism
constraint by defining different curvature parameters for each
lane boundary, as discussed in Section II-A. Secondly, we re-
introduce a softer constraint through a penalty term, which
favors parallel lanes. The effect of this approach is that the
system only allows non-parallel lane models if consistent
non-parallel boundaries are present in the measurements. The
lane parallelism penalty term is defined as

γic = e
−
(cil−c

i
r)

2

2λ2c , (8)

where cil and cir are respectively the left and right curvature
terms associated to the given particle. The standard deviation
parameter λc can be interpreted as a degree of confidence of
the presence of parallel lanes. By increasing λc, the parallel
constraint is relaxed, while decreasing λc forces only parallel
lanes to be considered.

6) Likelihood: The final likelihood model is defined by
combining equations (6) to (8).

p(z|Xi) ≈
(
max
j∈M

ηi,jl +max
j∈M

ηi,jr

)
γiwγ

i
c , (9)

where M is the total number of template classes. Left and
right boundaries are treated separately. The cue with the
maximum weight response is considered for each boundary.

C. PDF Evaluation and Resampling

The estimated PDF over the lane parameters is often non
Gaussian, or even more importantly, is often multi-modal. A
typical case is a lane splitting situation, where more than
one peak should be present, indicating multiple plausible
lanes. In the presence of mismatching patterns (e.g. tire
tracks), the effect is similar, and can also be supported
over time. We illustrate this property in Figure 4 for a lane
splitting situation, where the curvature component of the
model forms two distinct modes in the resulting PDF. An
evaluation process that discards the multi-modality property
of this parameter space, tends to deliver incorrect outputs. A
typical approach falling into this mistake is to simply select
the output lane as a weighted average of the entire particle
set. This makes the estimation lie between the real modes,
which is an erroneous result.

Fig. 4. Left: lane splitting example. Right: PDF on the curvature dimension
with two modes. Peaks are the mean-shift convergence points.

A good solution needs to account for the individual PDF
peaks separately and postpone the decision. To segment
different PDF modes, in our work we apply a slightly
modified version of the Fast Adaptive Mean-Shift method
[8]. This algorithm adaptively computes the window size
applied on the averaging operations. We propose the use
of the particle weight as part of the weight term applied
to the computation of the mean-shift vector. Samples are
normalized before the mean-shift process to account for the
inhomogeneous scaling between different dimensions. The
algorithm provides as result an association of each particle
to a given convergence point, located at the respective mode.
The set of derived peaks are therefore better estimations
of the final lane parameters. Furthermore, the resulting
modes are pruned in respect to their absolute weights (a
weak threshold) in order to exclude candidates with non-
representative support.

D. Resampling and Update

Particle resampling follows the original SIR [9] implemen-
tation, with a single remark that this process is executed only
when at least one representative boundary is detected. This
avoids resampling while in pure noise situations.

In the update step, ideally particles should be moved to
account for the vehicle motion between two steps, consider-
ing sensor measurement errors. In our case we treat motion
as a component of the measurement noise. Particles are then
updated applying a simple additive noise model, based on a
Gaussian distribution in each component dimension.

III. EVALUATION

The proposed system was evaluated in a 11-minutes
sequence recorded at 15Hz with a Guppy F-036C (Al-
lied Vision Technologies) camera, equipped with an Aptina
MV022 automotive sensor. The scenes contain a typical
driving scenario in highway roads. This includes different
situations in terms of measurement and layout: straight roads,
curves, lane splitting and merging, exits, different illumi-
nation conditions, including saturated frames, occlusions,
shadows and mismatching patterns. From the entire sequence
a set of interesting (i.e. challenging for a lane detection
task) segments were extracted and labeled. For straight roads,
labels were applied every second, while for more complex
scenarios labels were introduced every half second. A total
of 117 frames were manually labeled.

A. Error Metric

Two different metrics were selected for the evaluation.
The first captures if the markers are detected, missed or if
false positives occur. This is accomplished by computing the
distance in image space between the detected modes and
the ground truth data. A boundary is declared detected if
the average error between the estimate and the ground truth
label is below 1.0m. Labels with no association are declared
as misses, while detected boundaries not associated with any
label are considered as false positives.
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TABLE I
QUANTITATIVE RESULTS

Scenario 1 2 3 4 5 6
Total Boundaries 60 16 29 10 20 79
Positive Matches 59 15 29 10 16 57
Misses 1 1 0 0 4 22
False Positives 0 2 2 0 0 5
Average RMSE 0.193 0.197 0.236 0.251 0.313 0.382

The second metric is the effective error between detected
modes and ground truth labels. For every meter in road
space, the RMSE between a detected boundary and its
corresponding label is computed. Single measurements are
averaged representing the boundary error (in meters).

B. Results and Discussion

We separate our results in six sub-sequences:
1) Straight road with variation of the pitch angle;
2) Lane change on straight road with high pitch variation;
3) Lane change with low road curvature to the left;
4) Under bridge driving (shadow and glare);
5) Under bridge driving with occlusion by near vehicles;
6) Exit scenario, with wide and splitting lane;
Table I shows quantitative results of the proposed methods.

Evaluation of sequences 1 to 3 show that the proposed
approach responds well to the most common scenarios found
in a typical highway environment. One single boundary was
missed in the first sequence, resulting from the degraded
quality of the middle dashed marker (Fig. 5(a)). The method
showed to robustly handle rather strong mismatching patterns
originated from tire rails. In the second and third sequences
the few false positives conditions occurred during the lane
changing maneuver. This is mainly a consequence of the
natural latency introduced by the movement of particles
among different modes. The missing boundary (Fig. 5(d))
results from a weak support of the respective mode caused
by three factors. First, the absence of motion compensation
in the Particle Filter update step, may lead the target mode to
fall onto regions with sparse particle coverage. Second, in the
current setup, only black-white-black patches contribute to
the likelihood estimate, imposing a natural penalty to dashed
markers. And third, the presence of mismatching patterns
(noise) increases the uncertainty, therefore influencing the
mode estimation. After lane changing, the hypothesis rep-
resenting the previous lane also looses support, due to the
fact that fewer patches contribute to the estimate. Figures
5(f) and 5(e) shows the estimations respectively before and
after the lane change maneuver. Also important to remark
is the robustness of the system face to high variation of the
pitch angle present on the sequences. Partially relaxing the
parallelism constraint contributes significantly to this result.

The analysis of the fourth sequence reflects the robustness
of the HoG descriptor to illumination variance (see Figures
5(g) and 5(h)). The fifth scenario adds to the illumination
challenges, partial occlusion of markers, vehicle shadows and

poor contrast as can be seen in Figures 5(i) and 5(j). These
factors strongly degenerate the likelihood estimate, leading
again to a poor support of the target model during some
frames. The last scenario (Figures 5(k) and 5(l)) represents an
exit with two split conditions, where the right lane becomes
wide enough to accommodate two new lanes. Although the
system is able to recover in the split condition, particles do
not migrate fast enough to form new modes immediately, so
as to follow both lanes.

RMSE values are close related to the uncertainty present
in the respective scenes. Higher confidence levels lead to
a bigger concentration of particles around the true model,
increasing the precision of the estimation. Exactly the op-
posite occurs when uncertainty grows. Another factor con-
tributing to the increasing error in more complex scenarios
is the amount of mismatching patterns distracting the filter.
Particles covering these regions can be wrongly included
in the segmentation and the computation of the real mode,
propagating the errors to the final estimation.

IV. CONCLUSIONS AND FUTURE WORK

In this work we introduce the concept of feature templates
as the basis for a new likelihood model in particle filter based
lane detection. Features extracted at selected grid locations
are compared to descriptors pre-stored in a dataset. Pairs
of extracted/template descriptors are selected from particle
hypotheses, and the resulting distance is applied for the
likelihood estimation. Such an approach allows a scalable
evaluation of multiple patterns against the extracted feature
vector. To derive the models from the resulting PDF, a Mean-
Shift segmentation is applied. This approach better captures
the natural multi-modal characteristic of the lane detection
task. Through the evaluation we have shown that, even using
simple synthetic templates, the method is able to handle with
efficiency standard highway scenarios.

These promising results lead to a new set of possibilities
regarding lane and road boundaries discrimination, ranging
from simple evaluations of different feature descriptors and
metrics up to the inclusion of state-of-the-art machine learn-
ing approaches. The synthetic templates can intuitively be
replaced by manually annotated captured data. This allows
the inclusion of more complex patterns (e.g. curbs, dot
bots, guard rails) directly into the Particle Filter estimation
step. In our future work we will target the inclusion of
Support Vector Classification and Regression methods in
the likelihood model. We will also target the improvement
of the segmentation step, in order to better retrieve the
estimated models, especially in terms of normalization of
particle dimension ranges and on the determination of the
Mean-Shift bandwidth size.
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