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1. INTRODUCTION

In the last few years the use of automatic speech recognition (ASR) techniques for
clinical purposes became more and more popular [Kitzing et al. 2009]. Before the ap-
plication of ASR to clinical use, the therapists and clinicians evaluated their patients’
speech using perceptual means only. As any perceptual evaluation, this process suf-
fers from inter- and intraindividual differences. For scientific studies, the perceptual
evaluation is either performed by a panel of experts where the mean opinion is chosen
as a reference, or standardized values are obtained using a standardized test proto-
col and many hundred or thousand control subjects. With ASR many of the time- and
manpower-consuming perceptual tests could be replaced by automatic means. This was
achieved for:

—intelligibility of read speech in patients with oral cancer [Maier et al. 2007] and
patients after removal of the larynx [Haderlein 2007] in German;

—speech of children with cleft lip and palate in a pictogram naming task concerning
their intelligibility [Maier et al. 2009a] and their specific speech disorders [Maier
et al. 2008] in German and Italian language [Scipioni et al. 2009];
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—general assessment of speech intelligibility using a randomized syllable reading task
in Dutch [Middag et al. 2009];

—the visualization of speech [Maier et al. 2009d] and voice disorders [Haderlein et al.
2006] for clinical purposes [Maier et al. 2009e].

Hence, ASR is a powerful tool that can serve clinical purposes well.

1.1. Clinical Evaluation of Reading Disorders

Reading disorders are complex and have been researched extensively in the past in
the field of psychiatry [Beitchman and Young 1997]. The state-of-the-art approach to
examine children for reading disorders is a perceptual evaluation of the children’s
reading abilities. In all of these reading tests, a list of words or sentences is presented
to the child. The child has to read all of the material as fast and as accurately as
possible. In order to determine whether the child has a reading disorder, two variables
are investigated by a human supervisor during the test procedure:

—the duration of the test, that is, the fluency, and
—the number of reading errors during the reading of the test material, that is, the

accuracy.

Both variables, however, are dependent on the age of the child and are related to each
other. If a child tries to read very fast, the number of reading errors will increase,
and conversely, when reading slowly, fewer errors will occur [Dennis and Evans 1996].
Furthermore, with increasing age the reading ability of children increases. Hence, ap-
propriate test material has to be chosen according to the age and reading ability of
the child. Therefore, reading tests often consist of different subtests. While younger
children are tested with meaningful words and only short sentences, the older chil-
dren have to be tested with more difficult tasks, such as long complex sentences and
pseudowords that may or may not resemble real words. Appropriate subtests are then
selected for each tested child. Often this is linked to the child’s progress in school.

One major drawback of the testing procedure is the intra- and interrater variability
in the perceptual evaluation procedure. Although the test manual often defines how
to differentiate reading errors from normal disfluencies and “allowed” pronunciation
alternatives, there is no exact definition of a reading error in terms of its acoustical
representation. In order to resolve this issue, the human observers have to be trained
before they are able to perform the testing. In the test material that we chose as
reference, the test setup was standardized with several thousand children. Each new
test result is compared to a list of standard values that enables the comparison of the
tested child to the standard set. In this manner, a percentage rank is obtained. Based
on these extensive statistics, the decision whether a child’s reading ability is disordered
or normal is then made. This procedure is considered as the state of the art of clinical
evaluation of reading disorders.

Intra- and interrater variability is removed, if the test is not based on perceptual
evaluation. Hence, we propose the use of a speech recognition system to detect reading
errors. This procedure has two major advantages.

—The intrarater variability of the speech recognizer is zero because it will always
produce the same result given the same input.

—The definition of reading errors is standardized by the parameters of the speech
recognition system, that is, the reading ability test can also be performed by lay
persons with only little experience in the judgment of reading disorders. The testing
can be performed by a lay person. No expensive training of a human observer is
required.
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1.2. State of the Art in Reading Level Assessment and Reading Tutoring

Many automatic approaches on reading assessment and tutoring exist. In this section
we provide a few of the many successful examples that are found in the literature to
introduce the reader to this topic.

A reading tutor is a system that processes read speech in real-time. It is designed to
aid children in the training of their reading ability by provision of meaningful feedback.
Aist [2000] showed that such an automatic system can be very effective for certain
tasks, like the training of word comprehension. For this task, there was no significant
difference between the automatic system and a human reading tutor.

More recent versions of reading tutors try to elicit speech of children using a dialogue
strategy. One of the most challenging points in the design of such a system is that the
dialogue should be technically feasible on the one hand and educationally effective on
the other hand. Hence, a trade-off has to be found that restricts the responses of the
children to a certain task domain. An example for this can be found in Aist and Mostow
[2009], where an attempt is made to teach the human learner an implicit grammar
that is compatible with the automatic system.

To determine the “reading level” of a child usually a short text passage has to be read
by the child. Often the reading level is linked to the perceptual evaluation of expert
listeners using five to seven classes. Black et al. [2008] estimate a reading level between
1 and 7 using pronunciation verification methods based on Bayesian Networks. They
achieve correlations between their automatic predictions and the human experts of up
to 0.91 on 13 speakers. In Duchateau et al. [2007] the use of finite-state-transducers
is proposed to obtain a “reading level” between “A” (best) and “E” (worst). For this five-
class problem absolute recognition rates of up to 73.4% for real words and 62.8% for
pseudowords are reported. In order to remove age-dependent effects from the data, 80
children in 2nd grade were investigated. Both papers focus on the creation of a “reading
tutor” in order to improve children’s reading abilities.

In contrast to these studies, we are interested in the diagnosis of reading disorders
as they are relevant in a clinical point of view. Currently, we are developing PEAKS
(Program for the Evaluation of All Kinds of Speech Disorders [Maier et al. 2009a])
a client-server-based speech evaluation framework that was already used to evaluate
speech intelligibility in children with cleft lip and palate [Maier et al. 2006b], patients
after removal of laryngeal cancer [Schuster et al. 2006], and patients after the removal
of oral cancer [Windrich et al. 2008]. PEAKS features interfaces and tools to integrate
standardized speech tests easily. After integration of a new test, PEAKS can be used for
recording from any PC that is connected to the Internet if Java Runtime Environment
version 1.6 or higher is installed. All analyzes performed by PEAKS are fully automatic
and independent of the supervising person. Hence, it is an ideal framework to integrate
an automatic reading disorder classification system.

The article is organized as follows. First the test material, the recorded speech data,
and its annotation is described and discussed. Next, the automatic evaluation methods,
that is, the speech recognizer and the classifiers, are introduced. In the results section
the classification accuracy is presented in detail. The subsequent section discusses the
outcome of the experiments. The paper is concluded by a summary.

2. SPEECH DATA

In order to be able to interpret the results and to compare them to other studies, the test
material, speech data, and its annotation are described in detail here. Special attention
is given to the annotation procedure since the automatic evaluation algorithm is aimed
at being used for clinical diagnosis. Therefore, the annotation should meet clinical
standards.
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Table I.
Structure of the SLRT test: The table reports all subtests of the SLRT with their contents, their number
of words, and the school grades for which the respective sub-test is suitable. Note that the school
grade is highly correlated with the age of each child

sub-test content # of words grade

SLRT1 A short list of bisyllabic, single, real words to introduce the
test. This part is just used for introducing the material, not for
diagnosis.

8 1–4

SLRT2 A list of mono- and bisyllabic real words 30 1–4

SLRT3 A list of compound words with two to three compounds each 11 3–4

SLRT4 A short story with only mono- and bisyllabic words 30 1–2

SLRT5 A longer story with mainly mono- and bisyllabic words but also
a few compound words

57 3–4

SLRT6 A short list of pseudowords with two to three syllables to intro-
duce the pseudowords. This part is just used for introducing
the material, not for diagnosis.

6 3–4

SLRT7 A list of pseudowords with two to three syllables 24 1–4

SLRT8 A list of mono- and bisyllabic pseudowords that resemble real
words

30 2–4

2.1. Test Material

The recorded test data is based on a German standardized reading disorder test: the
Salzburger Lese-Rechtschreib-Test (SLRT), as presented in Landerl et al. [1997]. In
total the SLRT consists of eight subtests (cf. Table I). All subtests contain 196 words,
of which 170 are unique.

The test is standardized according to the instructions and the evaluation procedure.
The test is presented in the form of a small book that is handed to the children to read
in. They are instructed to read the text as fast as possible while making as few reading
mistakes as possible.

In the original setup the supervisor of the test has to measure the duration for all
subtests separately while noting down the reading errors of the child. As the SLRT1 and
SLRT6 subtests are only meant to introduce the type of test material to the children,
both subtests are not evaluated.

2.2. Recording Setup

In order to be able to collect the data directly at the PC, the test had to be modified.
Instead of a book, the text was presented as a slide on the screen of a PC [Maier et al.
2009c]. The instructions to the child were the same as in the original setup.

All children were recorded with a head-mounted microphone (Plantronics USB 510).
The microphone was placed approximately 2 to 3 cm away from the mouth and was
covered with foam in order to prevent noises from breathing and loud plosives. The
recordings took place in a separate, quiet room without background noises. The walls
were mostly covered with furniture that reduced the reverberation time in the room.
Hence, appropriate audio quality was achieved in all recordings. The control group of
children was recorded at a local elementary school.

In total 120 children were recorded. All children were native German speakers,
had normal hearing, and were using the same local dialect. Eighty-two of them were
recorded at a local elementary school. In order to increase the number of children
with reading pathology in our data set, we additionally recorded 38 children with a
diagnosed reading disorder. The average age of the children was 9.6 ± 0.9 years. A
detailed overview regarding the statistics of the children’s ages is given in Table II.
The relation between age and pathologic reading is reported in the results section.
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Table II.
The SLRT test was recorded for 120 children: Due to age restrictions of the
SLRT in subtest SLRT3 and SLRT8 fewer children were collected. The table
shows mean value, standard deviation, minimum, and maximum of the age of
the children and the count (#) in the respective group

group # mean std. dev. min max

SLRT2, SLRT4+5, SLRT8 120 9.6 0.9 7.4 11.3

SLRT3 102 9.7 0.6 8.3 11.3

SLRT8 115 9.6 0.9 7.4 11.3

2.3. Perceptual Evaluation

In the following, we describe the human, that is, perceptual evaluation of the speech
data. For each child, the decision whether his or her reading ability was pathologic or
not was determined according to the values given in the manual of the SLRT [Landerl
et al. 1997]. Although the manual presents standardized values for deciding whether
a child has pathologic reading or not, the decision is still difficult.

—If the duration of the test is longer than the age-dependent error limit the child’s
reading ability is classified as “pathologic.”

—If the duration is within the time limits, the number of reading errors is investigated.
Reading errors are marked as soon as a single phonemic deviation is found. Frequent
substitutions which are caused by dialectal influences and self-corrections were not
counted as errors as described in the manual of the test [Landerl et al. 1997]. The
manual offers an age-dependent standard value but the decision for or against a
pathologic finding has to be made by the clinician. As this process is very difficult to
model with an automatic system, we decided in this work to follow the SLRT manual
and assign the label “pathologic” in all cases that exceeded the reading error limit.
For all the 38 children with a prior diagnosed reading disorder, this process indeed
results in a pathologic finding.

The time and error limits differ for each subtest according to the SLRT. For this work
we defined the 10th percentile of the SLRT as the limit for pathology for the duration
and the number of reading errors.

Table III reports the results of the different subtests. Note that the subtests SLRT4
and SLRT5 were joined into one group as their age limits are disjoint. No single subtest
is able to identify all of the 38 children. The fusion of their results, however, is very
effective: All of the children who were diagnosed with a reading disorder by our clinical
partner were identified by at least one subtests of the SLRT as pathologic. No child of
the 82 control children was identified as pathologic in any of the subtests.

3. AUTOMATIC EVALUATION SYSTEM

The automatic evaluation is based on four information sources:

—the total duration of the test,
—the reading error and duration limits,
—the word accuracy computed by a speech recognition system, and
—prosodic information

The test duration can be easily accessed as PEAKS tracks this information automat-
ically during the recording. Prior information about the child, namely the child’s age
and the respective duration and error limits determined by the child’s school grade,
can also easily be obtained as it is known to the clinician.
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Table III.
Overview on the result of the perceptual
evaluation of the SLRT subtests. No subtest
alone is able to identify all the 38 children
with reading disorder. The combination, how-
ever, identifies all of the children as reading
disordered

sub-test # of “pathologic” children

SLRT2 30

SLRT3 26

SLRT4+5 34

SLRT7 31

SLRT8 30

3.1. Speech Recognition Engine

For the objective measurement of the reading accuracy, we use an automatic speech
recognition system based on Hidden Markov Models (HMM). It is a word recognition
system developed at the Pattern Recognition Lab (Lehrstuhl für Mustererkennung) of
the University of Erlangen-Nuremberg. In this study, the latest version as described
in detail in Gallwitz [2002] and Stemmer [2005] was used.

As features we use 11 Mel-Frequency Cepstrum Coefficients (MFCCs) and the en-
ergy of the signal plus their first-order derivatives. The short-time analysis applies a
Hamming window with a length of 16 ms, the frame rate is 10ms. The filter bank for the
Mel-spectrum consists of 25 triangular filters. The 12 delta coefficients are computed
over a context of 2 time frames to the left and the right side (56 ms in total).

The recognition is performed with semicontinuous HMMs. The codebook contains 500
full covariance Gaussian densities that are shared by all HMM states. The elementary
recognition units are polyphones [Schukat-Talamazzini et al. 1993], a generalization of
triphones. Polyphones use phones in a context as large as possible, with the restriction
that that enough training data must be available for sound statistical modeling. Our
heuristic is to use contexts that appear at least 50 times in the training data. The
HMMs for the polyphones have three to four states.

We used a unigram language model to weigh the outcome of each word model. It
was trained separately for each SLRT subtest on the respective reference text. For our
purpose it was necessary to emphasize the acoustic features in the decoding process.

In Maier et al. [2009b] a comparison between different language models was con-
ducted. It was shown that intelligibility can be predicted using word recognition accu-
racies computed from different language models. Higher-order language models were
found to increase the recognition rate, at the cost of the relation between recogni-
tion result and speech intelligibility. We chose unigram language modeling, because
it is computationally more efficient than a zerogram on the one hand and exhibits a
sufficiently restricted linguistic contribution on the other. The size of the recognizer’s
lexicon was determined by the number of distinct words in the respective subtest.

The result of the recognition is a word sequence. In order to get an estimate of the
quality of the recognition, the word accuracy (WA) is computed. Based on the number
of correctly recognized words C and the number of words R in the reference, the WA is
further dependent on the number of wrongly inserted words I:

WA = C − I
R

· 100%.
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Fig. 1. Computation of prosodic features for the fundamental frequency contour within one word after
Kiessling et al.

Hence, the WA can take values between minus infinity and 100%. Furthermore, we
computed the word recognition rate (WR)

WR = C
R

· 100%

as it disregards insertions as an error. This measure does not punish self-repetitions
and is known to be highly correlated to speech intelligibility [Maier et al. 2009a].

The speech recognition system had been trained on separate audio data from 23 male
and 30 female children from a local school who were between 10 and 14 years old
(6.9 hours of speech). To make the recognizer more robust, we added 2.3 hours of data
from 85 male and 47 female adult speakers from all over Germany from the VERBMOBIL

project [Wahlster 2000]. The data were recorded with a close-talk microphone with
16kHz sampling frequency and 16 bit resolution. The adult speakers were from all over
Germany and thus covered most dialect regions. However, they were asked to speak
standard German. The adults’ data were adapted by vocal tract length normalization
as proposed in Stemmer et al. [2003]. During training, a validation set was used that
only contained children’s speech. MLLR adaptation [Gales et al. 1996; Maier et al.
2006a] with the patients’ test data led to further improvement of the speech recognition
system.

3.2. Prosodic Features

The prosody module used in these experiments was originally developed within the
VERBMOBIL project [Wahlster 2000], mainly to speed up the linguistic analysis [Nöth
et al. 2000; Batliner et al. 2000; Kiessling 1997]. It assigns a vector of prosodic features
to each word in a word sequence that is then used to classify a word with respect to,
for instance, carrying the phrasal accent and being the last word in a phrase. For this
paper, the prosody module takes the text reference and the audio signal as input and
returns 37 prosodic features for each word and then calculates the mean, the maximum,
the minimum, and the variance of these features for each speaker, that is, the prosody
of the whole speech of a speaker is characterized by a 148-dimensional vector. These
features differ in the manner in which the information is combined (Figure 1):

(1) onset;
(2) onset position;
(3) offset;
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(4) offset position;
(5) maximum;
(6) position of maximum;
(7) minimum;
(8) position of minimum;
(9) regression line;
(10) mean square error of the regression line.

These features are computed for the fundamental frequency (F0) and the energy (ab-
solute and normalized). Additional features are obtained from the duration and the
length of pauses before and after the respective word. Furthermore jitter, shimmer
and the length of voiced (V) and unvoiced (UV) segments are calculated as prosodic
features.

3.3. Classification System

Classification was performed in a leave-one-speaker-out (LOO) manner since there was
only little training and test data available. We chose two popular measures in order to
report the classification accuracy.

—RR. The total recognition rate determined as the fraction of correctly identified
speakers c divided by the number of speakers n:

RR = c
n

· 100%. (1)

The RR reports the overall performance of the classifier. This includes the class
distribution of the data, that is, if some classes are more frequent than others, their
recognition also has more impact on the RR.

—ROC denotes the area under the Receiver-Operating-Characteristic (ROC) curve
[Fawcett 2006]. A random classifier yields an area of 0.5 while the perfect classifier
would yield an area of 1.0.

As classification system we decided for Ada-Boost [Freund and Schapire 1996] in com-
bination with an LDA-Classifier, as was already successfully applied in Hacker et al.
[2007]. Investigation of other classifiers yielded similar results. However, as the scope
of this article is the investigation of the automatic evaluation of reading disorders and
not the comparison of different classifiers, we chose to report only the results obtained
by a single classifier setup that we considered state-of-the-art.

4. RESULTS

In a first experiment we evaluated the classification performance for the individual
subtests. As reference the outcome of the perceptual evaluation of the respective subtest
was chosen. Hence, the number of children and the number of pathologic cases varies
(cf. Table II and III). Prosodic features were only used for the evaluation of the read
texts in the SLRT4 and SLRT5 subtests. As the other subtests contain single words
only, prosodic features did not contribute to the classification performance.

A summary on the different features is presented in Table IV. It reports the mean
and standard deviation of duration, WA, WR, and age for each subtest. For the cases
of duration and WA, the normal children and the children with reading disorder are at
least one standard deviation apart from each other. For WR and age the distributions
overlap mostly.

Figure 2 shows a detailed view of the distribution of duration in the SLRT3 subtest.
The figure shows that duration is not normally distributed in the dataset. The overlap
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Table IV.
Evaluation results for the different information sources on subtest level. Mean and standard deviation
are reported although the data may not be normally distributed. Note that the WA and WR values are
computed with respect to the reference texts and not with respect to the manual transcriptions of the
spoken utterances. Deviation from the target text yields reduction in these values and occurred in the
pathologic data as well as the normal data

SLRT2 SLRT3 SLRT4+5 SLRT7 SLRT8

n
or

m
al

duration 21.7 ± 6.2 20.5 ± 7.4 35.8 ± 9.92 47.5 ± 13.9 41.9 ± 12.5

WA 66.7 ± 16.5 83.2 ± 16.6 59.6 ± 15.2 49.1 ± 29.3 50.0 ± 23.2

WR 70.3 ± 15.5 93.6 ± 8.9 68.9 ± 12.0 76.4 ± 16.0 72.4 ± 13.9

age 9.6 ± 0.9 9.7 ± 0.6 9.6 ± 1.3 9.5 ± 1.0 9.6 ± 0.9

pa
th

ol
og

ic duration 61.4 ± 32.9 61.7 ± 33.4 80.1 ± 38.4 94.9 ± 57.8 84.2 ± 51.1

WA 25.5 ± 53.1 −7.3 ± 78.6 23.8 ± 45.1 −28.9 ± 79.2 −18.8 ± 76.8

WR 70.1 ± 16.9 89.6 ± 10.7 71.7 ± 14.7 64.5 ± 17.4 62.4 ± 17.7

age 9.3 ± 1.1 9.7 ± 0.6 9.6 ± 1.0 9.5 ± 0.9 9.5 ± 1.0

Fig. 2. Distribution of the total reading durations for the normal and pathologic children in the SLRT3
subtest. The overlap of the values is far greater than the mean and standard deviations let expect (cf.
Table IV). Both variables are clearly not normally distributed.

between the distributions is higher than the mean and standard deviation in Table IV
indicate.

Table V shows the results for the different subtests. In the SLRT2 and SLRT3 sub-
tests duration is the dominant factor. Yet there are cases where additional consideration
of the word accuracy helps to increase the classification performance. In all sub-tests
the composite classifier shows a significant improvement to the best individual feature
(p < 0.01). The worst recognition rates appear in the pseudoword subtests. Still the
composite classification improves the classification. The SLRT8 subtest has a composite
classification rate of 94.8%.

In order to evaluate the overall recognition rate that can be achieved, we use the
posterior probabilities, that is, the output probability of the classifiers, for each subtest
as input features for a second LDA-Classifier. Again, we use a LOO-setup for the
classification experiment. This time the 38 children with reading pathology are to be

ACM Transactions on Speech and Language Processing, Vol. 7, No. 4, Article 17, Publication date: August 2011.
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Table V.
Overview on the classification results
for the different sub-tests. RR is the
absolute recognition rate and ROC the
area under the ROC curve

feature RR [%] ROC

S
L

R
T

2

duration 95.0 0.982

WA 86.7 0.891

age 70.6 0.516

composite 99.2 0.998

S
L

R
T

3
duration 89.3 0.955

WA 86.0 0.900

age 72.0 0.431

composite 98.0 0.984

S
L

R
T

4+
5

duration 82.8 0.917

WA 82.2 0.836

age 61.7 0.398

prosody 76.7 0.849

composite 95.0 0.980

S
L

R
T

7

duration 81.1 0.773

WA 78.4 0.807

age 64.4 0.409

composite 96.7 0.995

S
L

R
T

8

duration 80.7 0.775

WA 80.1 0.851

age 63.7 0.472

composite 94.8 0.959

identified. In total 36 of the 38 children could be identified by the automatic system.
None of the 82 control children were classified as pathologic. This results in a RR of
98.3% and an area under the ROC curve of 0.958. Figure 3 displays the ROC curve.

5. DISCUSSION

The scope of this article was the automatic detection and classification of reading
disorders in children. Therefore, we chose a clinical standard test and recorded the
speech of 120 children.

In order to diagnose a reading disorder, the duration of the test has to be investigated
and the number of reading errors has to be determined because both variables are
related. This was performed according to the manual of the SLRT test. Thirty-eight of
the children were diagnosed a reading disorder by our clinical partner. Another 82 did
not have a reading disorder.

Table IV summarized the mean values and standard deviations of figures such as
the test duration for the pathologic children and the children with normal reading
ability. On average, the children with reading disorder take a much more time than
the normal children. Hence, time is an important factor to distinguish both groups.
However, as shown in Figure 2, the overlap in terms of reading durations is higher
than implied by the mean and standard deviations shown in Table IV. The duration
is clearly not normally distributed and there is significant overlap, which has to be
resolved by another information source.
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Fig. 3. ROC evaluation of the complete SLRT test: The area under the curve is 0.958.

One feature that is suited for this purpose is the WA. As seen in Table IV, the normal
children and the pathologic group show considerable differences. Note that the numbers
presented in Table IV were calculated using the target text as reference. Hence, any
deviation from the target text is considered as error in the computation of the WA even
if it is caused by the reader and not the system. This results in far lower values for the
recognition system than the computation of the WA based on the manual transcription
of the spoken utterances would produce. However, the transcription would mean the
need of a human being who writes down every word that was said. As we aim to
develop a fully automatic system, the human transcription was not acceptable for us.
The WA even reaches negative mean values for some tests in the pathologic children
as it is defined on a scale from minus infinity to 100%. This is related to a frequent
number of self repetitions interpreted as wrongly inserted words, and a long duration
of the test. If the number of words that were uttered is twice as high as the number of
words in the reference, the WA cannot exceed 0% just by its definition. If the number
of uttered words is higher, it drops further. Yet, the absolute value of the WA is not
important concerning its information content as can be clearly observed in Table V.
Word accuracy is an important feature to determine a possible reading disorder of
a child.

WR as reported in Table IV is a much better feature to determine the recognition
accuracy of the system. In the WR additional words are not regarded as errors. It only
comprises substitutions and missing words that would also be denoted as errors by a
human observer. In the control group, these values should reach values close to 100%
if the evaluation would be performed by a human observer. Yet, the values reach only
90% to 70% as commonly observed in unigram-based speech recognizers for similar
tasks. Another interesting property of Table IV is that there is almost no difference in
terms of mean value of WR between control group and pathologic children. We relate
this to the high number of repetitions and self-corrections in the pathologic children.
If each word is recognized at about 70% and repeated twice, the important differences
between both groups are almost averaged out in terms of WR.

ACM Transactions on Speech and Language Processing, Vol. 7, No. 4, Article 17, Publication date: August 2011.



17:12 A. Maier et al.

The age of the children in the normal and the pathologic group is also reported in
Table IV. There is no significant difference between both groups in terms of age. Hence,
age alone yields very low classification results. In most experiments, the area under the
ROC curve is close to 0.5, that is, group assignment is almost random. In some cases,
age performs worse than random assignment. This also shows that the sets were well
balanced with respect to age.

For the single word subtests (SLRT2, SLRT3, SLRT7, and SLRT8), using the test
duration, the WA, and the age-dependent limits of the test, the automatic system could
already determine whether the child has a reading disorder. The composite recognition
rates lie between 94.8 and 99.2%. The best recognition rates are obtained in the single
word reading tests.

Both the SLRT2 and the SLRT3 subtests contain rather simple words which are very
common in the German language. The complexity of both subtests is rather low. Only
duration already yields high classification rates of up to 95.0% for the SLRT2 sub-test.
In the SLRT3 sub-test the performance of duration already decreases to 89.3%. While
the classification rate of WA remains in the ball park of 80%, joint classification of all
features yields very high recognition rates.

The SLRT4 and SLRT5 subtests present connected text as test material, we regard
this test as more complex than the SLRT2 and SLRT3 sub-tests. Time alone yields only
82.8% recognition rate. In these subtests, word recognition becomes slightly less reli-
able (cf. Table IV), as connected speech is more difficult to recognize. The classification
performance using WA only drops to 82.2%. As it is a sentence-based speech test, it is
the only subtest in which it makes sense to use prosodic features. The characteristic
pauses that occur between the words in children with reading disorders are modeled
well by the prosody module. Using only prosody 76.7% of the children are classified
correctly.

The SLRT7 and SLRT8 subtests present pseudowords as test material. We regard
these two tests as the most complex and difficult tests for the children. In both tests,
duration shows about 80% recognition rate. The recognition is worst for these two
subtests. As it is a single word test, prosody is of little use. Another problem that
occurs here is caused by the structure of the pseudowords: As these words are madeup,
they were never seen in the training data of the ASR system. Hence, our polyphone
models degenerate. In the SLRT7 data this is not as severe as in the SLRT8 data. As the
SLRT7 target words consist of consonant-vowel clusters the polyphones degenerate to
only bi- or triphone models in most cases. In the SLRT8 data the pseudowords were built
to resemble real words. In most cases, words of the SLRT2 test (mono- and bisyllabic
words) were taken and one to two letters were replaced. This results in a very irregular
phonemic structure with respect to the German language. In many cases, our polyphone
models degrade to monophone models. As a result the recognition performance of the
ASR system drops. The degradation of the performance of the classification system,
however, is only limited. In the composite classification, both tests achieve 96.7% and
94.8% which is still high, but the lowest classification rate for the subtest level.

In general, the importance of duration as a feature decreases with the complex-
ity of the subtest. The highest rates were observed in the most simple tests and its
performance dropped in the more complex tests. It seems that children shift their
compensation strategies with the complexity of the test. If the test material is rather
simple, the children try to repeat the word until they pronounce it correctly. If the
testing material is more complex they do not even realize their own mistake. This is
extreme in the pseudowords. Here the words are nonsense words that are unfamiliar
to the child. Hence, the test breaks down to a character identification and grapheme-
to-phoneme mapping task that is ill posed, as there is often no unique solution. Prior
knowledge of the child on existing words does not help. Wrong pronunciations remain
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uncorrected. This effect can also be observed in Table IV. While the mean and standard
deviation of WR are almost the same for the sub-tests 2 to 5, SLRT7 and SLRT8 show
differences in the mean of the WR of about 10%.

Yet, one has to keep in mind that duration is one of the two inherent features to
determine the reading pathology. The other inherent feature of the test is reading
accuracy. As the results show, only the combination of both yield a consistent high
automatic evaluation. As expected, age alone is not a predictor of reading disorders.
However, in combination with the other features and the age-dependent limits it helps
to improve the classification. Prosody is only helpful in connected read speech.

Furthermore, we investigated whether these classification rates were already enough
to determine a reading pathology automatically. We used the posterior probabilities
of the first experiment to train another classification system. A classification rate of
98.3% was achieved. Only two children were misclassified. Hence, we could successfully
combine the sublevel classifiers to a test-level classifier. In overall recognition rate is
higher than in most subtests. Hence, most of the remaining weaknesses of the sub-test
classifiers could be corrected by multiple observations of the same child. Note that the
final decision on the pathology is based on the result of all subtests. Hence, the training
labels of the global task also differ from the labels of all subtests. The evaluation using
only SLRT2 would yield 99.2% recognition rate (cf. Table V), but it would only identify
30 of the 38 children with reading disorder (cf. Table III).

In the future this procedure will help in the diagnosis of reading disorders in children
as the system can also be used by lay persons with only little understanding of reading
disorders. This will simplify the clinical routine. Furthermore, screening of reading
disorders is also within the reach of the proposed system. In this manner, many school
children could be tested regularly for early intervention.

6. SUMMARY

In this article we present an automatic approach for the classification of reading disor-
ders based on automatic speech recognition and a prosody module. The evaluation is
performed on a standardized German reading capability test. To our knowledge such
a system has not been published before. The system is web-based and can be accessed
from any PC that is connected to the Internet.

Using a database with 120 children, a classification rate of 98.3% could be achieved.
The system is suitable for the automatic classification of reading disorders in clinical
practice.
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MAIER, A., SCHUSTER, M., BATLINER, A., NÖTH, E., AND NKENKE, E. 2007. Automatic scoring of the intelligibility
in patients with cancer of the oral cavity. In Proceedings of the 10th European Conference on Spoken
Language Processing, 1206–1209.

MAIER, A., SCHUSTER, M., EYSHOLDT, U., HADERLEIN, T., CINCAREK, T., STEIDL, S., BATLINER, A., WENHARDT, S.,
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