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Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of 

three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware 

has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing 

the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D 5 
reconstruction, noise induced streak artifacts are reduced as compared to processing in the image domain. 

Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D X-ray views acquired along a circular 

trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of 

structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was 

utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial 10 
frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, 

phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG 

Medical Solutions, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive 

filtering. A human observer study was carried out to evaluate low-contrast detectability. 

Results: The adaptive anisotropic filtering algorithm was found to significantly improve low contrast detectability by 15 
reducing the noise level by half (reduction of the standard deviation in certain areas from 74 HU to 30 HU). Virtually no 

degradation of high contrast spatial resolution was observed in the MTF analysis. Although the algorithm is computationally 

intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 

s to 150 s).  

Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the 20 
radiation dose required for obtaining 3D image data using cone beam CT. 
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I. INTRODUCTION 25 

The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data 

(3D), or C-arm CT, in the interventional suite [1][2][3]. However, image quality is still somewhat limited since the hardware has 

not been optimized for CT imaging. With the acquisition of an increasing number of projections to improve the contrast resolution 

of soft-tissue objects, it is essential to minimize the radiation dose delivered during a procedure. The same is true for many 

conventional CT examinations, with cardiac CT being one example where, despite many recent developments of dose reduction 30 

strategies, the radiation dose is still relatively high [4][5][6][7]. It is also not uncommon to acquire more than one C-arm CT scan 

during an intervention so that the progression of therapy can be monitored, further motivating dose reduction strategies. A number 

of different reconstruction filters are usually available that offer a selection of image characteristics[8]. Inevitably, these 

conventional shift invariant filters can only provide a fixed compromise between spatial resolution and noise reduction. 

Reconstruction using larger pixel sizes combined with a thick multi-planar reformatted (MPR) display will also reduce noise, but at 35 

the expense of fine details which are lost due to the inherent spatial averaging. Adaptive anisotropic filtering, on the other hand, has 

the ability to reduce the noise level and improve low-contrast detectability without noticeable blurring of small higher contrast 

spatial objects. However, most of these approaches neglect the effects of the projection noise in reconstruction domain.  

In this study, we have used 3D adaptive anisotropic filtering to reduce the noise level in X-ray projection data before performing 

tomographic image reconstruction. In our case, the projection data was acquired using a C-arm device equipped with a flat-panel 40 

detector (FD), but the same principles would also be applicable to conventional multidetector CT (MDCT) data. 

 

 

A. NOISE IN PROJECTION AND RECONSTRUCTION DOMAIN 

Noise in the projection domain may lead to complex structure in the reconstruction domain and makes noise-adaptive filtering in 45 

the reconstruction domain challenging [9]. The noise in the projection domain is mainly dependent on the number of detected 

photons in each detector element. This behavior is known to be distributed in a Poisson manner [10].  

 

       
  

  
                            (1) 

 50 

where P(n) is the probability of n occurrences of an event and κ   is the expected value of the distribution. 

Given a random process      which generates random numbers according to the Poisson distribution, the number of detected 

photons per detector element can hence be estimated by application of Lambert-Beer's Law 
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where s is the running index along an x-ray beam through the object with attenuation μ(η) at ray position η. 

 

 

Figure 1: Distribution of noise in the reconstruction domain is dependent on the geometry of the imaged object. While the upper image shows almost Gaussian noise 60 

as it is perfectly round, the lower image shows streaks in some areas of the reconstruction due to the inhomogeneous mass density distribution. 

 

This finding implies that the signal to noise ratio SNR is dependent on the number of observed photons: 

 

    
      

     
 

 

   
                            (3) 65 

 

Hence, the observed noise depends on the total amount of mass density through which the photon beam passed. This process makes 

the estimation of the noise distribution in reconstruction domain difficult as it depends on the geometry and the material properties 

of the object. In some areas of the reconstruction artificial noise patterns may emerge depending on the imaged object's geometry 

(cf. Figure 1). 70 
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Filtering in the projection domain has the advantage that noise is removed early in the pipeline inhibiting the propagation of noise 

into the reconstruction process, i.e. the assumption that the noise is distributed in a Poisson or Gaussian manner is still valid. This is 

especially important as some steps in the reconstruction process are known to worsen the noise properties of the reconstructed 

image [11].  

 75 

B. ANISOTROPIC AND ADAPTIVE FILTERING IN THE LITERATURE 

In the literature different uses of the terms "anisotropic" and "adaptive" are found. Weickert, for example, defines anisotropic 

diffusion as a process which alters the direction, i.e. the gradient, of a diffusion process [12]. This will be referred to as "anisotropic 

diffusion" in the following. Perona and Malik consider a process anisotropic if it is variant in either location or time [13]. In 

contrary to Weickert's definition, they would classify any location or time variant process as anisotropic. Only a location- and 80 

time-invariant process is referred to as isotropic. As these processes are adaptive to some kind of input data, this will hereafter be 

called "adaptive". However, if the Greek origin of the word "isotropic" from iso (equal) and tropos (direction) is considered, one 

may find yet another definition of the word "anisotropic". With this definition everything which is equal in all directions is 

isotropic, while anything which prefers a certain direction is anisotropic. Under this definition even a gradient computation in a 

certain direction is anisotropic. Hence, we will refer to processes which are identical in all spatial directions as "isotropic" and 85 

anything which is not uniform in all directions is called "anisotropic". Under this definition, both the filtering presented by Perona 

and Malik  [13] as well as the anisotropic diffusion filtering by Weickert  [12], are considered as anisotropic and adaptive. 

Different approaches have been proposed for adaptive filtering of CT projection data. The known statistical properties of the 

measured signal were utilized by Hsieh to apply smoothing between detector channels when the signal level is low [14]. Nonlinear 

filtering in the raw data domain was also investigated by Kachelrieß et al.[15]. They extended the filtering to utilize data from 90 

multiple detector rows and also successive views. Where the attenuation exceeded a specified threshold, the value was replaced 

with a result obtained by low-pass filtering within the three-dimensional neighborhood. By using all available dimensions, the 

filters could have a smaller extent while still gathering sufficient photon statistics, thereby improving spatial resolution compared 

to one-dimensional filtering. 

Another interesting approach to adaptive filtering utilizing raw data was presented by Borsdorf et al. [16]. Here, the set of 95 

projections was split into two disjoint sets which were each used to create a reconstruction. Wavelet analysis of both independent 

reconstructions was then used to identify noise and structure. Coefficients which describe structure should be correlated while 

noise should be uncorrelated. With this information both reconstructions were finally composed into a single filtered image. This 

method led to a significant reduction of noise in the resulting image. However, with the limited number of projection images in 

C-arm CT, this method is not well suited to our application, since the number of projections per reconstruction would be further 100 
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reduced by a factor of two. 

Modeling of the noise in CT projection data as a Gaussian distribution with a nonlinear signal-dependent variance has been 

investigated and penalized weighted least-square smoothing (PWLS) has also been used to suppress noise [17][18]. A similar 

approach using a Poisson-based cost function is presented in [19]. Although these approaches will utilize prior statistical 

knowledge to apply an appropriate amount of smoothing, the actual content in the acquired projection data is not taken into account 105 

when controlling the shape of the filters.  

Recently, anisotropic filtering in the raw data domain was also investigated by other groups. In [20] the PWLS algorithm was 

extended with an anisotropic controlling term which takes into account the difference in gray value of neighboring pixels to control 

the anisotropy of the filtering. A similar approach is also introduced in [21]. The paper proposed bilateral filtering in the raw 

projection data domain. Again the anisotropy is controlled by the gray value difference of pixels in a local neighborhood. Both 110 

approaches show significant noise reduction in the reconstructed image domain.  

In the reconstructed image domain, different approaches have been proposed to locally adapt filters to the orientation of structures 

in the image data. Perona and Malik developed a multiscale smoothing and edge detection scheme, mathematically formulated as 

an anisotropic process that effectively performed smoothing within regions while minimizing the blurring across edges [13]. This 

work was later extended to 3D by Gerig et al [22]. More recent enhancement filters are based on diffusion derived from the affine 115 

heat equation [23]. This approach yields implementations that are more numerically stable. A simulation study in 2D using 

nonlinear diffusion filtering of CT projection data was performed by Demirkaya [24]. It showed a substantial improvement in SNR 

without significant loss of image resolution. 

Image enhancement using anisotropic filters that are adaptively controlled by local image structures was introduced by Knutsson et 

al [25][26]. A set of orientation sensitive filters were used to estimate the local orientation of structures [27]. By utilizing the 120 

resulting orientation tensor field to control the anisotropy and degree of high pass filtering, smoothing could be achieved along 

structures while still maintaining the high spatial frequencies across edges [28]. This kind of adaptive anisotropic filtering has 

previously been applied to reconstructed MRI [29] and CT data [30] for noise reduction.  We extend and apply this approach in the 

projection domain and evaluate its efficacy.  

II. METHODS 125 

The acquired set of 2D projections is first stacked to a 3D volume. With the third dimension being the projection angle, the data set 

can be viewed as a 3D sinogram involving 2D X-ray projections that is processed by adaptive anisotropic filtering prior to 

tomographic image reconstruction.   
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A. ADAPTIVE ANISOTROPIC FILTERING USING THE STRUCTURE TENSOR 

The adaptive anisotropic filtering used in this study consists of the main steps depicted in Figure 2. The input of the algorithm is a 130 

3D volume. First, the local orientation of structures in the input data is estimated using a set of six differently oriented filters (cf. 

Eq. 4). This results in an  orientation estimate tensor for each voxel. After relaxation of the orientation estimate has been performed 

using a low-pass filter (cf. Eq. A.5 in the Appendix), the relaxed tensor is used to control the amount and directionality of the 

high-pass filtering (Eq. 5&6). In addition to the anisotropic high-pass component, an isotropic low-pass component of the original 

data is also included (Eq. A.6). A mapping function (cf. Eq. 7) is used to combine the high-pass and low-pass components, based on 135 

the amount of structure detected at every location.   

  

 

 

Figure 2 Block diagram showing the basic principle of the adaptive anisotropic filtering. The input is the stack of acquired projection data and the output can be 140 

reconstructed using any desired CT reconstruction algorithm. 

 

By algorithm design, the sum of the low-pass and high-pass contributions will preserve all spatial frequencies orthogonal to 

estimated structures. In directions parallel to structures and in regions with no apparent structure, only the low frequency 

information is maintained, resulting in a suppression of noise. These steps are described in more detail below. After adaptive 145 

filtering, the projection data are used for 3D image reconstruction using any tomographic image reconstruction algorithm. 

 

 

1. Orientation estimation 

The orientation estimation is based on a local estimate of the directionality in the image. This kind of orientation analysis tensor is 150 

often referred to as structure tensor in the literature [12]. In principle all structure tensors    are of the form           where   

is an arbitrary constant and    is the vector pointing in the direction of the maximal signal variation [31]. 
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We base the orientation estimation on quadrature filters. These filters are zero over one half of their frequency representation and 

their spatial representation is complex valued [31]. In order to obtain a description of the local orientation in every neighborhood in 

the input data, a set of six differently oriented 3D quadrature filters is applied [32][33]. We chose six over three directional filters as 155 

the angular sampling is improved with an increasing number of filters. The directions and angular dependence of the filters are 

chosen so that a rotationally invariant response is obtained, i.e. all possible orientations in 3D space are detected equally well. The 

radial and angular characteristics of these filters are described in detail in Appendix A. At every location       of the volume 

        , the responses from each of these quadrature filters,         
 , are combined into a tensor representation,      

     , according to 160 

 

                 
 
   ,       (4) 

 

where                              

 165 

                             ,                  

          
    ,         

 

      is the filter response of quadrature filter  ,    is the orientation tensor in direction  ,    and     denote the Fourier 

transform and its inverse,        the spatial frequency in Fourier domain,       
  is the direction of filter  ,        is the 170 

identity tensor,   is  
 

 
 for 2D and 

 

 
 for 3D and   is  

 

 
 for 2D and  

 

 
 for 3D [31].              

  is defined in the Appendix (cf. Eq. 

A.1).  

 

2. Relaxation 

Even in data containing sharp edges, the orientation of these structures are assumed to vary smoothly within the 3D sinogram 175 

space. To get a stable local orientation estimate of the tensor field obtained using Eq. 4, a subsequent low-pass filtering step or 

relaxation process is performed (based on the frequency representation in Eq. A.5). The result is denoted as       . The   -norm 

of this tensor,         , corresponds to the total amount of structure detected, while their eigenvalues and eigenvectors represent 

the degree and directionality of anisotropy. 

 180 
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3. Anisotropic high-pass filtering 

Based on a set of six differently oriented high-pass (HP) filters,         (based on the frequency representation in Eq. A.7), a new 

spatially dependent HP filter        can be created with the desired characteristics. 

 

                     
 
          (5) 185 

 

The directionality and anisotropy are locally controlled by the relaxed orientation tensor estimate normalized by its largest 

eigenvalue   ,         
      

   
, according to 

 

           
   

 
       

         
   

,        (6) 190 

 

where     
       and   

   
 are the i-th and j-th element of the tensors         and     respectively. 

 

The individual HP filters are shown in Figure 3. 

 195 

 

 

Figure 3 The six differently oriented high pass filters (a-f) depicted as iso-surfaces in the Fourier domain. The responses from these filters are combined based on 

the low pass filtered and normalized orientation tensors in order to preserve only the high frequency components that are perpendicular to structures. 

 200 

4. Isotropic low-pass filtering 

An isotropic low-pass (LP) filter,       , is applied in order to obtain a uniformly smoothed data set that will have a reduced noise 

level compared to the original data (cf. Appendix). The low-pass filter is designed to maintain the local mean value in every 
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neighborhood. 

 205 

 

 

Figure 4 Two examples of mapping functions that can be used to control the anisotropic high pass contribution based on the norm of the low-pass filtered 

orientation tensor. The upper curve represents a mapping that will amplify high spatial frequencies. When the lower curve is used, high spatial frequencies are 

merely preserved where structures are detected. When the orientation filter response           is low, 20% or 0% of the high frequencies is maintained in these two 210 

examples respectively. 

 

5. Mapping function 

A mapping function,             (cf. Eq. A.8),  is used to control the amount of anisotropic high pass filtering that is added to the 

low-pass filtered data, based on the norm of the relaxed orientation data. 215 

 

                                                  (7) 

 

Two examples of simple mapping functions are shown in Fig 3. Where the local orientation estimate indicates that a structure is 

present (          is high), the mapping function will ensure that the high frequency content is preserved. If desired, the mapping 220 

function can also be designed so that the high frequencies are not only maintained, but amplified across edges (upper curve). This 

will result in an image that appears sharper than the original but maintains noise suppression in homogeneous regions. 

 

6. Implementation 

Implementation was done in Java using JTransforms for the fast Fourier transform on CPU and JCUDA for implementation on a 225 

graphics card. Computations were performed on a Linux server with four 2.0 GHz Intel Xeon cores. The server was also equipped 

with an Nvidia Tesla card with 240 CUDA-cores and 4 GB of graphics memory (cost of about $1200).  
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In order to avoid edge effects due to discontinuities caused by circular convolution, the data along all edges (at least 16 voxels) 

were mirrored to expand the 3D volume. These voxels were removed subsequent to filtering. In the current implementation, the 

filtering is performed in the Fourier domain. A new filter is not explicitly computed for every location in the 3D data set. Instead, 230 

the input data are filtered using the LP and all six HP filters. The filter responses are subsequently combined according to the 

obtained control tensors.  

Computation in this straight-forward manner on a standard PC may take up to several hours and may depending on the 

implementation require memory of up to 24 times the size of the actual projection data to be filtered depending on the accuracy of 

the floating point operations. This is not feasible for an implementation on a graphics card. Even the latest cards only feature a 235 

memory of up to 4 GB. This is still too limited for a high resolution C-arm CT scan.  Hence, we divided the problem into smaller 

blocks of equal size along the z-axis of the projection stack. Blocks were composed of 8, 16, or 32 projections before and after the 

center projection of the respective block. 

 

B.  ADAPTIVE ANISOTROPIC FILTERING USING THE BILATERAL FILTER 240 

2-D Bilateral filtering was implemented as described in [34]. We chose to implement the filter without any additional 

modifications to decrease runtime as we were interested in maximal image quality. The adjustable parameters of the 

implementation were photometric and geometric standard deviation and the filter kernel size. 

 

 245 

Table 1: Overview on the different acquisition protocols.  

protocol sweeps frames detector matrix reconstruction volume kVp dose 

#1 (simulation) 1 x 360°  800 512 x 512  

1 x 1mm 

512 x 512 

0.5 x 0.5 mm 

- - 

#2 (MTF, Catphan® ) 1 x 197°  494 1240 x 960 

0.31 x 0.31 mm 

512 x 512 x 512 

0.1 x 0.1 x 0.1 mm 

109 kVp 1.20 μGy/pulse 

#3 (high-dose, 

Catphan® ) 

1 x 198°  395 616 x 480 

0.62 x 0.62 mm 

512 x 512 x 512 

0.41 x 0.41 x 0.41 mm 

109 kVp 1.20 μGy/pulse 

#4 (low-dose, 

Catphan® ) 

1 x 198°  395 616 x 480 

0.62 x 0.62 mm 

512 x 512 x 512 

0.41 x 0.41 x 0.41 mm 

109 kVp 0.36 μGy/pulse 

#5 (CUDA, Catphan® ) 1 x 191°  191 616 x 480 

0.62 x 0.62 mm 

512 x 512 x 512 

0.41 x 0.41 x 0.41 mm 

125 kVp 0.81 μGy/pulse 

#6 (pig, cardiac) 4 x 198°   4 x 248 616 x 480 

0.62 x 0.62 mm 

512 x 512 x 512 

0.41 x 0.41 x 0.41 mm 

125 kVp 0.17 μGy/pulse 

#7 (human, cardiac) 4 x 191° 4 x 191 616 x 480 

0.62 x 0.62 mm 

512 x 512 x 512 

0.41 x 0.41 x 0.41 mm 

  90 kVp 0.54 μGy/pulse 
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C. EVALUATION 

 The evaluation of our proposed method covers the range from numerical simulation, to phantom experiments, and finally in-vivo 

applications. 

1. Numerical Simulation 

Simulated data sets of the phantoms depicted in Figure 5 were generated according to protocol #1 (cf. Table 1). Poisson distributed 250 

noise (cf. Eq. 2) corresponding to a low-dose exposure of 30000 photons per ray was added to the projection data. The resulting 3D 

stack comprising all 2D projections was filtered, but only the central slice was reconstructed using a  2D FBP algorithm. Noise 

levels were compared for both phantoms and the central bead in Phantom B was used to estimate the spatial resolution by 

calculating the modulation transfer function (MTF). A large number of profiles at different angles through the bead were extracted 

by linear interpolation within the 2D plane and the Fourier transform was computed separately for each profile. The magnitude of 255 

each transformed profile was calculated to get the MTFs which were subsequently averaged to improve the estimate. The finite size 

of the bead (2x2 pixels) was compensated for by normalizing with the ideal MTF. 

 

 

 260 

Figure 5 The two phantoms used for numerical simulation. Phantom A is a uniform cylinder of 1000 HU. Phantom B displays a more heterogeneous geometry with 

two bone-like high contrast insets and three small beads which are embedded in between.  

 

 2. Phantom Experiments 

C-arm CT data were obtained using an AXIOM Artis dTA angiography system, software version VB30 (Siemens AG Medical 265 

Solutions, Forchheim, Germany). The original and filtered projection data were reconstructed using a Feldkamp cone beam 

reconstruction algorithm with additional correction algorithms for scatter, beam hardening, and truncation artifacts (DynaCT, 

Siemens AG Medical Solutions, Forchheim, Germany) [2]. 

For evaluation of spatial resolution, noise level and low contrast detectability, data were obtained using the Catphan®  600 phantom 
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similar to the results presented in [35]. In order to assess spatial resolution, one of the embedded beads was used to estimate the 270 

MTF. Acquisition was performed according to protocol #2 (cf. Table 1) with a CTDIw of 80 mGy. Data along lines passing through 

the bead at 3600 different angles were extracted using tri-linear interpolation to obtain the point spread function (PSF), which was 

subsequently Fourier transformed in order to estimate the MTF. The finite size of the bead (0.28 mm) was compensated for by 

normalizing with the ideal MTF. A weighted average of the MTFs from the different lines in 3D was calculated in order to assess 

the spatial resolution along each axis separately. The angular weighting function used was cos
2
(θ), where θ is the angle between 275 

each extracted line and the axis of interest. 

Low contrast resolution was assessed in a detectability study. Twelve observers read four different images (high dose, high 

dose+filtering, low dose and low dose+filtering) obtained using the low-contrast module of the Catphan®  phantom. Each observer 

read the images on the same monitor under the same controlled viewing conditions. Only targets at the 1.0% nominal contrast level 

were scored, and observers were asked to determine the number of objects visible to them. For the low contrast detectability study, 280 

a high-dose scan was performed according to protocol #3  (CTDIw 60 mGy) and compared to a low-dose scan according to 

protocol #4 (CTDIw 18 mGy). The reconstruction kernel was a modified Shepp-Logan filter available as the system standard 

(“normal”). An axial slice through the low contrast section of the phantom was extracted. The display window center was adjusted 

such that its center value coincided with the mean background value, and the display window width was fixed at 100 HU. 

Signal-difference-to-noise ratio (SDNR) measurements were performed on the same images using the largest 1.0% contrast target 285 

with an equally sized background region at the same radius in the phantom. SDNR was calculated as: 

 

     
     

  
                      (8) 

 

where Sa and Sb are the mean signal intensities in the object and background, respectively, and σb is the standard deviation in the 290 

background. 

We also investigated the algorithm's runtime on phantom data. We processed a four-second C-arm acquisition according to 

protocol #5 in these experiments since the processing of the data set completely fits into the memory of the reconstruction server. In 

order to show that the decomposition of the problem into multiple smaller problems does not affect the filtering, we inspected the 

outcome of the processing with respect to different block sizes. We investigated the MTF at a high frequency edge using an inset of 295 

the phantom and the standard deviation of three different homogeneous areas (at -830, 270 and 760 HU), since the algorithm's 

accuracy may be affected by numerical inaccuracies, a known potential limitation when using graphics hardware. 
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 3. In-vivo Application 

Cardiac C-arm CT data were obtained in a porcine model using the AXIOM Artis dTA angiography system (Siemens AG Medical 300 

Solutions, Forchheim, Germany). The following procedure was performed on a 41-kg female pig according to a protocol approved 

by Stanford University’s Institutional Animal Care and Use Committee.  First, the animal was sedated and intubated, placed on a 

ventilator and a 10-F sheath was inserted into the femoral vein. General anesthesia was maintained using isoflurane gas. Vitals 

were monitored throughout the procedure, and the cardiac rate was stable at ~93 bpm. A pigtail catheter was then placed proximal 

to the femoral vein bifurcation. Data were acquired with contrast (282 mg/ml Iodine, Conray) diluted to 50% strength, an injection 305 

rate of 4.5 ml/s for a total volume of 180 ml. The contrast injection started 10 s prior to data acquisition to allow uniform 

opacification within the heart chambers. Four alternating forward and backward sweeps were performed over 198 degrees, with the 

start of each sweep synchronized to the ECG in order to ensure an adequate sampling of the projection angle – cardiac phase space 

[36]. Breathing was suspended throughout the image acquisition period. Acquisition was performed as listed in protocol #6. For 

adaptive filtering, the complete set of 4×248=992 projections was processed as one single 3D data set (comprising 616×480×992 310 

voxels). In order to minimize edge effects due to circular convolution, the data along the edges were first mirrored extending the 

data to a size of 768×512×1024 voxels. In order to reconstruct a specific cardiac phase after the adaptive filtering, nearest neighbor 

interpolation in the temporal domain was used to extract the projection data closest in time to a specific cardiac phase for all 

projection angles in both the original and filtered data sets.  

Cardiac C-arm CT data were also obtained in a healthy volunteer during a single breath-hold using a similar imaging protocol. 315 

Intravenous injection of Visipaque 320 diluted to 50% was simultaneously performed into both the left (3.0 ml/s) and right 

(4.0ml/s) arms. Four alternating forward and backward sweeps were performed, each with a duration of four seconds, according to 

protocol #7. Adaptive filtering was performed using a mapping function that amplified the high spatial frequencies (see Figure 4). 

Subsequent to filtering of the projection data, multiple cardiac phases were retrospectively reconstructed based on the recorded 

ECG timing information. Volume rendering was performed using the InSpace tab card on a Siemens Leonardo workstation 320 

(Siemens AG Medical Solutions, Forchheim, Germany). The study was approved by Stanford University’s Institutional Review 

Board and informed patient consent was obtained.  
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Figure 6 In-plane modulation transfer functions (MTFs) estimated in the numerical phantom. There is no significant different in the MTFs. There is no loss of 

resolution in either of the methods. 325 

 

 

III. RESULTS 

A.  NUMERICAL SIMULATION 

In the numerical simulation, we chose to compare noiseless reconstruction, a reconstruction with simulated Poisson noise (cf. 330 

Section II.B.1), our proposed method based on anisotropic filtering in the projection domain, and a bilateral filter in reconstruction 

domain. 

The in-plane MTFs calculated based on the central bead in Phantom B are presented in Figure 6, showing no degradation in spatial 

resolution after adaptive or bilateral filtering. Both filtering methods are equally edge-preserving. 

For both numerical phantoms (A & B), the noise levels were measured in the homogenous regions indicated in Figure 1. Table 2 335 

reports results for the comparison between reconstruction without noise, reconstruction with Poisson noise, our proposed method, 

and a bilateral filter applied in reconstruction domain. A standard deviation (SD) of 2.7 to 4.9 HU was still observed in the slice 

reconstructed from noise free projection data due to minor reconstruction artifacts. With noise added to the projection data, the SD 

in the reconstructed image was 51.9 to 65.8 HU. Note that the most noise is observed in the center as the attenuation is highest in 

this region. In order to perform a fair comparison between our method and the bilateral filter applied in the reconstruction domain, 340 

both filters were adjusted in such a manner that the off-center noise level is the same. As the quantitative results show, the structure 

tensor-based method is more efficient at the reduction of the noise in the center of the image. 
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 345 

Figure 7 Detail view of Phantom B reconstructed based on noise free (a), noisy (b), structure tensor (ST) filtered projection data (c), and bilateral filtering in 

reconstruction domain (d). In the images reconstructed from the noisy data, horizontal streak artifacts can be seen. These structured artifacts are reduced in the ST 

filtered data. Bilateral filtering is not able to suppress these artifacts as well as the ST-based method. Some of the streaks are interpreted as structure and remain even 

in the filtered image at the position indicated by the arrow. (Window [-50, 50] HU)  

 350 

Table 2: Results of the evaluation of homogenous regions. Image reconstruction in the given setting causes a noise of 2.7 to 5.0 HU. Structure tensor (ST) filter and 

bilateral filter were adjusted to give the same performance in the center region for better comparison. 

Standard deviation [HU] Phantom A Phantom B 

center off-center center off-center 

No noise 2.7 3.6 4.9 4.0 

Poisson noise 58.3 51.9 63.6 41.1 

ST projection Filtering 30.1 17.0 20.8 10.7 

Bilateral reconstruction 

filtering 

32.2 16.8 29.2 10.7 

 

An examination of Figure 7 underscores the susceptibility of the bilateral filter to structured noise; the structure in the noise is 

misinterpreted as sensible structure and therefore not filtered. On the other hand, the structure tensor (ST)-based method is able to 355 

create much more uniform noise patterns, inhibiting the generation of noise-generated streaks by filtering before reconstruction.  

 

B.  PHANTOM EXPERIMENTS 

The modulation transfer function estimated from the bead in the Catphan phantom showed almost no reduction in spatial resolution 

after adaptive filtering (see Figure 8). The spatial resolution at 10% MTF was 1.4, 1.4 and 1.5 cycles/mm in the x, y and z 360 

directions, respectively, both with and without filtering. The standard deviation in the homogeneous three-dimensional region 
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surrounding the bead had a standard deviation of 35 HU in the original data set, which was reduced to 15 HU after filtering. The 

non-filtered data set was also reconstructed using two alternative reconstruction kernels, instead of the “normal” kernel. By using a 

“smooth” kernel, the standard deviation was reduced to 13, but at the expense of a severe reduction in spatial resolution (10% MTF 

at 0.8, 0.8 and 0.9 cycles/mm in x, y and z). The “sharp” kernel preserves more of the high spatial frequencies (10% MTF at 1.7, 1.7 365 

and 1.8 cycles/mm in x, y and z), but resulted in a standard deviation of 78 in the homogeneous area. 

 

 

Figure 8 Modulation transfer functions estimated along each of the in-plane axes x and y and the axial direction z based on images of the bead embedded in the 

Catphan phantom. The solid black line is the MTF using the “normal” reconstruction kernel. The lower and higher gray lines correspond to the “smooth” and 370 

“sharp” kernels, while the dotted black lines are the MTFs using adaptive filtering and the “normal” kernel.  
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Figure 9 The low contrast module in the Catphan phantom imaged using a high (a) and low (c) dose. Images reconstructed using the same projection data 375 

subsequent to adaptive filtering are shown in (b) and (d).  

 

 

 

Figure 10 Number of objects detected by the observers in the images shown in the previous figure. The black and gray bars correspond to grading of the images 380 

reconstructed based on the original and filtered data, respectively. The error bars correspond to one standard deviation. 
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Figure 11 Noise levels (denoted as standard deviation in HU) are clearly reduced in the uniform areas of the image (measured at -830, 270, and 760 HU). 385 

 

 

Figure 12 The modulation transfer function is in the same range for all problem subdivisions. 

 

The low contrast detectability was significantly improved by applying adaptive filtering.  Figure 9 shows the four images used for 390 

grading (high and low dose data, with and without adaptive filtering). The bar graph in Figure 10 illustrates the number of objects 

detected by the 12 observers. In the high dose data, an improvement from 3.9±1.7 to 7.2±0.4 detectable objects was achieved 

(p<0.00001) and from 0.1±0.3 to 3.2±1.2 in the low dose data (p<0.00001). The corresponding SDNR measurements in the same 

phantom images were 0.54 (high dose), 1.56 (high dose+filtering), 0.25 (low dose) and 0.76 (low dose+filtering); an improvement 

by a factor of three after adaptive filtering. 395 

Division of the filtering problem into different block sizes did not produce any differences with respect to noise and resolution. The 

noise in uniform areas is reduced drastically when compared to the reconstruction without any noise filtering (Figure 10). The 

MTFs remain in the same range as the MTF of the unfiltered reconstruction (Figure 11).  

Since the filtering is independent of the size of processing blocks the speed-up by hardware acceleration on a graphics card was 

investigated. Runtime evaluations were performed with a context size of 32 projections. The parallel four-core implementation on 400 

the server's CPU processed the data set in 1336 s. Computation of the Fourier transforms required in the adaptive noise filter on the 

graphics card provided a reasonable speed-up of 2.2 to a runtime of 601 s. With a complete implementation of the adaptive noise 

filter in CUDA, we further reduced the computation time to only 150 s. This corresponds to a 8.9-fold speed-up, and renders the 

approach clinically viable. 
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C.  IN-VIVO APPLICATION 

Cardiac C-arm CT images obtained in the porcine model are shown in Figure 13. Three-dimensional image volumes were 

reconstructed using projection data corresponding to a diastolic phase (80% of the cardiac cycle). By applying adaptive filtering to 

the projection data prior to retrospective cardiac gating and image reconstruction, the noise level was reduced. The gray value mean 

± standard deviation in regions defined in the images in Figure 13a and Figure 13d were 229±58 and 230±32 in the left ventricular 410 

cavity (without and with filtering), and 64±62 and 62±36 in the ventricular septum. This corresponds to an improvement in the 

SDNR between blood and myocardium from 2.9 to 5.3.  

 

Figure 13 In-vivo data from the porcine study. The top row (a-c) shows three orthogonal views of the heart from a low dose cardiac C-arm CT acquisition. The 

images in the bottom row are reconstructed based on filtered projection data. 415 

 

 

Figure 14 Human cardiac C-arm CT data without and with adaptive filtering. In the anisotropic filtering shown on the right, the high frequency contribution was 

amplified in order to improve the visualization of the smaller vessels 

 420 

Increasing the high frequency content will sharpen the contours of small structures (see Figure 14). It does, however, require the 

adaptive control so that only regions with an apparent structure are enhanced. If the high frequency content was amplified equally 

in all regions, noise would be increased. The anisotropic nature of the filters also ensures that the high pass filtering only occurs 

across structures, while smoothing along structures reduces the noise level. 

 425 
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IV. DISCUSSION 

Anisotropic adaptive filtering achieves a substantial reduction of noise while maintaining high spatial resolution. An advantage of 

filtering early in the reconstruction pipeline, i.e. in the raw data domain, is that noise induced streak artifacts are reduced. This was 

observed clearly in the numerical simulation. Since C-Arm data did not contain many high contrast insets, the noise induced streak 

artifacts were not very prominent in the C-arm CT data, and so even at low dose, anisotropic filtering had little to improve upon. 430 

Yet a dramatic reduction of the noise level could still be seen in both in the phantom data and in-vivo examples.  

In the detectability study, the reduction of noise due to anisotropic filtering improved detectability of low contrast objects so much 

that a better performance was obtained even when dose was reduced by a factor of three. In particular, with twelve observers, no 

significant difference could be seen between the unfiltered high dose (HD) and the filtered low dose (LD) data. The SDNR for the 

filtered LD data (0.76) was even slightly higher than for the unfiltered HD data (0.54), while the latter required an X-ray dose that 435 

was more than three times higher. Note that this increase in detectability was achieved without loss of high-contrast resolution as 

would have been the case when using an isotropic low pass filter. 

The 3D filtering approach used in this study takes advantage of the measured signal within every three-dimensional neighborhood 

in projection space. In this way, filters with a narrow radius can be used while still obtaining good statistical measures. In the case 

of time-resolved 3D (4D) cardiac imaging, additional benefits could be achieved if the adaptive filtering was performed using all 440 

available dimensions. For example, if the projection angle, α, and cardiac phase, t, are considered to be two separate dimensions, 

the acquired projection data will be distributed in 4D (x,y,α,t). The sampling pattern will, however, not be equidistant along the 

cardiac time axis which will make the implementation more challenging. With the relatively low temporal resolution currently 

achieved in both conventional and C-arm cardiac CT, the correlation between projections acquired at different cardiac phases will 

also be relatively low. 445 

If the raw projection data is filtered too early in the reconstruction pipeline, inconsistencies propagate into the reconstruction. For 

example, a difference in gain and/or offset between adjacent detector elements will result in ring artifacts in a reconstructed CT 

image. When performing adaptive filtering on the projection data, it is essential to compensate for any inhomogeneities in the 

detector sensitivity prior to filtering. Otherwise, the gain differences in the three-dimensional sinogram domain might be further 

enhanced by adaptive filtering. Another example of this effect is seen if filtering is applied before correction for the automatic 450 

exposure control function of the C-arm system. Hence computation of the filter after I0 normalization is recommended. 

As outlined in the introduction, many authors have presented other anisotropic filtering algorithms. Comparison of the 

performance of this broad variety of different anisotropic filtering algorithms, however, is difficult. Each of these algorithms has a 

unique parameterization which has to be carefully adjusted. Often parameters are dependent on the range of values of the input data 

and are tweaked to optimize the image quality for the presented data sets. In our method, we alleviate this problem by 455 
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normalization of the tensors, which helps to separate the parameterization from the input data. However, a few parameters must 

still be chosen manually in order to optimize the image quality for a given task domain. To allow a fair comparison between the 

different anisotropic filtering methods a specific target domain and a representative collection of test cases must be defined. We 

tried to do this in the numerical study, but we are aware that even this comparison is not comprehensive. Eventually, fair 

comparisons will only be possible if common implementations of algorithms are shared with the scientific community. For this 460 

reason, we are currently developing an open-source framework which will allow comparison of this algorithm and other 

algorithms, with appropriate evaluation methods and test cases. 

Since the adaptive filtering is a shift-variant process it is likely that further improvements could be obtained by filtering the data 

both before and after image reconstruction. Noise will be reduced by analyzing neighborhoods in both the raw data and the image 

domains independently. This possibility will also be further investigated. 465 

 

V. CONCLUSION 

Adaptive anisotropic filtering can reduce the noise level of an image without introducing noticeable blurring. As a consequence, 

this technique has the potential to substantially lower the radiation dose requirements for 2D X-ray projections used for 3D 

tomographic image reconstruction. When radiation dose was within recommended levels, adaptive anisotropic filtering was found 470 

to significantly improve low contrast detectability. Furthermore, we have demonstrated that computationally expensive adaptive 

noise filters can also be computed within the time constraints of the interventional suite using hardware acceleration. 

APPENDIX 

This appendix gives a more detailed description of all filters used in the adaptive filtering algorithm. The quadrature filters 

           used for estimation of local orientation are spherically separable, i.e. they can be described by one radial function      475 

and one directional function      as 

 

                    ,                   (A.1) 

 

where   is the coordinate in Fourier space, and      . The radial function used in this work is a lognormal function: 480 

 

      
 

 

        
         

                   (A.2) 
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       is the center frequency and     the relative bandwidth of the filters. The angular dependence of quadrature filter       

is described by 485 

 

       
                
     

 

    

               (A.3) 

 

The directions in 3D space of the six filters are 

 490 

                                                        

                                                        (A.4) 

                                                        

 

where                   
 

       
. 495 

 

A Gaussian low pass filter          , with α =1.0 was used to regularize each tensor component of the orientation estimate. 

 

             
                             (A.5) 
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The spatial frequency characteristics of the isotropic low-pass filter        used in the final filtering is given by 

 

         
    

  

    
                  

                                                     

                    (A.6) 

 

 505 

and for the anisotropic high pass filters by 

 

                          
                    (A.7) 

 

The value 1.5 was used as a cut-off frequency     between the LP and HP filters and the directions      are the same as in A.4. 510 

The sigmoid function α(x) which is applied in the mapping function is given by 
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where         defines the slope of the sigmoid,                   are the high and low input levels, and                     are the 

high and low output levels.  
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