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ABSTRACT

We present a self-assessing image-based motion compensa-

tion method for coronary roadmapping in fluoroscopic im-

ages. Extending our previous work on respiratory motion

compensation, we introduce kernel-based nonparametric data

analysis in this work to better characterize the objective func-

tion involved in motion estimation, which leads to two new

improvements in motion compensation. First, through mode

analysis we are able to capture the dominant component of the

respiratory image motion and increase the chance of finding

the global optimum. Second, an information theoretic mea-

sure is proposed to assess the uncertainty of the motion esti-

mation and automatically detect unreliable motion estimates.

The benefits of the proposed method are shown through eval-

uations performed on real clinical data from different proce-

dures of percutaneous coronary interventions.

Index Terms— Image Motion Compensation, Uncer-

tainty Analysis, Fluoroscopic Angiography, Image Guidance,

Coronary Roadmapping

1. INTRODUCTION

As the primary imaging modality for cardiac intervention,

live X-ray fluoroscopy is widely used in percutaneous coro-

nary intervention (PCI) procedures, for instance, for directing

guidewires, placing stents and crossing chronic total occlu-

sions (CTO). Dynamic coronary roadmapping [1] and mul-

timodality image fusion [2] are important techniques devel-

oped to provide advanced imaging guidance, where 2D or 3D

vessel roadmaps acquired from fluoroscopic, CT or MR an-

giography are superimposed on live fluoroscopy for real-time

guidance. In both cases, reliable motion compensation is crit-

ical for dynamically moving 2D or 3D coronary roadmaps to

properly match live fluoroscopy.

To deal with cardiac motion, ECG gating is commonly

used to synchronize live images with corresponding roadmaps

at approximately the same cardiac phases. In contrast, respi-

ratory motion is less reproducible and drawbacks are asso-

ciated with respiratory gating [3]. The effect of respiration

on the heart and coronary arteries as well as representing mo-

tion models have been investigated in earlier studies involving

volumetric and biplane data [3, 4, 5]. It remains a challeng-

ing issue to compensate breathing motion in live fluoroscopy,

which consists of transparent layers of static bone tissues and

moving soft tissues as well as contrast-filled vessels and de-

vices. In a previous work [6], Zhu et al. introduced a method

to identify static structures from fluoro images over a cardiac

cycle, which allowed the image information of soft tissues

to be separated and used for respiratory motion estimation.

However, the gradient-based approach adopted by [6] remains

susceptible to the local optimum problem when the matching

function exhibits multiple local optima. In this paper, we ex-

tend the work of [6] and make two new contributions. First,

through sampling of the motion parameter space and intro-

ducing nonparametric data analysis techniques, we are able

to identify the dominant component of the respiratory motion

to overcome the local optimum problem. Second, we pro-

pose a new entropy-based measure to assess the uncertainty

of motion estimation and automatically detect unreliable mo-

tion estimates.

2. METHODS

2.1. Problem Formulation

Different motion models including translation, rigid body and

affine transformation have been studied in earlier works [4, 3,

5] to characterize the respiratory motion effect on the heart.

Denote a reference image as IR(x) and an incoming image

with approximately the same cardiac phase acquired at time

t as It(x). The problem is to estimate the soft tissue motion

W (x, P ) of the heart under breathing between IR and It with

parameters P . This is formulated as an optimization problem

in our previous work [6],

P = argmax
∑

x

κt(x)κR(W (x;P ))f(It(x), IR(W (x, P )))

(1)

where κR and κt : IR2 → [0, 1] are weighting functions intro-

duced to exclude the areas with contrast wash-in and wash-out

between IR and It as well as to suppress static image struc-

tures in motion estimation. Details on how to calculate κR

and κt are provided in [6]. The weights deal with static struc-

tures such as spines, surgical devices, etc.. Ribs are moving
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structures during breathing. In cases where their projected

image motion is negligible, the proposed method can still be

applied. Nevertheless, how to handle multiple moving struc-

tures remains an open issue in general.

Sum of squared difference (SSD) is used in [6] to define

the matching function f . To be more robust to changes of

image contrast caused by varying acquisition conditions, the

weighted normalized cross correlation (WNCC) is adopted

here as the objective function.

P = argmax fwncc(P ) (2)

fwncc(P ) = covw(It(x),IR(W (x;P )))√
varw(It(x))varw(IR(W (x;P )))

where covw(It(x), IR(W (x;P ))) = Ew[It(x)IR(W (x;P ))]
−Ew[It(x)]Ew[IR(W (x;P ))] is the weighted covariance

between It(x) and IR(W (x;P )), varw(It(x)) = Ew[It(x)2]−
(Ew[It(x)])2 and varw(IR(W (x; P ))) = Ew[IR(W (x; P ))2]
−(Ew[IR(W (x; P ))])2 are the weighted variances of It(x)
and IR(W (x;P )) respectively with Ew[It(x)IR(W (x;P ))] =
1
K

∑
x κt(x)κR(W (x; P ))It(x)IR(W (x; P )), Ew[It(x)] =∑

x κt(x)It(x)∑
x κt(x) , Ew[IR(W (x; P ))] =

∑
x κR(W (x;P ))IR(W (x;P ))∑

x κR(W (x;P )) ,

and K =
∑

x κ(x)κ(W (x;P )).

2.2. Global Optimization through Kernel-based Non-
parametric Data Analysis

The gradient descend algorithm used in [6] is susceptible to

the local optimum problem. When the objective function has

multiple local optima, the algorithm is not guaranteed to con-

verge to the global optimum. To overcome this limitation, we

apply the nonparametric data analysis technique [7] to charac-

terize the objective function fwncc in the parameter space and

identify the global optimum among multiple local optima.

Nonparametric data analysis is widely used in data mining

and computer vision to effectively analyze complex data dis-

tributions with multiple modes. To apply this technique to op-

timization, we first perform sparse sampling in the parameter

space and obtain an approximation of the objective function

fwncc using kernel approximation. Assume that {p1, · · · , pn}
are a set of sparse samples in the parameter space with func-

tion values {fwncc(p1), · · · , fwncc(pn)}. An approximation

of fwncc is obtained using the kernel density approximation

technique developed in [8].

f̃wncc(P ) =
n∑

i=1

wiK(P ; pi, σ
2
s) (wi ≥ 0) (3)

A common choice for K(·) is the Gaussian kernel K(P ; pi, σ
2
s)

= exp(−||P−pi||2/(2σ2
s))

(2πσ2
s)dim(P )/2 defined by its center pi and band-

width σs. The non-negative weights wi are determined

by minimizing the sum of squared differences between

{f̃wncc(pi)} and {fwncc(pi)}. This leads to a non-negative

least squares problem for which an efficient solver is provided

by [9]. Essentially, f̃wncc is a smoothed version of fwncc [7].

The well-known mean shift algorithm [10] is applied to find

all the modes, i.e. local maxima, of f̃wncc, which are denoted

as {m1, · · · ,mM}. In the second step, dense sampling is per-

formed in the local neighborhood N(mi) around each mode

mi and function values {fwncc(pi,1), · · · , fwncc(pi,ni)}
are computed and normalized over the dense sample set

{pi,1, · · · , pi,ni
},

f̄(pi,j) = max {0, fwncc(pi,j) − fm,i + 0.1} (4)

where fm,i = max {fwncc(pi,j) : j = 1, · · · , ni}. For each

mode mi, an improved local approximation f̂i(P )|P∈N(mi)

is obtained from the normalized function values {f̄(pi,j)} at

the dense samples {pi,j} through kernel approximation.

f̂i(P ) =
ni∑

j=1

ŵjK(P ; pi,j , σ
2
d) (ŵj ≥ 0) (5)

The mean shift algorithm is used to locate the mode m̂i of

the improved local approximation f̂i. Finally, the mode with

the highest function value is returned as the global optimum,

mopt = mi∗ , where i∗ = argmax fwncc(m̂i). The normal-

ization of {f̄(pi,j)} is necessary to make the confidence mea-

sure proposed in the next subsection comparable. In addition,

by suppressing the function value for P away from the local

mode, the kernel approximation is able to focus on a close

neighborhood of the local mode.

In our experiments, global optimization was performed in

the translational space, i.e. P = [tx, ty]′, as translational mo-

tion is the dominant component of breathing motion observed

in coronary fluoroscopy. However, the proposed global opti-

mization algorithm applies to other parametric motion models

as well.

2.3. Uncertainty Analysis and Self Assessment

By exploring the information about the shape of the match-

ing function, we can further assess the uncertainty associated

with the motion estimation. Surfaces of fwncc with a single

dominant mode as shown in Fig. 1(a) indicate less ambigu-

ity in the image data and more reliable matches. In contrast,

flat surfaces or surfaces with multiple modes as shown in Fig.

1(b) indicate large ambiguity in the image data and large un-

certainty associated with motion estimates.

To quantify the uncertainty of motion estimation, we use

a similar technique as presented in [11] to fit a Gaussian dis-

tribution to the surface of the matching function f̂i(P ) in the

local neighborhood N(m̂i) of a mode m̂i.

f̂(P )|P∈N(m̂i) ≈ K(P ; m̂i, Ĉi) (6)

= exp(− 1
2 (P−m̂i)

T Ĉ−1
i (P−m̂i))

(2π)dim(P )/2|Ĉi|1/2
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We calculate the covariance matrix Ĉi by minimizing the

Euclidean distance between the surface gradients of the im-

proved approximation f̂ and the Gaussian kernel K in local

neighborhood N(m̂i)

Ĉi = argmin
C∈S

ni∑

j=1

||∇K(P ; pi,j , C) −∇f̂i(pi,j)||2 (7)

where S denotes the set of positive definite matrices. This

least squares problem over positive definite matrices is solved

by the method presented in [12]. Examples for the local

Gaussian fitting are shown in Fig. 2. A well-known mea-

sure for quantifying the uncertainty of random variables is

entropy. The differential entropy of a Gaussian distributed

random variable with covariance matrix C is defined as [13]

h(C) = ln(2πe) + 0.5 · ln(|C|) (8)

We omit the constant terms and define the uncertainty of the

matching function around mode m̂i as

εi = ln(|Ĉi|) (9)

To determine the uncertainty of the complete surface, we

combine the uncertainty measures for multiple modes through

a weighted sum. Modes with higher function values fwncc

are weighted higher and minor modes with lower function

values are ignored. The entropy based uncertainty measure is

defined as

Υ =
∑M

i=1 ωiεi (10)

ωi = max{0, 1 − (fwncc(mi) − fm)/sth}
(fm = max{fwncc(m̂i) : i = 1, · · · ,M})

where sth is a threshold. We use Υ for the self-assessment

of the optimization algorithm. A motion estimate is accepted

when its uncertainty measure is below a threshold Υth, and

the matching function value is above a threshold fth. Other-

wise, the motion estimate is rejected.

3. RESULTS

We used fluoroscopic data from 16 CTO cases to evaluate the

global optimization algorithm and the self-assessment tech-

nique. The data was acquired by Angiographic C-arm sys-

tems (AXIOM Artis, Siemens Healthcare), with pixel size

ranging from 0.184 mm to 0.216 mm. These cases were

chosen because they had either vessel structures visible or

guidewires present which provided the ground truth of vessel

centerline for evaluation. Visible vessel structures as well as

guidewires in the fluoroscopy data were annotated as splines

to represent vessel centerlines.

As Fig. 1 shows, for every test case, multiple images as-

sociated with the same cardiac phase were annotated. One of
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(a) Function with single dominant mode (Υ = 6.85).
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(b) Function with multiple modes (Υ = 51.28).

Fig. 1. Surfaces of different matching functions.

the images was selected as the reference image (lower images

in Fig. 1), and its annotated spline (shown in blue) simulated

the initial roadmap overlay. The rest of the images were used

for testing (upper images in Fig. 1) with the corresponding

vessel structures annotated as ground truth (shown in green)

for evaluation. We performed motion estimation between the

reference image and each testing image, and used the esti-

mated motion to transform the annotated spline in the refer-

ence image to match the test image. The transformed spline

simulated the motion compensated overlay (shown in red).

To quantify the motion estimation error, the distance between

the motion compensated overlays (red splines) and the ground

truth structures (green splines) was calculated. We calculated

point to spline distances between each pair of splines, and the

median of all distances was chosen as the error distance.

Global optimization was performed on fluoroscopy im-

ages at a reduced resolution. Sparse sampling in the transla-

tional space was performed in the range of ±32 pixels with

a sampling distance Δtx = Δty = 8 pixels for the smooth

approximation f̃wncc, and in the range of ±8 pixels with a

distance Δtx = Δty = 2 pixels for the improved approxima-

tions {f̂i}. The bandwidth of the Gaussian kernels was set to

σ2
s = 64 for f̃wncc and σ2

d = 4 for {f̂i}. Υth = 14, fth = 0.8
and sth = 0.05 were used to perform self assessment on mo-

tion estimates.
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(a) Dominant mode ε = 6.39.
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Fig. 2. Fitting a Gaussian distribution to the matching func-

tion around a mode.
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Fig. 3. Cumulative distribution of motion compensation error.

# Accepted Uncorrected Translational R+S

Frames (All) (Acc.) (All) (Acc.) (Acc.)

1 0/5 (0 %) 3.407 N/A 1.567 N/A N/A

2 9/10 (90 %) 0.572 0.503 1.299 1.365 0.564

3 5/6 (83 %) 0.869 0.695 0.800 0.612 0.554

4 4/4 (100 %) 0.818 0.818 1.212 1.212 1.026

5 0/7 (0 %) 2.386 N/A 2.177 N/A N/A

6 2/8 (25 %) 1.406 0.470 1.547 1.130 0.630

7 5/5 (100 %) 1.984 1.984 1.254 1.254 1.340

8 5/5 (100 %) 1.420 1.420 1.133 1.133 0.913

9 9/9 (100 %) 1.935 1.935 1.455 1.455 1.226

10 5/10 (50 %) 2.128 1.368 0.959 0.693 0.874

11 3/9 (33 %) 4.905 3.121 3.702 0.763 0.811

12 1/6 (17 %) 3.360 1.882 1.965 2.050 1.580

13 1/7 (14 %) 1.261 1.196 3.345 2.408 2.788

14 2/7 (28 %) 6.592 1.164 3.579 1.012 0.883

15 7/7 (100 %) 2.328 2.328 0.990 0.990 1.023

16 3/4 (75 %) 4.791 3.618 0.635 0.570 0.744

Tot. 61/109 (59 %) 2.474 1.564 1.796 1.121 0.948

Mean Error Distances in mm.

To further improve the results we used a rigid+scaling

(R+S) motion model, extending the translational model by

a rotation and two scaling parameters in x and y direction.

To find the optimal parameters we applied a gradient descent

based optimization strategy as discussed in [6] initialized with

accepted results of the global optimization. Table (1) shows,

for each of the 16 test sequences, the number of test matches,

the number of accepted matches and the mean of the error

distance from the globally optimized translational model, the

R+S model and without any motion correction. Without mo-

tion correction, the mean error over all motion estimates is

2.474 mm. With a translational motion model, the mean error

reduces to 1.796 mm without self-assessment, and to 1.121
mm with self-assessment. With a R+S motion model and self-

assessment, the error reduces to 0.948 mm. By performing

self assessment, 59% of the motion estimates are accepted.

Figure 3 shows a cumulative distribution describing the

percentage of tests with an estimation error equal or below

the values on the x axis under different motion models. With-

out motion compensation, ∼ 53% of the motion estimates

have an error of 1.84 mm or below. With translational motion

compensation, ∼ 70% of all motion estimates and ∼ 85% of

the accepted motion estimates have an error of 1.84 mm or be-

low. Under the R+S motion model, this percentage increases

to 93%. The average computation time for finding the trans-

lational parameters using the global optimization algorithm

was 198 ms. The algorithm was implemented in C++ using

OpenMP. The testing machine had a dual core Intel Pentium

4 processor with 2 × 2.8 GHz, 3 GB RAM and Windows XP

SP3 as operating system.

4. DISCUSSIONS

In this paper, we presented a new image-based motion com-

pensation method with self assessment for coronary roadmap-

ping in fluoroscopic images. We extended our previous work

in soft tissue motion estimation and introduced the techniques

of kernel-based function approximation and mode analysis

to overcome the local optimum problem. Furthermore, an

entropy-based uncertainty measure was developed to auto-

matically assess the reliability of motion estimation. Reliable

motion compensation is not always possible, for instance,

when the diaphragm or lung tissues obscure the heart or the

soft tissue of the heart is only weakly visible. Our experience

showed, that in these cases the shape of the matching func-

tion tended to be flat or have multiple modes. Exploring the

information about the shape of the matching function helps

to identify unreliable motion estimates. The evaluation of

the global optimization algorithm and the self-assessment

method showed, that all the cases with incorrect motion

estimation were detected and almost all accepted motion esti-

mates had an error below 2.6 mm compared to the annotated

ground truth motion. However, the acceptance rate in some

cases is very low. Future study includes combining the self-

assessment technique with local motion models to explore

motion in different subregions, which may provide a way for

robust motion estimation in these difficult cases. In addition,

the global optimization and self assessment techniques dis-
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cussed in this work can be extended to more complex motion

models.
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