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Abstract. Magnetically-guided capsule endoscopy (MGCE) was intro-
duced in 2010 as a procedure where a capsule in the stomach is navigated
via an external magnetic field. The quality of the examination depends on
the operator’s ability to detect aspects of interest in real time. We present
a novel two step computer-assisted diagnostic-procedure (CADP) algo-
rithm for indicating gastritis and gastrointestinal bleedings in the stom-
ach during the examination. First, we identify and exclude subregions of
bubbles which can interfere with further processing. Then we address the
challenge of lesion localization in an environment with changing contrast
and lighting conditions. After a contrast-normalized filtering, feature ex-
traction is performed. The proposed algorithm was tested on 300 images
of different patients with uniformly distributed occurrences of the target
pathologies. We correctly segmented 84.72% of bubble areas. A mean
detection rate of 86% for the target pathologies was achieved during a
5-fold leave-one-out cross-validation.

1 Introduction

Background and Purpose of This Work. Endoscopy of the upper gastrointestinal
(GI) tract with flexible endoscopes is a standard clinical procedure. The main
disadvantages of this procedure are high invasiveness and patient discomfort.
Wireless capsule endoscopy (WCE) was introduced in 2001 and is mainly used
in the duodenum. The stomach, in comparison, has large surface and volume and
can not be reliably examined with an uncontrolled capsule. Endoscopic capsules
that can be steered from the outside by means of magnets have been reported
in [7,12,11]. In this paper we use human data from the clinical study of [11]
that stems from 29 volunteers and 24 patients (Fig.1c and 1d). A single dataset
from one patient contains on average 3600 images. For the MGCE procedure,
the patient’s stomach is filled with water and the capsule is navigated from the
outside using an external magnetic field. During the examination the operator
can control the motion of the capsule so as to obtain a sufficient number of
stomach-surface images with diagnostic value. The quality of the examination



depends on the skill of the operator and his ability to detect aspects of interest in
real time. We present a novel two-step computer-assisted diagnostic-procedure
(CADP) algorithm for detecting, during the examination, two distinct stomach
pathologies: gastritis and haematin. Gastritis is one of the main causes of stom-
ach cancer. Chronic gastritis usually appears as a reddish and blotched turgor,
while acute gastritis often appears as a small circle-shaped bleeding (Fig.2b).
Haematin on the other hand, accrues from blood coming in contact with stom-
ach acid. It is a sign of gastrointestinal bleeding and is an indicator of many
significant diseases. It appears as a uniform brownish shape close to the stomach
wall (Fig.2a). The proposed algorithm is divided into two steps: 1) a region-of-
interest (ROI) segmentation to separate medically relevant sections of the image
from parts containing bubbles; 2) a contrast-normalized filtering to identify and
localize possible lesions of pathologies. For this 2nd task we develop a feature
vector, which is used for classifying pathologies in a machine learning approach.
State of the Art. In a typical WCE examination a large number of frames is
medically irrelevant, as they either do not show pathologies or contain mainly
intestinal juices, bubbles or debris. To assist the physician in reviewing up to
ten hours of video material, software for computer-aided diagnosis (CAD) has
been developed. In [2,14,13] different descriptors for the task of blood and ulcera
detection and topographic segmentation of the GI tract are investigated. Topo-
graphic segmentation is addressed in [1] and [5] for the purpose of a more efficient
and faster review. In [4] and [15] the issue of eliminating redundant frames, as
well as those with intestinal juices, is addressed. In [6] a set of color and texture
based features for the detection of intestinal bleedings is presented. These meth-
ods are not directly applicable to MGCE. The duodenum, when compared to the
stomach, exhibits different pathologies and imaging conditions, such as texture
and distance to objects of interest. In [8] a method for the automatic detection
of gastritis aspects in MGCE was presented. In this paper we used the method
from [8] as a starting point and developed a ROI pre-segmentation for bubbles
and an improved segmentation method for different pathologies (gastritis and
haematin). Compared to the aforementioned existing CAD algorithms which are
only used for review, our method indicates the pathologies during the examina-
tion itself. The operator can, for instance, navigate to a suspicious region for
further closer inspection. Even if 100% accuracy is not achieved, our algorithm
may still point out lesions which would otherwise be missed.

2 Automatic pathology detection in MGCE

2.1 Region of Interest Segmentation

Endoscopic images obtained via MGCEmay contain bubbles and mucus (Fig.1a).
Such a region within an image usually contains no medically relevant informa-
tion. One should, thus, segment such regions to exclude them from further pro-
cessing. In [15] and [10] two methods for automatic detection of intestinal juices
are presented that exclude entire frames containing intestinal juices and bubbles
for the review process. The location of bubbles in the stomach is relatively stable



(a) (b) (c) (d)

Fig. 1: (a) sample image with bubbles. (b) segmented bubble area (c) lesser
curvature and body (d)mucosa close-up B

and localized. Rejecting an entire frame with bubbles could therefore eliminate
images of whole stomach regions together with possible pathologies.
The segmentation of bubble regions is not as straightforward as it may initially
appear. The edges of most bubbles appear bright, but the translucent part is
dominated by the color of the underlying tissue (Fig. 1a). Therefore, an inten-
sity based approach is not effective. One has to combine geometry and color
cues in order to detect the entire bubbles region. To that end, we investigated
a large variety of robust feature descriptors initialized with different key point
detectors. We randomly chose as our training data 100 healthy and 100 diseased
images from our dataset containing different amounts and spatial distributions
of bubbles. Regions with bubbles were hand-labeled. We denote one pixel within
an image as a tuple (x, y, v), where x and y are the pixel coordinates, and v
is a pixel value. An image I (432×432 pixels) is defined as a set of pixels,
I = {(x1, y1, v1), . . . , (xN , yN , vN )} where N is the total number of pixels in the
image. We define O1 ⊆ I as the set of all pixels in a bubble area and O2 ⊆ I as
the area without bubbles. In addition O1 ∩ O2 = ∅, and O1 ∪ O2 = I.
We considered 5 descriptors (SIFT, steerable filters, GLOH, SPIN, Cross Corre-
lation), each of which can be initialized with one of 5 different key point detectors
(Hessian-Laplacian, Harris-Laplacian, Harris-Affine, Hessian-affine, Harris)1. For
each combination of descriptor type and key point detector we obtained n de-
scriptors (feature vectors) Dk, k = 1, ..., n, which were calculated on the corre-
sponding image patches Pk ⊂ I, k = 1, ..., n around the detected key points. We
used the labeled data to train (using Adaboost) a 2-class classifier that could
distinguish between descriptors corresponding to O1 and O2. We evaluated each
descriptor / key-point-detector combination for bubble detection using a 5-fold
leave-one-out cross-validation (LOO CV).
Training phase: An image patch Pk is characterized by its center point c = (x, y)
and an ellipse centered at c which is defined by one or two radii r1,2 respectively.
For the supervised training input, a label

1 Affine covariant features [Online]. Available: http://www.robots.ox.ac.uk/~vgg/
research/affine/



l(Pk) =

{
0 if Pk ⊂ O1

1 if Pk ⊂ O2
(1)

was assigned. The remaining Pks (i.e. image patches which do not completely
belong to either of the classes) were discarded from training. For training the
feature vector Dk was extended by 10 features based on HSV and RGB his-
tograms. More specifically, the mean, variance, skew, kurtosis and entropy were
computed for the S and R channel histograms for each patch Pk. These features
enhance the classifier’s ability to distinguish structures with geometric similari-
ties to bubbles (such as a round shape) which are, however, part of the stomach
mucosa or a target pathology.
Testing: After the training was completed, the new labels l(Pk) were computed
based on the obtained classifier. We define two measures for the quality of seg-
mentation:

E(Oi) =

card

(( ∪
{Pk|l(Pk)=1}

Pk

)
∩Oi

)
card(Oi)

(2)

with i = {1, 2 }.2 E(O1) measures the proportion of the ground-truth bubble
area covered by image patches classified as l = 1, while 1 − E(O2) measures
the area without bubbles, that is wrongly covered by image patches classified as
l = 1. We found that the combination of a Hessian-affine key point detector and a
steerable filter descriptor yields the best results (see Table 1 (first row)). We refer
to the union {∪(Pk|l(Pk) = 0)} as the binary mask Ib and to bubble free area
as Ibn = I\Ib. Note that, the use of an elliptic shape for the image patches Pk

yields small areas between the image patches which are not classified as bubbles
area. To overcome this problem we introduced a circular morphologic dilation
element with a radius rs. The circle radius adapts to the size of the surrounding
image patches to ensure gap closing between large image patches and prevent
the dilation of non-bubbles areas. A neighborhood around the dilation element
is defined as a window W of 30× 30 pixels around the center of the structuring
element. The radius rs at a position x, y within Ib is computed from the average
radii of all Pk|Pk ⊆ W.
The improvement obtained with the dilation can be seen in Table 1. The quan-
titative measurements were obtained by equation 2. After the segmentation we
checked if some pathologies were wrongly classified as bubbles and confirmed
that this was not the case (Visual results in Fig. 1b).

2.2 Contrast normalization and region localization

For the following steps only Ibn (i.e. areas without bubbles) are considered. The
pathological lesions exhibit low intensity while the surrounding tissue has high in-
tensity values. In order to detect such lesions a LoG-edge detection, as proposed
by [8], is performed. Thereby, Ibn is convolved with a Laplacian-of-Gaussian

2 card(·) denotes the cardinality, i.e. the number of pixels in the image subset



Table 1: Results of Bubble Segmentation

Method E(O1) 1− E(O2)

Direct use of descriptor 81.53% 4.24%
With adaptive morphological operation 84.72% 5.74%

kernel K. The resulting image Ic is subsequently searched for prominent edges
whose magnitude is above a certain threshold. Because images suffer from vary-
ing contrast and lighting conditions, a contrast normalized variable threshold is
introduced. To that end, Ic is converted into a probability mass function f(bi)
with Nbi intervals. The contrast normalized threshold tc is then computed as
follows. We first define the index tpos of an interval bi

tpos =

1∑
i=Nbi

I

 i∑
j=Nbi

f(bj)

 <

(∑
f(bi)

4

) (3)

where I is an indicator function which is equal to 1 if its argument is true and
zero otherwise. tc is then computed as tc = max(btpos).
A binary edge image I(tc) is then computed using the variable threshold tc.
I(tc) is 1 for Ic > tc and 0 otherwise. Given such a binary image our goal is to
merge connected pixels into areas representing possible locations of pathologies.
A morphologic closing operator with a disc-shaped structuring element of a
radius of 5 pixels is applied to I(tc). Subsequently, using 4-connectivity, pixels
are grouped into structures that we refer to as Sj with j = 1, ...,m where m is
the total number of structures per image. On average, images contain 45 Sj ’s
with a mean size of 20×14 pixels. Ultimately, we want to classify each structure
Sj into one of the three classes: the gastritis class C1, the haematin class C2 and
the negative class C3 without any abnormalities. For training purposes, all Sj

are superimposed on to the original RGB-image. Visual inspection shows that
all possible lesions of C1 and C2 are detected by the above described region
localization method. All computed Sj are therefore directly hand-labeled by an
expert so that a label L is assigned to each structure Sj

L(Sj) =

0 if Sj ∈ C1 (gastritis class)
1 if Sj ∈ C2 (haematin class)
2 if Sj ∈ C3 (negative class)

(4)

2.3 Feature Extraction

The following sets of features are extracted for each structure Sj (Fig. 2c).
Geometric features (GF). Geometric features describe the specific shape of
pathologies. We extract the maximal vertical and horizontal dimensions of Sj and
of its minimal bounding box and their corresponding aspect ratio. Furthermore
the ratio between the area covered by Sj and the area of the minimal bounding



Table 2: Number of features computed for each Sj

Feature
Group

Feature
Extractor

No. of
Features

Composition of
Feature Vector

GF

Aspect ratio of Sj 1 width/height
dimensions of Sj 2 width,height

bounding box fill factor 1 %
Hu moments 7 invariant moments

TF
lbp H 5 local binary pattern

on three channels of
HSV colorspace

lbp S 5
lbp V 5

HF
RGB 15 Mean, variance, skew

kurtosis and entropy of
each channel Histogram

HSV 15
CIE 15

Total no. of features 71

box is computed. We refer to this feature as fill factor. For further geometric
analysis we also extract the Hu moments [3] for each Sj .
Texture features (TF). To further investigate textures within each Sj local
binary patterns (lbp) [9] are computed for each channel of the HSV colorspace.
The resulting lbp histogram is computed for each Sj .
Histogram features (HF). Color based features aim to distinguish between
color characteristics of structures containing gastritis and structures of class
C3. Thus, we compute the mean, variance, skew, kurtosis and entropy of each
histogram-channel of the RGB, HSV and CIE colorspaces. The entire collection
of features is summarized in Table 2.

3 Experiments and Results

To evaluate the automatic detection of pathologies we used 300 images stem-
ming from 44 patients. The images were analyzed by a medical expert and each
detected structure Sj was manually labeled. The dataset of 300 images consisted
of 100 images for each of the two target pathologies and a set of 100 healthy im-
ages. For the supervised learning approach we compared results of the Adaboost
and SVM classifiers implemented in a 5-fold LOO CV. Most images contained
more than a single structure Sj with or without a pathology. An image was at-
tributed to one of the pathology classes if at least one structure Sj was classified
as pathologic. An image was counted as healthy if none of the structures Sj

was classified as pathologic. The best classification results were obtained using a
SVM classifier3. A confusion matrix was obtained for each image test-set of the

3 LIBSVM [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 2: Sample images of target pathologies. (a): haematin. (b): gastritis lesions.
(c): Computed structure Sj (green border). Sj with red border contains a gas-
tritis lesion. Segmented bubble area in turquoise

Table 3: Results of Pathology Detection using a SVM classifier (in %). Results
of AdaBoost in parentheses.

XXXXXXXXXActual
Predicted Healthy Gastritis Haematin Gastritis and

Image (C1) Image (C2) Image (C3) Haematin C2/C2
Healthy Image C1 92 (95) 6(5) 2(0) 0(0)

Gastritis C2 8(11) 72(55) 6(12) 14(22)

Haematin C3 7(11) 7(12) 76(70) 10(7)

5-fold LOO CV. The average confusion matrix of all 5 runs can be seen in Table
3. Out of 100 images with gastritis, 86% were correctly classified (Table 3). From
the 100 images containing haematin, 86% were correctly classified. However, we
also detected an average of 12% of pathological images, which exhibited both,
haematin and gastritis. Finally out of the 100 healthy images 92% were correctly
classified.

4 Discussion and Conclusion

Our experiments have shown that our computer-assisted diagnostic-procedure
algorithm can be used for indicating gastritis and gastrointestinal bleedings in
MGCE. The presented algorithm includes a preprocessing step that discards
areas with bubbles . This step is crucial for all following image processing steps
in the presented method and may have implications for the development of future
applications on this imaging modality. Pre-segmentation performs accurately in
detecting areas with bubbles without hiding pathologies or large amounts of
non-bubble tissue areas. Based on the results from the above pre-processing
step, a method was presented that is able to automatically detect two kinds of
pathologies on MGCE images. We achieved sensitivity and specificity results well
over 80% for healthy and diseased images. The moderate sensitivity between the
two target pathologies is due to the similaritiy between gastritis and haematin



aspects in terms of color and texture. Still, the algorithm performs well, especially
within the context of real-time warnings for certain gastritis aspects.
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9. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on featured distributions. Pattern Recognition 29(1), 51–
59 (1996)

10. Reingruber, H.: Intestinal content detection in capsule endoscopy using robust
features @ONLINE (2009), http://www.recercat.net/handle/2072/43221

11. Rey, J., Ogata, H., Hosoe, N., Ohtsuka, K., Ogata, N., Ikeda, K., Aihara, H.,
Pangtay, I., Hibi, T., Kudo, S., Tajiri, H.: Feasibility of stomach exploration with
a guided capsule endoscope. Endoscopy 42(7), 541–545 (2010)

12. Swain, P., Toor, A., Volke, F., Keller, J., Gerber, J., Rabinovitz, E., Rothstein, R.:
Remote magnetic manipulation of a wireless capsule endoscope in the esophagus
and stomach of humans. Gastrointest Endosc (2010)

13. Szczypinski, P., Klepaczko, A.: Selecting texture discriminative descriptors of cap-
sule endpscopy images. In: Zinterhof, P. (ed.) Proceedings of ISPA 2009. pp. 701–
706. IEEE (2009)

14. Szczypiski, P., Sriram, P., Sriram, R., Reddy, D.: Model of deformable rings for
aiding the wireless capsule endoscopy video interpretation and reporting. Comp
Imag Vis pp. 167–172 (2006)

15. Vilarino, F., Spyridonos, P., Pujol, O., Vitria, J., Radeva, P., De Iorio, F.: Auto-
matic detection of intestinal juices in wireless capsule video endoscopy. In: Tang,
Y., Wang, S., Lorette, G., Yeung, D., Yan, H. (eds.) ICPR 2006. vol. 4, pp. 719–722.
IEEE (2006)


