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ABSTRACT

Capsule Endoscopy (CE) was introduced in 2000 and has since become an established diagnostic procedure for
the small bowel, colon and esophagus. For the CE examination the patient swallows the capsule, which then
travels through the gastrointestinal tract under the influence of the peristaltic movements. CE is not indicated
for stomach examination, as the capsule movements can not be controlled from the outside and the entire surface
of the stomach can not be reliably covered. Magnetically-guided capsule endoscopy (MGCE) was introduced in
2010. For the MGCE procedure the stomach is filled with water and the capsule is navigated from the outside
using an external magnetic field. During the examination the operator can control the motion of the capsule
in order to obtain a sufficient number of stomach-surface images with diagnostic value. The quality of the
examination depends on the skill of the operator and his ability to detect aspects of interest in real time. We
present a novel computer-assisted diagnostic-procedure (CADP) algorithm for indicating gastritis pathologies in
the stomach during the examination. Our algorithm is based on pre-processing methods and feature vectors that
are suitably chosen for the challenges of the MGCE imaging (suspended particles, bubbles, lighting). An image
is classified using an ada-boost trained classifier. For the classifier training, a number of possible features were
investigated. Statistical evaluation was conducted to identify relevant features with discriminative potential.
The proposed algorithm was tested on 12 video sequences stemming from 6 volunteers. A mean detection rate
of 91.17% was achieved during leave-one out cross-validation.
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1. INTRODUCTION

Cancer in the gastrointestinal tract (GI) has the first highest mortality rate in Asia and the second highest
mortality rate of all kinds of cancers in Germany and in the US.1,2 One of its main causes is acute gastritis,
which has different acute and chronic causes. Certain anti-inflammatory drugs and abusive alcohol consumption
are the main acute causes, while an infection with bacteria, primarily helicobacter pylori, is the most important
cause of chronic gastritis and represents 60-70% of all gastritis cases.3 Therefore, in diagnostic and screening
procedures the detection of gastritis deserves special attention. Chronic gastritis usually appears as reddish
and blotched turgor, while acute gastritis usually appears as a point-shaped bleeding. Classical screening and
diagnosis procedures are based on esophagogastroduodenoscopy, which involves inserting an endoscope through
the mouth into the duodenum, stomach and esophagus of a sedated patient.
Capsule Endoscopes (CE, also known as passive capsule endoscopes) were introduced in 2000 by Given Imag-
ing (Given Imaging, Yoqneam, Israel). CE is aimed primarily for small bowel examination but has since also
been applied for the examination of the colon, esophagus and duodenum.4–8 CE is not indicated for stomach
examination because the capsule can not be controlled and imaging has been random, which made it difficult to
reliably cover the entire surface of the stomach. Magnetically guided capsule endoscopes (MGCE) were intro-
duced in 2010 by Siemens Healthcare (Siemens Healthcare Sector, Erlangen, Germany) and Olympus Medical
(Olympus Corporation Shinjuku, Tokyo, Japan) making it possible to navigate a capsule endoscope in a water-
filled stomach. MGCE enables the diagnosis of gastritis inflammations from capsule images. The first clinical
study including 53 volunteers and patients was published in 2010.9 MGCE appears to be feasible and sufficiently
accurate for gastric examination.9
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In a typical CE examination a large number of frames that do not show pathologies are captured during the
passive capsule passage through the GI tract. To assist the physician in reviewing up to ten hours of video ma-
terial software for computer-aided diagnosis (CAD) has been developed. CAD approaches for CE as described
in10–14 are not directly applicable or only partially applicable for MGCE. Because we are looking at different
pathologies and working in a different environment where the imaging conditions are different. In12 Coimbra
assesses the potential of selected visual MPEG-7 descriptors in CE for the task of blood and ulcera detection.
The methodology of Coimbra can not be applied to gastritis as this pathology does not appear in CE. In11

Cuhna focuses on segmentation of the gastrointestinal tract into its four major topographic areas, allowing the
automatic estimation of the clinically relevant gastric and intestinal sections and corresponding transit times.
The detection method of relevant pathologies is not proposed. In14 Mackiewicz is combining both methods using
color and texture based features. In10 Szczypinski investigated the reduction of the feature space for the detec-
tions of blood and ulcera. With the exception of the work of Cuhna all of the mentioned papers have investigated
the reduction of the feature space. We are also considering the reduction of the feature space in section 2 for
MGCE related features. In13 Vilarino proposed a method for automatic detection of intestinal juices by applying
Gabor filters to reduce the amount of relevant video material.
Nevertheless, physicians are not confident with CAD methods as none of this software can provide 100% accu-
racy.15,16 In MGCE, CADP can also be used during the later review. A much more compelling setup, however,
is the application of CADP during the examination itself. The operator can immediately use the information
provided by CADP during the examination to further enhance the diagnostic value. Even if 100 % accuracy is
not achieved, our algorithm may still point out the lesions which would otherwise be missed by the operator.
We present an automatic detection algorithm which is adapted to MGCE and verifies on-the-fly the stream of
images in real-time.

For the MGCE procedure the patient’s stomach is filled with water. A water-filled stomach may contain debris,
such as small bubbles, mucus and suspended particles, that attach to the stomach walls or to the capsule housing
or swim in the capsules field of view. In contrast to classic endoscopes the frame rate as well as the resolution
of the images are smaller, which makes image processing more challenging. Lighting conditions may change
depending on the capsule position and the distance to the stomach wall. The aforementioned effects are rarely
disturbing for a human user, but need to be considered in automatic detection.

We present an automatic detection algorithm based on a MGCE-specific feature vector, that verifies on-the-fly
the stream of images and is able to warn the physician when possible gastritis lesions appear on the images. In
our analysis we used 12 data sets which stem from 6 volunteers and contain 1051 images with and 355 without
gastritis aspects. The images originate from different regions of the stomach to ensure that the training data is
not biased for a specific region of the stomach.
In the following section we sort possible features starting with a preprocessing step. After presenting different
possible features in section 2, their discriminative potential is statistically evaluated. Weak features and corre-
lating features can be eliminated to make computation faster. Subsequently we test our new feature vector on a
set of 1406 images. Results are presented in section 4. In section 6 we discuss our results and give an overview
of future work.

2. METHOD

Preprocessing. The preprocessing step identifies and locates possible gastritis regions on a contrast-normalized
image. The preprocessing is done as follows:

• The original dimensions of the images are denoted as xsize and ysize. The original RGB image oc[x, y]
is converted to a grayscale image og[x, y] for further processing. In the gray-scale image gastritis lesions
exhibit low intensity while the surrounding tissue has high intensity.

• The original grayscale image og[x, y] is convolved with a Laplacian-of-Gaussian kernel (LoG-kernel). The
result of this convolution is a filter response map, that has peaks at possible gastritis aspects and other
image regions with rapid intensity changes (e.g. shadows, particles and bubbles). The convolution result



is computed as c[x, y] = og[x, y] ∗ k[x, y] where og[x, y] is the original gray-scale image and k[x, y] is the
convolution kernel (see figure 1). At the edges of gastritis lesion the filter response changes from low to
high amplitude. Changes from low to high amplitude can also occur for other reasons as mentioned above.
The convolved image c[x, y] is subsequently searched for those amplitude changes, that appear as peaks
on c[x, y]. We are hence looking for a threshold (denoted tc) that best separates c[x, y] into relevant and
irrelevant amplitude changes.

• To that end we first perform contrast normalization. Such normalization is necessary because images suffer
from varying contrast and lighting conditions. A fixed threshold to search for amplitude changes in c[x, y]
would fail on some images. A high threshold value would fail on images with low contrast and therefore
with smaller peaks (e.g. capsule view on far objects). A low threshold would identify most peaks in a
high-contrast image as relevant.
To compute a threshold tc for contrast normalization, each image c[x, y] is converted into a probability
mass function (see equation 2). To do so, we represent c[x, y] as a sequence of observations [c(0), ..., c(S)]
where S = xsize ∗ ysize is the total number of pixels and the total number of filter responses. We form a
set of intervals:

B = {b1 = [b11, b12); b2 = [b21, b22); ...; bNb
= [bNb1, bNb2]} (1)

where

b11 = c[x, y]min and bNb2 = c[x, y]max

and

bi1 = b11 + (i− 1)× bNb2
−b11

Nbi
and bi2 = b(i+1)1

where Bi = [bi1, bi2) are intervals of equal size. The size of each interval is determined by the range of
intensity values in an image and the total number of intervals Nbi which in our case is fixed to 256. The size
of the intervals bi varies from image to image. c[x, y]min and c[x, y]max are derived from the convolution
og[x, y] ∗ k[x, y]. og[x, y] is defined between 0...255 while the discretized LoG-kernel k[x, y] is defined as
in figure 1. In practice, the minimal and maximal possible values c[x, y]min and c[x, y]max of c[x, y] never
occur. Experimental results show that in average c[x, y] lies in an interval of [−16.000, 8000]. The average
interval size of b ∈ Bi is computed as (|c[x, y]max| − |c[x, y]min|)/Nbi . Both values c[x, y]min and c[x, y]max

are computed independently for each image and represent the upper and lower limits of the interval Bi.
The probability mass function f(bi) is therefore defined as

f(bi) =
S∑

l=0

(I(c(l) ∈ bi)) (2)

where I is an indicator function equaling 1 if its argument is true and zero otherwise.

• The contrast normalized threshold tc we are looking for is then computed as follows

tpos =
1∑

i=Nbi

I

 i∑
j=Nbi

f((bj))

 <

(∑
f(bi)

4

) (3)

where I is again an indicator function and tpos is the index of the interval bi computed with equation 3. tc
is finally computed as

tc = max(btpos) (4)



k[x, y] =



0 1 1 2 2 2 1 1 0
1 2 4 5 5 5 4 2 1
1 4 5 3 0 3 5 4 1
2 5 3 −12 −24 −12 3 5 2
2 5 0 −24 −40 −24 0 5 2
2 5 3 −12 −24 −12 3 5 2
1 4 5 3 0 3 5 4 1
1 2 4 5 5 5 4 2 1
0 1 1 2 2 2 1 1 0


(5)

Figure 1. A discretized 9× 9 LoG kernel (with Gaussian of σ = 1.4)

A binary filter response map ct[x, y] is computed using the variable threshold tc. ct[x, y] is 1 for c[x, y] > tc and
0 for c[x, y] < tc.
Subsequently, a spatial distribution of filter responses for further localization of relevant spots is defined by
overlaying the image with an uniform fixed grid over the binary image ct[x, y], separating the image into spatial
bins ctbini[x, y] with x = 1..15 and y = 1..15. The number of bins within each image is denoted as Nbin and can
be derived from the bin size and the size of the image c[x, y].
Regions of fast intensity changes as they appear in a gastritis lesion usually lead to an accumulation of filter
responses with high changes in amplitudes. High amplitude changes also occur for high frequency noise com-
ponents, but only in an isolated fashion or in small numbers. A non-maximum suppression is conducted by
counting the number of threshold filter responses Nb(ctbini) for all x, y within each ctbini[x, y] for each bin.
For further processing only those satisfying the heuristically determined threshold of Nbbin > 10 are considered.
Other bins are discarded for the remainder of the preprocessing. The result from the preprocessing steps is a
number of spatial bins in the static grid that fulfill the aforementioned conditions. We define two classes: the
positive class C1 with a gastritis aspect or to the negative class C2 without any abnormalities. For training
purposes, all ctbini[x, y] which are chosen for further processing are hand-labeled by an expert so that

li =

{
1 for all ctbini[x, y] ∈ C1
0 for all ctbini[x, y] ∈ C2 for i = 1...Nbin (6)

and
−→
l = (l1, l2, ..., lNbin

) is a vector containing labels for each bin.

Features. For the sake of simplicity we refer to ctbini[x, y] as ctbini. When ctbini is validated as a possible
location of gastritis through the above described preprocessing steps, the following features are extracted from
the corresponding region in RGB colorspace. We refer to this 3-channel spatial bin as cckbini with k = {R,G,B}.

Color Features and Color Histogram Features (CHF). Color based features aim to distinguish between
color characteristics of bins actually containing gastritis lesions and bins of class C2. Color based features consist
of mean and maximum values of each channels of the RGB color spaces within a spatial bin. Furthermore a set
of intervals is formed as described in equation 1. Each bin cckbini for k = 1 is subsequently represented as a
probability mass function (see equation 2). The operation is repeated for three different channels after converting
cckbini in HSV and Lab color spaces. We refer to each probability mass function (pmf) and color channel as

• f(Ri) for the R-channel of the RGB color space

• f(Vi) the 3rd channel of the HSV(hue, saturation and brightness) color space

• f(Li) the L-channel of the Lab colorspaces

For each function the number of intervals (NRi , NVi , NLi) is determined independently. The number of intervals
is experimentally determined from a representative number of bins from all datasets. Pixel values within one bin
may not cover the complete range of values of a particular channel. The goal is to cover areas of large variety



within the range of values with a high density of consecutive intervals. Therefore the number of intervals within
f(Ri, Vi, Li) was iteratively increased in areas of large variety. If intervals within f(Ri, Vi, Li) become zero the
process was stopped. The number of intervals is specified in table 1. Each interval represents a single feature.
Color Structure Feature (CSF). This feature set tries to distinguish between the quantitative and spatial
distributions of color characteristics within a spatial bin. The aim of this feature is to describe the distribution
and occurrence of color characteristic within one image region. Possible gastritis aspects often appear as round
spots with irregular borders. Objects identified as possible gastritis but labeled as a negative C2 class object
often exhibit different color structures. To define a feature set based on color structure each spatial bin from the
static grid cckbini is again divided into a small sub grid of 5× 5 sub-bins. Within each sub-bin the presence of a
particular color characteristic is detected. The number of appearances within a bin cckbini represents a feature.
This step is done for five color channels: R, G, B, L (of LaB) and V (of HSV).
Texture Features (TF). To further investigate textures with each cckbini, a Difference-of-Boxes filter (DoB) is
applied on each grayscale converted cckbini spatial bin at different scales and orientations. Filter responses have
high negative and positive amplitudes for spatial changes of intensity from low-to-high and high-to-low respec-
tively. Three groups of observations are obtained from this feature: Statistical observations (mean, minimum,
maximum) within each bin, spatial distribution within each bin similar to CSF, and intervals of a probability
mass function for each bin such as CHF.
Filter Features (FF). This feature group includes two features: The number of positive filter responses Nbcbinti

within a bin cbinti [x, y] chosen as a possible location of a gastritis through the above described preprocessing
steps. As a second feature the discretized LoG-kernel is replaced with a boxplot filter to compute filter responses.
This Laplacian of Gaussian approximation is computionally less expensive. The two filters are compared in17

and it was concluded that the boxplot representation has a negligible loss in accuracy.
An overview of all features and their number is summarized in table 1 on page 5.

Feature No. of No. of No. of
group Feature initial Features Features

Features after NZR after VDR/MDR

CHF

statistical observations 6 6 0
of RGB features

RGB Histogram observation 8 8 3
Lab Histogram observation 11 10 6
HSV Histogram observation 101 98 44

CSF color distribution and occurrence 5 5 0

TF

statistical observations of DoB filter 6 6 3
spatial distribution of DoB 4 4 0

absolute number of occurrences 44 44 10
of DoB filter responses

FF
Nbcbinti

1 1 0

Nbcbinti
(boxplot) 1 1 0∑

of features - 187 183 66

Table 1. Number of feature before and after feature space reduction

At the end of the feature extraction process a feature matrix F of size (Nc1 + Nc2) ∗ (n + 1) is built, where n
is the number of features and Nc1,c2 the number of spatial bins from class C1 and C2. F contains row vectors
−→v (x(i,j)) for each bin with j = 1...(Nc1 +Nc2). xi,j denotes a single feature of a particular bin for i = 1...n. We

refer to (Nc1 +Nc2) as N . To determine the class affiliation of each −→v (x(i,j)) the label vector
−→
l (see equation



6) is added to the feature matrix. The feature matrix is therefore composed as follows:

F =


l1 (x1,1) · · · (x1,n)
l2 (x2,1) · · · (x2,n)
... · · ·

. . .
...

lN (xN,1) · · · (xN,n)

 =


l1

−→v (x(i,1))
l2

−→v (x(i,2))
...

...
lN

−→v (x(i,N))

 (7)

For the sake of simplicity we refer to a spatial bin as an observation for the rest of this paper. Within F a feature
is denoted as a column vector −→u (x(i,j)) which is split by the class sizes NC1 and NC2 into two column vectors
denoted as −→x (NC1,j) and

−→x (NC2,j) for all j = 1...N . −→u (x(i,j)) contains one particular feature for all observations.

Feature space reduction. Feature space reduction is performed in order to reduce the computational cost by
decreasing the amount of data and to identify relevant features with strong discriminative potential. Dimension-
ality reduction is conducted in three steps. If all elements of a feature vector −→u (x(i,j)) are zero for both of the
classes, then the feature is ignored in further training and testing. The criterion is denoted as NonZeroRelevance
(NZR).

Four statistical measurements for the relevance of the feature vectors are introduced:

• the C1-class related mean µ−→x N(C1,j)

• the C2-class related mean µ−→x N(C2,j)

• the variance for both classes σ2
x(N,j)

• the C1-class related variance σ2
x(NC1,j)

If the difference of σ2
x(N,j)

and σ2
x(NC1,j)

is not significant, or σ2
x(NC1,j)

is higher than the variance σ2
x(N,j)

, then this

feature is not relevant. We denote this relevance as VarianceDifferenceRelevance (VDR) where the function

VDR(−→u (x(i,j))) = σ2
(−→x N(C1,j)

) − σ2
(−→x (N,j))

< cσ2 (8)

assigns a boolean value to each −→x (N,j) depending on the threshold cσ2 .
The mean is a measurement for the average location of each class. If the difference between the mean of C1-class
related observations within the feature vector is significantly higher than the mean of all class-specific elements
in the feature vector it can be assumed that this feature is able to distinguish very well between C1 and C2. The
measurements for this criteria is denoted as MeanDifferenceRelevance (MDR) where

MDR(−→u (x(i,j))) = |
µ−→x (Nc1,j)

− µ−→x (Nc2,j)

µ−→x (NC2,j)

| < cµ (9)

assigns a boolean value to each −→x (N,j) depending on the threshold cµ.

cµ and cσ2 are thresholds defined through an objective criteria for the particular data set and the underlying
diagnostic requirements as follows: The diagnostic value for the automated detection of gastritis aspects becomes
worse if an observation belonging to C1 is wrongly classified and changes the classification result of an entire
image. Changing the classification result of an image within a dataset would worsen the overall classification
rate εc1 described in chapter 3. Avoiding a poorer classification rate εc1 is therefore our criteria after which the
reduction of features is conducted and evaluated.
To that end, we first need to sort all features vectors −→u (x(i,j)) regarding their discriminative potential defined
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Figure 2. Left: absolute difference between µc1,c2 and µc1 in % for color-structure based features. Right: absolute
difference between σ2

c1,c2 and σ2
c1 for color-structure based features.

through eq.(9) and eq.(8). The value cµ and cσ2 is iteratively increased. Thus more and more features will fail
to fulfill eq.(9) and eq.(8). The sorted indexes j of the features within Fi,j are stored in the 2× n matrix.

A =

V DR(j) MDR(j)
...

...
V DR(j) MDR(j)

 (10)

A contains therefore the features indexes sorted after the discriminative potential in increasing order. This
process is described in algorithm 1.

Algorithm 1 Pseudo code algorithm for sorting features depending on VDR(−→u (x(i,j)))

cσ2 = max
j=1...n

(σ2
(−→x Nc1,j)

− σ2
(−→x N,j)

)

i = 1
while i ≤ n do
if ((σ2

(−→x Nc1,j)
− σ2

(−→x N,j)
) < cσ2) for all j = 1...n then

add j to Aj,1

i = i+1
cσ2 = cσ2 + ε

else
cσ2 = cσ2 + ε

end if
end while

The process is repeated for MDR(−→u (x(i,j)). After sorting the features according to their discriminative potential
the number of features is iteratively decreased. The number of wrongly classified C1-observations is monitored
at each step and the process is stopped as soon as a C1-observation that influences the detection rate is wrongly
classified (See algorithm 2).

Boosting We are using the real adaptive boosting algorithm (adaboosting) from Open CV with boosted
decision trees as weak classifiers.18,19 Adaboost is a supervised learning algorithm, and as such it needs hand-
labeled ground-truth data. Each spatial bin belonging to the positive class c1 is labeled by hand. All others are
considered to belong to the negative class C2. A parameter search is conducted to find the optimal number of
weak learners and the optimal depth of decision trees.

Computational cost We ran all code on an Intel Core i7 Q840 @1,87 Ghz. Feature extraction is performed
with MATLAB c⃝(2010a,The MathWorks, Natick, MA). Classification is performed with Visual C++ (2010



Algorithm 2 Pseudocode algorithm of feature space reduction
εc1,R = εc1
i = 1
while εc1==εc1,R do
delete column F (A(i, 1), j) and F (A(i, 2), j)
Adaboost → train(F )
εc1,R = Adaboost → test(F )
i = i+1;

end while

Express, Microsoft Corporation, Redmond, WA).
Considering all initially extracted features the classification of a single bin takes 0.0021ms on average. The
average number of bins chosen through the previously described preprocessing steps over all images within the
test set is 88, the maximum is 166 and the minimum 9 bins. Classification therefore takes between 0.0189ms and
0.3486ms with an average time per classification of 0.1848ms per image. Feature extraction takes 2.6s per image
on average using all 187 features. After feature space reduction the computation takes 1.9s on average and the
average time of classification for an image decreases by 28%.

3. EXPERIMENTS

A leave-one-out (LOO) cross-validation was performed considering each of the 12 datasets as a complementary
subsets of all C1 and C2 images. Each bin within one image is individually classified. Most images contain more
than a single bin with or without gastritis so that different combinations of correctly and incorrectly classified
bins can occur within a single image. The different combinations are summarized in table 2. Each of this
combinations contribute to one or both of the following performance measurements:

1. εC1: The percentage of images belonging to C1 that are correctly classified out of the number of all images
belonging to C1.

2. εC2: The percentage of images belonging to C2 that are correctly classified out of the number of all images
belonging to C2.

εC1 measures the sensitivity of the algorithm while εC2 is a measurement for the specificity. Both are important
to evaluate the performance of our CADP algorithm.

Image Number of Number of Contributes negatively(-) or positively (+)
Ground Truth False Positives False Negatives to the performance measurements

C1 0 < NC1 +εC1
C1 0 = NC1 −εC1
C1 > 0 < NC1 +εC1
C1 > 0 = NC1 −εcC1
C1 > 0 0 +εC1
C1 0 0 +εC1
C2 - 0 +εC2
C2 - > 0 −εC2

Table 2. Occurrences of classification errors within a single image and their contribution to sensitivity and specificity
measurements

4. RESULTS

Two benchmarks εC1 and εC2 as described in section 3 were evaluated on our dataset. The results are summarized
in Table 3. The initial feature vector of 187 features could be reduced to 66 features without loosing diagnostic



relevance. In summary a set of features is presented that is able to detect a gastric lesion with a mean detection
rate (εC1) of 80.56%. Images without gastric lesion are correctly classified at 91.17% (performance measurment
(εC2)).

DataSet No. Class εC2 εC1 DataSet No. Class εC2 εC1
Occurrence (in %) (in %) Occurrence (in %) (in %)

1 C1/C2 93.33 90.625 4 C1/C2 67.5 33.33
1a C2 100 - 4a C2 100 -
2 C1/C2 86 77 5 C1/C2 80.16 76.77
2a C2 90.16 - 5a C1/C2 92 75
3 C1/C2 94.66 100 6 C1/C2 90.79 88.46
3a C2 100 - 6a C1/C2 100 100

Table 3. Results of LOO validation in % of correct detections for 8 Datasets (Each containing two series of images from
the same patient).

5. NEW OR BREAKTHROUGH TO BE PRESENTED

We presented a classification method for on-the-fly detection of images with gastritis aspects in magnetically-
guided capsule endoscopy. A first study of suitable features for automatic detection of gastritis in MGCE was
conducted. Our method yielded an overall detection rate of 91.17% for images from both classes and 80.56% for
images containing gastritis lesions.

6. CONCLUSIONS

Automatic detection of gastritis lesion in MGCE appears to be feasible. We showed that the proposed algorithm
performs with a satisfactory sensitivity and specificity on the aforementioned dataset of 6 volunteers. We noticed
that the classification, even if effective for the majority of the dataset, has difficulties for some image sets. These
datasets contain pathologies captured from a very acute camera angle or under extremely difficult lighting
conditions. We showed that five out of seven feature groups are important for achieving good results in gastritis
image classification using a LOO-validation. From initially chosen feature groups the number of features could
be reduced by 64% in average without any loss of accuracy in the detection of gastritis lesions for the given
dataset of 1406 images. If more ground truth data is available, it should be included in the training process to
build a classifier with an improved sensitivity and specificity over all available datasets. For further work we aim
to extend our algorithm to detect more pathologies that occur in the MGCE. Depending of these pathologies
the choice of different features should be considered.
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