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ABSTRACT

Machine learning techniques like pointwise classification are widely used for object detection and segmentation.
However, for large search spaces like CT images, this approach becomes computationally very demanding. De-
signing strong yet compact classifiers is thus of great importance for systems that ought to be clinically used as
time is a limiting factor in clinical routine. The runtime of a system plays an important role in the decision about
its application. In this paper we propose a novel technique for reducing the computational complexity of voxel
classification systems based on the well-known AdaBoost algorithm in general and Probabilistic Boosting Trees
in particular. We describe a means of incorporating a measure of hypothesis complexity into the optimization
process, resulting in classifiers with lower evaluation cost. More specifically, in our approach the hypothesis
generation that is performed during the AdaBoost training is no longer based only on the error of a hypothesis
but also on its complexity. This leads to a reduced overall classifier complexity and thus shorter evaluation
times. The validity of the approach is shown in an experimental evaluation. In a cross validation experiment,
a system for automatic segmentation of liver tumors in CT images, that is based on the Probabilistic Boosting
Tree, was trained with and without the proposed extension. In this preliminary study, the evaluation cost for
classifying previously unseen samples could be reduced by 83% using the methods described here without losing
classification accuracy.
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1. INTRODUCTION

Automatic detection and segmentation of liver tumors in CT images still pose a great challenge for researchers.
The huge variability in appearance of both healthy liver tissue and tumors makes their distinction particularly
difficult. In this field, machine learning techniques seem most promising as they can adapt to new cases more
flexibly than other methods and thus generalize comparably well. Boosting techniques, such as the popular Ada-
Boost algorithm or its derivate, the Probabilistic Boosting Tree (PBT), have been used particularly successfully
in this setting.1–3

There are two main approaches to lesion detection by classification: One can either train a classifier to
identify image subwindows containing lesions or classify single voxels as belonging to a lesion or not. The former
has the slight disadvantage of requiring assumptions about the expected lesion size, as a lesion usually has to
lie completely inside a subwindow. The latter is more flexible in this respect, it can in principle handle lesions
of arbitrary size and shape. It has, however, the slight drawback that it does not per se result in contiguous
detections but rather class information about single points. These points then have to be combined into lesion
masks. On the other hand, this provides a segmentation of the lesion with voxel accuracy at the same time.
Both approaches have in common that their application to large images is computationally expensive.

In this paper, we present a technique that can reduce the computational complexity of a detection system
based on AdaBoost classification considerably without losing quality. Carneiro et al.4 presented a method for
faster PBT training and application that is based on constraining the size of the classifier. Their method is,
however, limited to the PBT, whereas we directly aim at the underlying AdaBoost procedure. The methods can
thus be used complementarily or completely independently from each other.
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In the following sections, we describe the segmentation framework in which we developed and evaluated the
proposed technique and shortly review the PBT and AdaBoost algorithms, before we present our extension to
them. Finally, a comprehensive evaluation is provided that shows the validity of the approach.

2. METHODS

Our system3 simultaneously detects and segments focal liver lesions in contrast enhanced CT images. To this
end, first the liver is extracted using an automatic segmentation technique in order to reduce the search space.
Next, intensities inside the liver are standardized to compensate for variations due to acquisition timing or patient
specific perfusion differences. A PBT then assigns a lesion probability value to each individual point in the liver.
After some post processing, a lesion mask is generated from the probability image by thresholding.

2.1 The Probabilistic Boosting Tree

The PBT is a two-class classifier proposed by Tu in 2005.5 It has been successfully applied to various challenging
classification problems such as polyp detection in virtual colonoscopy CT images,6 detection of fetal anatomies
in ultrasound images,4 and segmentation of pediatric brain tumors in MR images.7

The PBT operates in a divide and conquer manner, resembling a soft decision tree. During learning stage it
recursively builds a tree, training an AdaBoost8 classifier for each node (Fig. 1).

Fig. 1. Structure of the PBT: Each tree node contains an AdaBoost classifier, which consists of several
base classifiers called weak learners (here: decision stumps).

AdaBoost constructs a strong classifier by repeatedly calling a weak learning algorithm and combining the
hypotheses this algorithm generates. In each iteration, the new hypothesis is incorporated into the strong
classifier, where its output is weighted based on its error on the training data. This procedure is repeated until
a predefined maximum number of weak learners is reached or the hypothesis error exceeds a certain predefined
level.
The resulting strong classifier

H(x) =

N∑

i=0

αihi(x), (1)

after training N ∈ N weak learners hi with weights αi ∈ R, was shown to approach logistic regression9 for
posterior probabilities p(y|x), y ∈ {−1, 1} by

H(x) ≈ 1

2
ln
p(y = +1|x)
p(y = −1|x) , (2)

allowing the computation of approximate posterior probabilities for a sample x as

q(±1|x) = exp(±2H(x))

1 + exp(±2H(x))
. (3)
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According to these probabilities the training samples are split at the newly trained node into a positive and a
negative subset, putting ambiguous samples into both sets. A sample is considered ambiguous if its posterior
probability q falls into the range [ 12 − ε, 12 + ε] for a user defined ε. The samples are then reweighted, putting
less emphasis on the ambiguous ones, and the positive and negative subsets are used to train the right and left
subtrees of the node. This procedure is repeated until a predefined maximum tree depth is reached.

Splitting the training set effectively divides the input space at each node, making this classifier particularly
well suited for problems with high intra-class variance: Nodes high up in the tree have to make only rough
decisions, while deeper nodes get to solve very specialized subproblems on smaller portions of the input space.

Applying the PBT to classify a new pattern x works in analogy to the training. Starting from the root node,
the sample is handed down the tree. At each node the AdaBoost classifier calculates its posteriors q(x) and
depending on the result the pattern is recursively passed on to the subtrees. If the AdaBoost classifier is very
certain about a sample’s class, i.e. its probability q(1|x) is outside the range [ 12 −ε, 12 +ε], the other class’ subtree
is not traversed. Finally, at each node the results from the subtrees are combined and returned up the tree,
where for omitted subtrees the empirical class distribution from the training data is assumed as result. This
simplification does not influence the overall result much, since at each node the subtrees’ results are weighted
based on the node classifier’s posterior probability q(1|x). In case this probability is high (or low) enough to
omit a subtree, its result would receive very little weight anyway.

In this fashion the PBT combines the classification results of its internal nodes into the overall approximate
posterior distribution p̃(y|x) at the root node. This probability value can then be used to directly trade off the
tree’s sensitivity vs. its specificity via a single threshold.

2.2 Constrained Boosting

The PBT algorithm, due to its hierarchical nature, can generate much more compact classifiers than plain Ada-
Boost, without loss of discriminative power. Also, the mechanism of omitting certain subtrees when classifying a
new sample, can yield a considerable speedup. In general, the classifier’s complexity can be stated as a function
of the number of weak learner evaluations when classifying new samples. There are two ways of further reducing
this complexity.

2.2.1 Subtree Pruning

The implicit pruning performed during classifier application by not descending into certain subtrees can save a lot
of computation time without losing much classification accuracy. Thus, better strong learners for the tree’s nodes,
which allow the pruning of more subtrees during application, could yield a reduction in complexity. However,
this contradicts the idea of the PBT: The power of this classifier stems from the fact that it is hierarchical,
working in a divide and conquer manner. Stronger classifiers in the nodes would mean giving up this concept
and approximating a single flat classifier.

2.2.2 Cost Constrained Hypothesis Selection

Instead, we propose to reduce the PBT’s overall complexity by modifying the AdaBoost training procedure.
AdaBoost iteratively trains a set of weak learners or hypotheses ht, at each iteration t incorporating the one
with the best classification performance into the final classifier H. In our case decision stumps function as weak
learners, reducing this process to selecting the single most discriminating feature at each iteration. Simply using
less complex features could obviously reduce the overall complexity of the PBT considerably. However, as simpler
features often don’t have the same discriminative power, we do not want to abandon the more complex ones
completely. Instead, we trade off complexity vs. discriminative power. This is achieved by defining a cost for
each feature and combining it with the classification error to form a new selection criterion. So, for selecting the
next hypothesis ht for the ensemble, instead of optimizing a criterion based solely on the classification error with
respect to the sample weight distribution Dt, such as

ψt(h) =
∑

i:h(xi) �=yi

Dt(i), (4)
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a cost term c(h) is introduced, resulting in the optimization criterion

ψt(h) = λ · c(h) + (1− λ) ·
∑

i:h(xi) �=yi

Dt(i). (5)

During PBT training, the weighting factor λ is decreased linearly with increasing tree depth until it reaches 0 on
the last tree level. That way in higher nodes simple features are preferred, resulting in very fast classification.
At the same time deeper nodes, that have to solve very detailed problems, can make use of the full feature set to
generate more complex hypotheses where necessary. Being located deeper in the tree, these complex hypotheses
will be evaluated less often, adding less to the overall complexity than hypotheses in higher nodes.

The hypothesis cost can be an arbitrary function defined on the hypothesis space H with c : H �→ [0, 1], may
it be determined analytically, heuristically, or empirically. Also, this approach is not limited to classifiers based
on decision stumps. For other types of weak learners, the cost term can be incorporated into the hypothesis
generation process in a similar fashion.

Of course, using this combined optimization criterion can in general lead to the selection of suboptimal
(with respect to their classification error) hypotheses. However, the only requirement AdaBoost makes for its
hypotheses is that they have to be weak learners, i.e. their training errors have to be below 0.5. In the two-class
case this can be formally ensured by using an odd number of samples. In the end, AdaBoost may have to generate
more hypotheses than without the cost term. But the overall complexity can still be lower, if hypotheses with
much lower individual costs are used.

3. RESULTS AND DISCUSSION

The effect of the proposed constrained feature selection process was evaluated in a five fold cross validation
experiment on a database of 15 CT datasets showing livers with venous contrast enhancement. All images
contained hypodense liver lesions, such as cysts, various metastases or hepatocellular carcinoma. The system’s
detection and segmentation performance on this database has been evaluated in.3 Here, we focused on comparing
the evaluation costs of classifiers trained with the new feature selection process to those of classifiers trained with
the original PBT algorithm.
To determine the hypothesis cost function to be used for optimization we chose a very hands-on approach. Each
feature was calculated on the target machine and the elapsed time was measured, averaged over several thousand
runs. The resulting values were scaled to the range [0, 0.5]. This range was used instead of [0, 1] in order to have
the cost values in the same range as the hypothesis errors, although the same effect on the training could be
achieved by setting the weighting factor λ accordingly. Here, λ was initially set to 0.5 and then linearly decreased
as described in section 2.2.

The overall cost of classifying a new sample with the PBT cannot be determined analytically because of the
subtree pruning. Instead, one has to actually apply the PBT to the sample and accumulate the hypothesis costs
along the way. This yields the PBT’s cost cpbt(x) for a sample x. The overall cost for an image, represented
as the set of samples X = {x1, ..,xn} calculated from its voxels would then be Cpbt(X) =

∑n
i=1 cpbt(xi). In

our cross validation experiment each image occurs in the test set once and only once, so we calculated the total
evaluation cost of all 15 images in the test database. The experiment was run twice, once with and once without
the proposed cost optimization, with all other parameters set identically.

Compared to the standard PBT training, the total evaluation cost could be reduced by 83% by the proposed
feature selection method, without losing classification accuracy as can be seen from the receiver operating char-
acteristic (ROC) curve in Fig. 2(c). This curve was generated by varying a threshold on the posterior probability
output by the classifier and evaluating the resulting confusion matrix.

Figures 2(a) and 2(b) show, that the feature selection worked as expected: In high nodes, AdaBoost chose
simpler (and thus cheaper) features than with the standard PBT version, thus the much higher total and average
evaluation costs of the original PBT for depths 1−4. In deeper nodes, which are rarely evaluated, the cost penalty
in the constrained PBT algorithm was decreased. Hence, the AdaBoost procedure focused more on the weak
learners’ classification error and the average cost increased. The strong increase in cost at depth 5 is explained
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Fig. 2. Comparison of classifier accuracies and costs. At each tree level, the cost of all hypotheses is (a)
accumulated for one sample and (b) averaged over the number of AdaBoost classifiers. For the
constrained PBT the weight of the cost factor is decreased linearly with increasing tree depth
and thus the average cost per node increases. The standard PBT shows the opposite trend,
as here only the hypothesis error is used for feature selection, ignoring costs. Hence, stronger
but more expensive features are selected in higher tree nodes. (c) Comparison of classification
performance of original PBT algorithm and our method by means of an ROC curve.

by the fact that in this experiment the variance in cost was very large between different features. The cost of the
most expensive ones was more than 300 times bigger than that of the cheapest ones, which is why the difference
in cost between these features was mostly larger than the difference in their hypothesis errors. Hence, the most
expensive features could only be chosen at the deepest tree level, where the influence of the cost factor was set
to 0. In other applications this behaviour might pose a problem, necessitating a smoother design of the cost
function or a more sophisticated definition of λ.

The curve for the original PBT shows an opposite trend: As AdaBoost always chooses the best hypotheses,
the more complex features, which have higher discriminative power, were chosen first and ended up in the highest
tree nodes, resulting in high evaluation costs. At the same time these AdaBoost classifiers split up the input
space very well, allowing the use of simpler features later in the PBT training process. That way the average
evaluation cost decreased in deeper nodes.

The classification accuracy is the same for both versions (see Fig. 2(c)), but in the original PBT version the
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number of complex feature evaluations is considerably higher, resulting in a higher overall cost.

4. CONCLUSION

We introduced an extension to the AdaBoost algorithm that allows incorporating a user defined constraint into
the hypothesis selection process during classifier training. In a preliminary study we showed that, using this
method, the computational complexity of the PBT that forms the basis of our recently proposed liver tumor
segmentation system could be reduced by 83% by incorporating a measure of feature cost. The same method
can be applied to the AdaBoost cascade10 or other, similar algorithms that contain a means of pruning parts of
the classifier.

However, this extension to AdaBoost is by no means limited to complexity reduction. The algorithm is
insensible to the semantics of the cost function. This method thus gives the user a powerful means of control
over the AdaBoost procedure, allowing the simultaneous optimization on any additional criterion that can be
defined at the hypothesis level.
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