Real-time RGB-D Mapping and 3-D Modeling on the GPU using the Random Ball Cover Data Structure

1st IEEE Workshop on Consumer Depth Cameras for Computer Vision in conjunction with ICCV 2011, Barcelona, Spain

2011-11-12

D. Neumann¹, F. Lugauer¹, S. Bauer¹, J. Wasza¹, J. Hornegger^{1,2} ¹ Pattern Recognition Lab, Dept. of Computer Science ² Erlangen Graduate School in Advanced Optical Technologies (SAOT) Friedrich-Alexander-University Erlangen-Nuremberg

Reconstruction Framework Methods Performance Analysis Qualitative Results Summary & Outlook

Reconstruction Framework

Generation of 3-D Scene Model

- Working principle
 - Given a global scene model
 - Successively register the latest point cloud to the previous one
 - Merge the global scene with the aligned data

Reconstruction Framework

Methods Iterative Closest Point Algorithm^[1]

[1] P. Besl, N. McKay: "A method for registration of 3-D shapes". In *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 1992, pp 239-256.

2011-11-12 | D. Neumann et al. | Real-time RGB-D Modeling and 3-D Reconstruction on the GPU using the RBC Data Structure

Iterative Closest Point (ICP) Algorithm

→ photogeometric ICP

rotation	$\hat{m{R}}$	\hat{t}	translation
moving point set	$\mathcal{M} = \{oldsymbol{m}\}$	$\mathcal{F} = \{oldsymbol{f}\}$	fixed point set
geometric information	$oldsymbol{f}_g,oldsymbol{m}_g$	$oldsymbol{f}_p,oldsymbol{m}_p$	photometric information
Euclidean distance	$\ \cdot\ _2$	α	weighting factor ≥ 0

2011-11-12 | D. Neumann et al. | Real-time RGB-D Modeling and 3-D Reconstruction on the GPU using the RBC Data Structure 7

Methods Random Ball Cover ^[2,3] – efficient NN search

- [2] L. Cayton: "A nearest neighbor data structure for graphics hardware". In International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures, 2010.
- [3] L. Cayton: "Accelerating nearest neighbor search on many-core systems". In *Computing Research Repository* (http://arxiv.org/corr), 2011.

Nearest Neighbor (NN) Search

- Tree-based approaches
 - kd tree
 - PCA tree
 - Ball tree
 - ...
- Hardware acceleration techniques
 - Brute-force (BF) on GPU
 - ... outperforms kd tree on CPU ^[4]

[4] V. Garcia et al. "Fast k nearest neighbor search using GPU". In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop on Computer Vision on GPU, 2008, pp 1-6.

Random Ball Cover (RBC)

- Acceleration structure for efficient NN search
- Originally intended for high-dimensional search spaces
- Exploits parallel architecture of modern GPUs
 - Construction of data structure uses BF primitive
 - Dataset queries use BF primitive
- Two approaches
 - Exact RBC: slower, exact
 - One-shot RBC: faster, not exact

→ BF search to find closest representative

→ BF search among representatives

→ BF search among NN list of closest representative

Performance Analysis

Runtime Partitioning

(regarding one ICP iteration)

Absolute Runtime: Comparison

(NVIDIA GeForce GTX 460, Intel Core 2 Quad Q9550)

Error Evaluation

(approximative NN search)

Qualitative Results

On-the-fly Reconstruction

Summary & Outlook

Summary & Outlook

- Fast ICP using the RBC data structure
 - Many algorithms rely on (real-time) ICP for surface alignment
 - RBC in low-dimensional spaces
 - Promising results: ICP runtimes < 20 ms
- Outlook
 - Improvements on reconstruction framework
 - Loop closure
 - SLAM
 - Application to other algorithms \rightarrow feature matching

Thank you for your attention.

For further information (including source code requests) please contact the authors. The implementation is based on the "Range Imaging Toolkit" (RITK).

>> http://www5.cs.fau.de/ritk

