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Abstract

The modeling of three-dimensional scene geometry from
temporal point cloud streams is of particular interest for
a variety of computer vision applications. With the ad-
vent of RGB-D imaging devices that deliver dense, metric
and textured 6-D data in real-time, on-the-fly reconstruc-
tion of static environments has come into reach. In this pa-
per, we propose a system for real-time point cloud mapping
based on an efficient implementation of the iterative clos-
est point (ICP) algorithm on the graphics processing unit
(GPU). In order to achieve robust mappings at real-time
performance, our nearest neighbor search evaluates both
geometric and photometric information in a direct manner.
For acceleration of the search space traversal, we exploit
the inherent computing parallelism of GPUs. In this work,
we have investigated the fitness of the random ball cover
(RBC) data structure and search algorithm, originally pro-
posed for high-dimensional problems, for 6-D data. In par-
ticular, we introduce a scheme that enables both fast RBC
construction and queries. The proposed system is validated
on an indoor scene modeling scenario. For dense data from
the Microsoft Kinect sensor (640×480 px), our implemen-
tation achieved ICP runtimes of < 20 ms on an off-the-shelf
consumer GPU.

1. Introduction
In the past, the acquisition of dense 3-D range data was

both tedious, time consuming and expensive, hence, hinder-
ing a widespread application. Lately, advances in RGB-D
sensor design have rendered metric 3-D surface acquisition
at convenient resolutions (up to 300k points) and framer-
ates (up to 40 Hz) possible, holding potential for a variety
of applications where real-time demands form a key aspect.
The advent of Microsoft’s Kinect [11], with more than ten

million sales within a few months, has caused a furor in
the field of consumer electronics. With the introduction of
affordable hardware, 3-D perception is gaining popularity
across a wide range of domains, such as computer gam-
ing and home entertainment, augmented reality [4], medi-
cal engineering [2], robotic navigation and collision avoid-
ance [22, 23].

We address the field of 3-D environment and model
reconstruction, with manifold practical fields of applica-
tions. Among others, 3-D modeling is a key component
for the construction of environment maps in robot or ve-
hicle navigation [13, 18], acquisition of virtual 3-D mod-
els from real objects, and digitalization of heritage objects
for restoration planning or archival storage [8]. In partic-
ular, in the field of robotics, there is an increasing inter-
est in both 3-D environment reconstruction and simultane-
ous localization and mapping (SLAM) solutions [1, 5, 19].
For instance, in the recent Robot Operating System (ROS)
contest, an RGB-D-SLAM implementation for Microsoft
Kinect ranked first in the category most useful [9].

However, only few existing approaches have achieved
interactive framerates [9, 10, 13, 15]. Huhle et al. proposed
a system for on-the-fly 3-D scene modeling using a low res-
olution Time-of-Flight camera (160×120 pixels), typically
achieving per-frame runtimes of > 2 s [15]. Engelhard et
al. presented similar runtimes on Kinect data for an ICP-
based RGB-D SLAM framework [9]. The RGB-D mapping
framework of Henry et al. performs ICP registration in an
average of 500 ms [13]. Only recently, a workshop demo of
ongoing work by Fioraio and Konolige has indicated real-
time framerates for a geometric ICP variant [10].

In this paper, we propose a framework that is capable of
mapping point cloud data streams on-the-fly, enabling real-
time 3-D scene modeling. For this reason, we have imple-
mented a hybrid 6-D ICP variant that performs the align-
ment by jointly optimizing over both photometric appear-



ance and geometric shape matching [16]. In order to allow
for on-the-fly processing, the corpus of the framework is
implemented on the GPU. For the nearest neighbor search,
being the bottleneck in the majority of previous ICP imple-
mentations, we propose the use of a data structure that is
specifically designed to benefit from the inherent comput-
ing parallelism of GPU data processing. In this work, we
have investigated the fitness of the random ball cover (RBC)
search algorithm [6, 7] for low-dimensional 6-D data. In
particular, trading accuracy against runtime, we introduce
a modified approximative RBC variant that is optimized in
terms of performance.

The remainder of the paper is organized as follows. In
Sec. 2, we review relevant literature. We present our method
for photogeometric 3-D mapping in Sec. 3 and discuss the
evaluation results in Sec. 5. Eventually, we draw a conclu-
sion in Sec. 6.

2. Related Work
More than a decade ago, Johnson and Kang were the first

that proposed the incorporation of photometric information
into the ICP framework (Color-ICP) in order to improve its
robustness [3, 16]. The basic idea is that photometric infor-
mation can compensate for regions with non-salient topolo-
gies, whereas geometric information can guide the pose es-
timation for faintly textured regions. Recently, modifica-
tions have been proposed that try to accelerate the nearest
neighbor search by pruning the search space w.r.t. photo-
metrically dissimilar points [8, 17]. However, this reduction
typically comes with a loss in robustness.

Since modern RGB-D devices produce and propagate
an immense data stream (up to the scale of 500 MBit/s),
efficient implementations are inevitable in order to fulfill
real-time constraints. For the ICP algorithm in general, a
comprehensive survey of efficient implementation variants
was given by Rusinkiewicz and Levoy [21]. However, the
survey does not include hardware acceleration techniques.
For the nearest neighbor search, being a major bottleneck
in terms of runtime, CPU architectures have shown to ben-
efit from space-partitioning data structures like k-d trees.
In contrast to algorithmic improvements, hardware acceler-
ation techniques have recently drawn the attention of the
community. Garcia et al. have shown that a GPU-based
brute-force implementation outperforms a CPU-based k-d
tree [12]. The reason for this effect lies in the fact that the
brute-force primitive can be interpreted as a matrix-matrix
multiplication. This operation can be parallelized very effi-
ciently on the GPU.

GPU implementations of traditional acceleration struc-
tures are challenging due to the non-parallel and recursive
traversal nature of the underlying data structures. Qiu et
al. [20] achieved excellent framerates for GPU based k-d
tree queries. However, the construction of the tree is per-

formed on the CPU, thus decreasing performance. Only re-
cently, space-partitioning strategies that are specifically de-
signed for GPU architectures have been addressed. A very
promising approach is the random ball cover proposed by
Cayton [6, 7]. The basic principle behind the RBC is a two-
tier nearest neighbor search utilizing the brute-force primi-
tive.

3. Methods
The proposed framework is composed of three stages

(see Fig. 1). In an initial stage, the sensor data (orthogonal
distances + photometric color information) are transferred
to the GPU, where the corpus of the pipeline is executed.
First, the transformation from the 2-D sensor domain to
3-D world coordinates and data preprocessing is performed
(Sec. 3.1). Second, based on a set of extracted landmarks,
a color ICP variant (Sec. 3.2) is applied. Third and last, the
current point cloud is attached to the model based on the
estimated transformation. Our method exploits the arith-
metic power of modern GPUs for efficient nearest neighbor
search with an inherently parallel data structure and query
framework (RBC, Sec. 3.3).

3.1. Data Preprocessing on the GPU

The Kinect device acquires RGB-D data of VGA res-
olution (640×480 px) at 30 Hz. With regard to real-time
constraints and regardless of the specific application, this
spatial and temporal data density poses a challenge to data
processing solutions. Hence, in addition to the actual point
cloud alignment, we have extended our framework to per-
form on-the-fly RGB-D data preprocessing in a highly par-

Figure 1. Flowchart of the 3-D scene reconstruction framework.
Note that the corpus of the computation (including ICP) is out-
sourced to the GPU.



allel and efficient manner on the GPU [24]. First, the
depth measurements delivered by Microsoft Kinect are to
be transformed to the 3-D world coordinate system. Indeed,
for each point xc ∈ R2 on the camera plane, its depth
value z(xc) describes a world coordinate position vector
xw ∈ R3. In homogeneous coordinates, this transformation
can be denoted as:

xw,1

xw,2

xw,3

1

 =


z(xc)
fx

0 0

0 z(xc)
fy

0

0 0 z(xc)
0 0 1


xc,1
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1

 , (1)

where fx, fy denote the focal length. This transformation
may be computed independently for each pixel, thus fitting
perfectly for parallel processing on the GPU (see Sec. 5.2).

Nomenclature Following Eq. 1, let us introduce the no-
tation for the remainder of this section. Let M̃ denote a
(moving) set of template points M̃ = {m}, where m ∈ R6

concatenates a point’s geometric and photometric informa-
tion mg ∈ R3 and mp ∈ R3:

m =

(
mg

mp

)
. (2)

Below, the indexes g and p denote that only the geometric
or photometric part is considered. In order to compensate
for inhomogeneities due to varying illumination conditions,
the photometric information is transformed to the normal-
ized RGB space, hence mp = (r + b + g)−1(r, g, b)>. In
analogy to M̃, let F̃ = {f} denote a (fixed) set of |F̃ |
reference points f ∈ R6, where f> = (f>g ,f

>
p ).

Considering the application for 3-D scene modeling
using a hand-held and real-time RGB-D device, we assume
that the pose of the acquisition device changes smoothly
over successive frames. This implies that a portion of the
scene that was captured in the previous frame F̃ is no
longer visible in the current data M̃ and vice versa. Facing
these issues, we heuristically clip the set of points that
are located outside of the central sub-volume of the 3-D
bounding box of M̃g = {mg} in order to improve the
robustness of ICP alignment. This clipping is performed
in conjunction with the extraction of the sparse sets of ICP
landmarks, denotedM⊂ M̃ and F ⊂ F̃ .

3.2. Photogeometric ICP Framework

The ICP algorithm is state-of-the-art for the rigid align-
ment of 3-D point clouds [3, 21]. It estimates the optimal
rigid transformation (R, t) that brings M in congruence
with F , where R ∈ R3×3 denotes a rotation matrix and
t ∈ R3 a translation vector. Below, we outline the essential

steps of our photogeometric ICP variant incorporating both
geometric and photometric information.

Based on a given initial estimation (R0, t0), the ICP it-
eratively refines the transformation by minimizing the dis-
tance betweenM and F w.r.t. a metric d. In the geometric
case, the distance d between an individual point mg and the
set of reference points Fg = {fg} is defined as:

d(mg,Fg) = min
fg∈Fg

‖fg −mg‖22 , (3)

where ‖ · ‖2 denotes the Euclidean norm. In order to in-
corporate the additional photometric information available
with modern RGB-D sensors, d can be modified to:

d(m,F) = min
f∈F

(
‖fg −mg‖22 + α‖fp −mp‖22

)
, (4)

where α is a non-negative constant weighting the influence
of the photometric information. The benefit of this hybrid
approach is that photometric information compensates for
regions with non-salient surface topology, and topology in-
formation compensates for faintly textured regions or pho-
tometric inconsistencies due to varying illumination. The
point in F that yields the minimum distance is denoted y:

y = arg min
f∈F

(
‖fg −mg‖22 + α‖fp −mp‖22

)
. (5)

The evaluation of Eq. 5 ∀m ∈M eventually yields a set of
nearest neighbors Y = {y}.

For the k-th ICP iteration, based on the corresponding
sets of points (Mk

g , Y
k
g ), the transformation (R̂

k
, t̂

k
) can

be estimated in a least-squares sense using a unit quaternion
optimizer [14]:

(R̂
k
, t̂

k
) = arg min

Rk,tk

1

|Mk
g |
∑
Mk

g ,Y
k
g

‖(Rkmk
g + tk)− yk

g‖22 .

After each iteration, the solution (R, t) is accumulated,

R = R̂
k
R , t = R̂

k
t+ t̂

k
, (6)

and Mk
g is updated according to mk

g = Rmg + t. The
two stages of first finding the set of nearest neighbors Y k

and then estimating the optimal transformation for the cor-
respondences (Mk

g , Y
k
g ) are repeated iteratively until a con-

vergence criterion is reached.

3.3. 6-D Nearest Neighbor Search using RBC

The random ball cover (RBC) [6, 7] is a novel data struc-
ture for efficient nearest neighbor (NN) search on the GPU.
By design, it exploits the parallel architecture of modern
graphics cards hardware. In particular, both the construc-
tion of the RBC and dataset queries are performed using
brute-force (BF) primitives. Expressed as a matrix-matrix



multiplication, the BF search can be performed in a highly
efficient manner on the GPU.

The RBC data structure relies on randomly selected
points r ∈ F , called representatives. Each of them man-
ages a local subset of F around r. This indirection creates
a hierarchy in the database such that a query is processed by
(i) searching the nearest neighbor(s) among the set of repre-
sentatives and (ii) performing another search for the subset
of entries managed by r. This two-tier approach outper-
forms a global BF search due to the fact that each of the two
successive stages explore a heavily pruned search space.

In this work, we have investigated the fitness of the RBC,
originally proposed for high-dimensional spaces, for accel-
eration of the 6-D nearest neighbor search of our photoge-
ometric ICP. Optimizing this particular ICP stage is moti-
vated by the fact that it is a major bottleneck (see Sec. 5.2).

Cayton proposed two alternative RBC search strategies
[7]. The exact search is an appropriate choice when the ex-
act nearest neighbor is required. Else, if a small error may
be tolerated, the probabilistic one-shot search is typically
faster. Originally, in order to set up the one-shot data struc-
ture, the representatives are chosen at random, and each r
contains the s closest database elements. Depending on s,
points typically belong to more than one r.

However, this implies a sorting of entries – hindering
a high degree of parallelization for implementation on the
GPU – or the need for multiple BF runs [6]. Hence, we
introduce a modified version of the one-shot approach that
is even further optimized in terms of performance. In par-
ticular, we have simplified the RBC construction down to
a single BF search, trading accuracy against runtime: First,
we extract a random set of representatives R = {r} out of
F . Second, each representative r is assigned a local subset
of F . This is done in an inverse manner by simply com-
puting the nearest representative r for each point f ∈ F .
The query scheme of our modified one-shot RBC is consis-
tent with the original approach and can be performed very
efficiently using two subsequent BF runs [7]. Please note
that our modified one-shot RBC is an approximative near-
est neighbor search algorithm (see Sec. 5.2). The scheme
can be applied to arbitrary dimensional data.

4. Implementation Details
Non-overlapping regions in subsequent frames may pose

a challenge for the alignment process, and thus are obviated
by clipping (see Sec. 3.1). In addition, an opposite effect
may occur in the region of overlap. Let us assume that the
camera maintains a static pose over time. In the presence
of noise, repeatedly sampling the same portion of a scene
will result in varying point clouds. This might lead to an
error propagation when accumulating the estimated trans-
formations over consecutive frames (Eq. 6). In order to
overcome these effects, we measure the degree of overlap
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Figure 2. Relative runtime partitioning for a single ICP iteration
including nearest neighbor search (dark gray), transformation es-
timation (medium gray) and transformation execution (light gray).
Please note that the transformation estimation is performed on the
CPU in the benchmarked implementation.

between consecutive frames by computing the L1-distance
of its depth histograms. Using this dissimilarity metric, the
current RGB-D data will be discarded for mapping when
the distance is below an empirically set threshold.

Regarding the quality of point cloud alignment, we ob-
served a strong impact of outliers. Hence, we heuristically
discard 10% of the correspondence pairs with the largest
distance to their nearest neighbors. Please note that for an
iterative scheme such as the ICP algorithm, this might in-
fluence the convergence behavior. However, we did not ob-
serve a significant effect in daily practice.

5. Experiments and Results
We have evaluated the proposed framework for on-the-

fly 3-D modeling of real data (640×480 px, 30 Hz) from a
hand-held Microsoft Kinect. Below, first we present quali-
tative results for an indoor scene mapping. Second, being a
major focus of this system, we demonstrate its real-time ca-
pability in a comprehensive performance study. Third, we
compare our approximative RBC variant to an exact nearest
neighbor search. For all experiments, the number of rep-
resentatives was set to |R| =

√
|F| [7], if not stated oth-

erwise. The performance study was conducted on an off-
the-shelf consumer desktop computer running an NVIDIA
GeForce GTX 460 GPU and an Intel Core 2 Quad Q9550
CPU. The GPU framework is implemented using CUDA1.

5.1. Qualitative Results

Fig. 6 depicts qualitative results for an indoor scene mod-
eling scenario. The sequence of point clouds was aligned
on-the-fly. Please note that the proposed framework could
also be used for a 3-D model digitalization scenario by mov-
ing the camera around an object. For this application, we

1The source code (C++/CUDA) of the proposed photogeometric ICP
using our RBC variant is available from the authors for non-commercial
research purposes.
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Figure 3. Comparison of the average runtime for a NN search
based on a GPU BF primitive, the exact RBC and our optimized
approximative RBC variant as described in Sec. 3.3. Note that our
RBC approach outperforms the exact RBC up to a factor of two
whereas the BF primitive scales quadratically.

typically modify our preprocessing pipeline in a way that
points beyond a certain depth are ignored for the alignment
procedure.

5.2. Performance Study

As stated before, the corpus of the proposed framework
including both preprocessing and mapping (photogeometric
ICP using our RBC variant) is executed on the GPU, recall
Fig. 1. This section presents quantitative results for individ-
ual steps of the processing pipeline.

Data Preprocessing The computation of 3-D world coor-
dinates from the measured depth values (see Sec. 3.1) takes
< 1 ms for VGA resolution Kinect data, including CPU-
GPU memory transfer of the RGB-D data. The subsequent
clipping and landmark extraction forM and F depends on
|M| = |F|, denoting the number of landmarks (LMs), with
typical runtimes of < 0.3 ms. Hence, data preprocessing
assumes a minor role.

# LMs |R| tICP tRBC,init # Iterations
512 23 6.8 ms 0.33 ms 15.4

1024 32 12.0 ms 0.41 ms 26.6
2048 45 16.3 ms 0.56 ms 26.1
4096 64 32.6 ms 0.91 ms 32.7
8192 91 84.7 ms 1.59 ms 38.8

Table 1. Runtimes for initialization of the RBC data structure
(tRBC,init) and ICP execution (tICP), for varying number of land-
marks, |R| =

√
|F|. Given are average runtimes for modeling

a typical indoor scene. In addition, the average number of ICP
iterations until convergence is stated.

ICP using RBC Being the cornerstone of our framework,
we have investigated the performance of our GPU-based
ICP/RBC implementation in detail. A single ICP itera-
tion consists of three steps: nearest neighbor search using
RBC, transformation estimation and the transformation it-
self. With an increasing number of landmarks, the nearest
neighbor search dominates the runtime considerably. This
is illustrated in Fig. 2, where we opposed the runtime par-
titioning of a BF implementation on the GPU. Fig. 3 com-
pares absolute runtimes for a single nearest neighbor query
and ICP iteration, respectively. Our modified approxima-
tive RBC outperformed both a BF search and our reference
implementation of Cayton’s exact RBC. Practical runtimes
of the method are given in Table 1, depicting values for a
typical indoor scene mapping. As a performance indicator,
let us refer to the runtime of 16.3 ms for 2048 landmarks,
being our default configuration for Kinect data. In post-
processing, the estimated transformation is applied to M̃g

(0.2 ms), which is then re-transfered to CPU memory (2.4
ms).
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Figure 4. Evaluation of the influence of |R| on accuracy, for vary-
ing number of landmarks. Given is the mean Euclidean distance
[mm] between the mapped points m̂RBC and m̂BF. Note the semi-
log scale.
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of landmarks and representatives. Note the logarithmic scale.



Figure 6. On-the-fly 3-D reconstruction results for two indoor mapping scenarios, shown from three distinct viewpoints each. The datasets
consist of 44 frames (first row) and 61 frames (second row) and both were acquired with a hand-held Microsoft Kinect camera.

Approximative RBC As motivated in Sec. 3.3, our ap-
proximative RBC nearest neighbor search sacrifices exact-
ness for a runtime speedup. We quantitatively investigated
the error that results from our approximate nearest neighbor
search compared to an exact BF scheme, considering the
aligned point clouds M̂RBC and M̂BF, see Fig. 4. The error
measures the mean pointwise Euclidean distance [mm] be-
tween the points m̂RBC and m̂BF, being transformed w.r.t.
different estimations for (R, t). Furthermore, we have re-
lated the runtime per ICP iteration to |R| (Fig. 5). Together,
Fig. 4, 5 illustrate the trade-off between error and runtime,
controlled by |R|. Using our default configuration (2048
LMs) and Cayton’s rule of thumb, |R| =

√
|F|, the map-

ping error is less than 5 mm. This is an acceptable scale for
the applications considered here.

6. Discussion and Conclusions
In this paper, we have proposed a GPU framework for

real-time mapping of textured point cloud streams enabling
on-the-fly 3-D modeling with modern RGB-D imaging
devices. Our quantitative RBC experiments demonstrate
that using a data structure specifically designed to exploit
the parallel computing power of GPUs is beneficial even
for low-dimensional (6-D) data. Using our optimized ap-
proximative RBC for the photogeometric nearest neighbor
search, our system achieves ICP runtimes of < 20 ms on
an off-the-shelf consumer GPU, for Microsoft Kinect data

(640×480 px). An extension of the proposed system for
SLAM will be subject of our upcoming research.
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