
75 

AUTOMATIC EVALUATION OF DYSARTHRIC SPEECH AND 
TELEMEDICAL USE IN THE THERAPY 

Elmar Nöth1, Andreas Maier1, Arnd Gebhard1,2, Tobias Bocklet1, Wilfried 
Schupp3, Maria Schuster4, Tino Haderlein1 

1University of Erlangen-Nuremberg, Germany, 2Siemens Healthcare, 
Forchheim, Germany, 3m&i Fachklinik Herzogenaurach, Germany, 4Klinikum 

der Universität München, München, Germany 
Contact: Elmar Nöth, Lehrstuhl für Mustererkennung, Martensstr. 3, 91058 

Erlangen, Germany, noeth@cs.fau.de, +49 9131 8527888  

Abstract  
After a stroke, the speech quality of the patients is often reduced. This is usually 

caused by a deficit of the motor abilities of the vocal tract. The result is slurred 
speech. In the various patients, however, very different forms can appear. In the 
course of therapy, evaluation of the speech quality is required to determine the 
success of the treatment. At the moment, this assessment is performed only 
perceptually. This form of assessment is subject to strong intra- and inter-individual 
variation. Therefore, an “objective” assessment is not guaranteed. In this study, we 
present a rater-independent method for evaluating speech disorders in dysarthria. We 
use methods of automatic speech recognition. The idea is to determine the speech 
intelligibility – the main outcome parameter of speech – automatically by an 
automatic speech recognizer. A correlation of -0.89 was obtained between the 
criterion “intelligibility” and the recognition rate of the automatic system, in a 
preliminary study. The second part of this paper deals with an additional problem 
with this kind of patient. Very often, the stroke leads to partial facial paresis and 
generally to reduced mobility. Therefore, it is desirable that therapy sessions are 
performed in a telemedical setup. We report on our work towards such a telemedical 
diagnosis and rehabilitation system which will allow sessions with a therapist and – 
at the same time – diagnose the patient and track the recovery process. We describe 
the equipment (web camera, 3-D camera, stereo microphone, and Internet 
connection), the patient's environment, and the working environment of the therapist. 
Depending on the network connection, live images of the patient can be sent to the 
therapist at a rate of 20 frames per second (fps) at existing LAN connections or 3 fps 
with a DSL 6000 connection. At the patient host, a three-dimensional face model of 
the patient performing a facial exercise can be generated and transferred to the 
therapist in real-time (LAN) or three times real-time (DSL 6000).  

1 Introduction  
The quality of the speech in patients after a stroke is often reduced (Urban et al. 

2001). A deficit of the motor abilities of the vocal tract is usually the cause for 
“slurred” speech. There is a considerable variance in the speech outcome across 
different patients. In the course of therapy, evaluation of the speech quality is 
required to determine the success of the treatment (Ludlow 1994). There is no 
objective, validated, automated procedure for the determination of the speech 
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intelligibility in patients with dysarthria. The perceptual assessment of the 
intelligibility by speech therapists is not objective and, therefore, subject to inter- 
and intra-individual variation. In particular, experience is a crucial factor (Paal et al. 
2005). In order to obtain a more reliable assessment, patients are often evaluated by 
an expert committee or panel. However, this is usually performed only for clinical 
studies and research, because a lot of time and effort are required. In this paper, we 
first present the use of an automatic speech recognition system to evaluate the 
intelligibility. Furthermore, we use automatic prosodic features which are also 
extracted from the speech signal and compare them with a number of other 
perceptual criteria. There is some previous work on automatic evaluation of 
dysarthric speech. Van Nuffelen et al. (2009) describe an automatic evaluation 
method based on phonemic and phonological features. They reach correlations 
between their objective and perceptual phoneme intelligibility scores from about 0.8 
for the two feature groups alone to 0.94 for a combination of the feature groups. 
Their system is not yet combined with 3-D information (see below) which is 
favorable for the detailed description of pathologic speech production nor is it 
provided via internet for telemedical application. For the German language, Ziegler 
and Zierdt (2008) developed a telemedical system for the evaluation of intelligibility 
which demonstrated high reliability. They use perceptive evaluation of unknown 
speech leading to the quantification of speech disorder in accordance to Schiavetti’s 
claim to quantify the percentage of intelligible words of a word sequence (Schiavetti 
1992). However, this telemedical system is based on manpower and therefore 
includes a time lag until results are given. 

The second part of the paper deals with our current work to integrate these 
diagnosis tools into a telemedical diagnosis and rehabilitation system where the 
patient can perform a therapy session at home. This is especially important, if the 
patient has reduced mobility. Apart from analyzing the speech of the patient, we 
have to provide a fast real-time transmission of the speech signal to the therapist in 
such a setup. In order to be able to better evaluate the facial expressions of the 
patient (especially asymmetries due to facial paresis), we create a 3-D model of the 
patient’s head so that the therapist can have a side view of the patient doing facial 
exercises. In this paper we concentrate on the transmission speed of our system. The 
rest of the paper is organized as follows: In Chapter 2, we describe the method for 
the evaluation of dysarthric speech. In Chapter 3, we describe the patients that we 
used for the acoustic analysis in this pilot study. The results are presented in Chapter 
4. In Chapter 5, we deal with the extension of the system to a telemedical system. In 
Chapter 5.1., we describe the technology to acquire 3-D information. In Chapter 5.2., 
the patient’s work place is looked at in more detail, and in Chapter 5.3., results 
concerning the real-time properties with different Internet connections are presented. 
The paper ends with an outlook and summary. 

2 Evaluation of Dysarthric Speech 
The speech data were recorded over the Internet with our “Program for Evaluation 

and Analysis of All Kinds of Speech Disorders” (PEAKS, Maier et al. 2009). 
PEAKS runs in any Internet browser and is based on Java technology which allows 
platform-independent use. The data are transmitted to our server and evaluated 
centrally (cf. Figure 1). PEAKS currently can only be used as an offline system and 
is currently not intended for telemedical use, i.e., the patient and the therapist are in 
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the same location when the therapist accesses the PEAKS web page. Then a client is 
downloaded which displays the text to be spoken. The patient records his or her 
speech data which are locally stored by the client. After the recording, the data are 
securely transmitted to the server. There they are analyzed by a speech recognition 
system which is based on Hidden Markov Models (HMMs) and a prosody module. 
As training data for the speech recognition system, solely normal speakers were 
used. We did not include dysarthric training data in order to be able to better judge 
the deviation from “normal” speech. The training data were from the Verbmobil 
project (Wahlster 2000) and covered most regions of dialect of Germany.  

The recognizer is described detail in Stemmer (2005). It was developed at the 
Pattern Recognition Lab (Lehrstuhl für Mustererkennung) of the University of 
Erlangen-Nuremberg. As features we use 11 Mel-frequency cepstrum coefficients 
(MFCCs) and the energy of the signal plus their first-order derivatives. The short-
time analysis applies a Hamming window with a length of 16 ms, the frame rate is 
10 ms. The 12 delta coefficients are computed over a context of two time frames to 
the left and the right side (56 ms in total). The recognition is performed with semi-
continuous HMMs. The codebook contains 500 full-covariance Gaussian densities 
which are shared by all HMM states. We only used a unigram language model to 
weigh the outcome of each word model in order to put more weight on the 
recognition of acoustic features. 

The result of the analysis is the number of correctly recognized words with respect 
to the reference (word correctness WC). 

WC = (C / R) * 100 %      (1) 

C denotes the number of correctly recognized words, and R is the number of 
words in the reference.  

Furthermore, automatic prosodic features which model energy, fundamental 
frequency, length of voiced and voiceless segments, jitter, and shimmer were 
investigated. The prosody module is described in detail in Zeißler et al. (2006). In 
our case, it takes the forced time alignment of the text to be read (not the recognized 
text) and the speech signal as input. Thus, the timing information and information 
about the underlying phoneme classes (such as long vowel) can be used by the 
prosody module. First, the prosody module extracts the so-called basic features from 
the speech signal with a frame rate of 10 ms. These are the energy, the fundamental 
frequency (F0), and the location of voiced and unvoiced segments in the signal. In a 
second step, the actual prosodic features are computed to model the prosodic 
properties of the speech signal. For this purpose, a fixed reference point has to be 
chosen for the computation of the prosodic features. We decided in favor of the end 
of a word because the word is a well-defined unit in word recognition. The end of a 
word can be provided by any standard word recognizer, and therefore this point can 
more easily be defined than, for example, the middle of the syllable nucleus in word 
accent position. For each reference point, we extract 21 prosodic features. These 
features model F0, energy, and duration, e.g. the maximal F0 in the current word. In 
addition, 16 global prosodic features for the whole utterance are calculated. They 
cover the mean and standard deviation for jitter and shimmer and information on 
voiced and unvoiced sections. The last global feature is the standard deviation of the 
fundamental frequency F0. In order to evaluate pathologic speech on a test level, we 
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calculate the average, the maximum, the minimum, and the variance of the 37 turn- 
and word-based features for the whole text to be read. Thus, we get 148 features for 
the whole text. A more detailed description of the automatic speech evaluation 
system is given in Maier et al. (2009). As the speech evaluation system is more or 
less unchanged, we would like to focus on the novel combination of the 3-D camera 
system with the speech evaluation system (see below). 

The results of the speech and prosody analysis are available shortly after 
recording. To compare the human and the automatic evaluation, four speech 
therapists with at least five years of experience rated the criteria “intelligibility”, 
“roughness”, and “prosody”. The ratings were performed using a five-point scale 
assessment for each criterion, and the average per patient was computed in order to 
obtain rater-independent scores. The agreement between the human and the 
automatic evaluation was determined as a Pearson (1896) correlation.  

Figure 1. Diagram of the client-server architecture of PEAKS (Maier et al. 2009) 

3 Patients  
For this study, 28 patients with dysarthria were recorded during post-stroke 

rehabilitation. The patients were 39 to 76 years old. Depending on the severity of the 
dysarthria, the treatment can take 3 to 18 weeks, with an average duration of 5 
weeks. Written informed consent was obtained from all patients participating in the 
study prior to the examination. Approval was received by the ethical standards 
committee on human experiments using human subjects at the University Clinic 
Erlangen. 

The data consisted of reading a standard text, the German version 
(http://de.wikipedia.org/wiki/Die_Sonne_und_der_Wind) of “The North Wind and 
the Sun” (http://en.wikipedia.org/wiki/The_North_Wind_and_the_Sun). Overall, the 
text contains 108 words, of which 71 are disjoint. It is widely used in speech therapy 
in Germany. Figure 2 shows the recording setup using a standard PC at the m&i 
Fachklinik Herzogenaurach. The audio data were collected using lapel microphones. 
One is attached to the clothes of the therapist (on the right) and one was attached to 
the patient’s clothes (on the left). This procedure allows segmenting the speech of 
both easily. All analyses were performed on the patient’s audio data only.  
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Figure 2. Recording setup 

4 Automatic Evaluation of Dysarthric Speech 
The perceptual evaluation of the human raters proved to be very consistent. The 

inter-rater correlation, i.e. the correlation of one rater and the average of the other 
three raters was in the range of 0.75 and 0.80. The average of all four raters was 
0.78. The results of the evaluation of one rater compared to the average score of the 
other three raters is depicted in Figure 3. Small amounts of uniform noise are added 
for better visualization purposes. 

The mean of all four experts was used as the reference to train an automatic 
system. As depicted in Figure 4, there was a significant correlation of r = -0.84 
between the perceptual assessment of the intelligibility of the four human raters and 
the word correctness of the automatic speech recognition system (p < 0.01). The 
higher the word correctness, the smaller the human score should be, because ‘1’ on 
the assessment scale means ‘very good’, and ‘5’ means ‘very bad’. Therefore, the 
negative correlation is expected. The high correlation is in line with previous studies 
(Maier et al. 2009). 

The evaluations of the criterion “prosody” correlated with the ratio of the length of 
voiced and voiceless segments, r = 0.82 (p < 0.01). “Roughness” and the average 
number of voiceless segments correlated with r = 0.81 (p < 0.01). The correlation 
with “jitter” was only r = 0.66 (the computation of jitter is described in Levit et al. 
2001). Also on the criteria “prosody” and “roughness”, high, significant correlations 
between human evaluation and automatic prosodic features were found. The 
relationship of “prosody” and the ratio of the length of voiced and voiceless 
segments can be explained by the fact that both features are related to accentuation 
in speech. The correlation between “roughness” and the average number of voiceless 
segments is also plausible: High roughness may disturb the automatic fundamental 
frequency extraction algorithm, resulting in an erroneous classification of voiced 
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signals as voiceless. Hence, a long voiced segment may be divided into several short 
voiced and voiceless segments. Eventually, this increases the number of voiced and 
voiceless segments. This hypothesis is supported by the observation that the number 
of voiced segments also correlates at r = 0.80 (p < 0.01) with “roughness”.  

Figure 3. Correlation of one of the four experts and the average of the other three 
raters 

Figure 4. The correlation between the human experts and the automatic system is 
high (r = −0. 84) and significant (p < 0. 001) 
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5 Towards a Telemedical System 
We have shown that an automatic diagnosis of the intelligibility can be done and 

this information provides a second opinion to the speech therapist. However, so far, 
the therapist still has to be present in person. In many cases, this poses a problem 
since the patients are often immobile because of a stroke that caused the dysarthria in 
the first place. Thus, it might be very difficult for the patient to come to the 
therapist’s office. An alternative is that the therapist comes to the patient. This, 
however, is very costly because a highly trained specialist spends a significant 
amount of time on the road, especially in rural areas. This is why we have been 
working on a telemedical solution. Telemedicine is a rapidly developing application 
of clinical medicine where medical information is transferred through interactive 
audiovisual media for the purpose of consulting, and sometimes remote medical 
procedures or examinations. Apart from the obvious ease for the patient and the 
reduction of costs, a telemedical therapy might actually show better results than a 
face-to-face therapy. The reason is that the patient is aware of the fact that he has lost 
fundamental capabilities by only being able to produce slurred speech or not being 
able to close both eye lids. It might well be that the patient is more uninhibited to 
show his or her “weakness” to a therapist who sits 300 km away than to perform the 
exercise face-to-face with a therapist (whom he might even know personally). 

In our scenario, we want the speech therapist to work in a hospital and the patient 
to be temporarily provided with a laptop with audiovisual equipment and fast 
Internet access. Since the stroke can lead to facial paresis, the visual impression is 
very important. Dysarthria is a complex and varying disease characterized by a lack 
of motor control for orofacial, sometimes also respiratory and laryngeal movements, 
which needs adapted therapy concepts according to the etiology and 
phenomenology. Quite often other motoric restrictions are combined and locomotion 
is limited. That’s where telemedical therapy will fit perfectly: to provide medical 
support to dysarthric patients who cannot visit a speech therapist. The therapist then 
hears and sees the patient’s articulation and movements and can teach the patient via 
internet. Of course, therapy then is limited to verbal teaching without thermic or 
tactile stimulation except for including a naive “co-therapist” who is guided via 
internet. However, in order to better judge how well a patient can perform an 
exercise like pursing the lips, the therapist should – at least in some parts of the 
therapy session – have a 3-D view of the patient. This is why we work on a 
telemedical system with capabilities far beyond a videophone system. The 
telemedical system should provide a real-time audiovisual communication of the 
patient with the therapist, if necessary, provide a 3-D view of the patient’s face, and 
monitor the progress of the patient with respect to the intelligibility of his or her 
speech and the quality and symmetry of facial movements. In this way the system 
can provide help and guidance for computer-assisted practice between the therapy 
sessions in addition to providing a platform and second opinion for the telemedical 
therapy sessions. Basis of the new system is our PEAKS client-server platform, 
which has to be extended with respect to multimodality and real-time capabilities. 
Figure 5 shows the architecture of the intended telemedical system. The client 
system for the patient consists of a PC or laptop, Internet connection, stereo 
microphones, a webcam, a 3-D camera and an illumination source to better control 
the visual scene. The therapist has the same equipment except for the 3-D camera. In 
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the next chapter, we have a look at the 3-D camera which is based on the time-of-
flight principle. 

Figure 5. Schematic overview of the telemedical system (Stürmer et al. 2008) 

5.1 Time-of-Flight Imaging 
Time-of-flight (TOF) imaging is an emerging technology that provides a direct 

way to acquire 3-D surface information with a single sensor. Active light sources 
attached to the camera emit an incoherent cosine-modulated optical signal in the 
non-visible spectrum of the infrared range (850 nm). The light is reflected by the 
scene and enters the monocular camera where each TOF sensor element performs a 
correlation of the local optical signal with the electrical reference of the emitted 
signal (Xu et al. 1998). Based on this correlation, the phase shift � representing the 
propagation delay between both signals is measured. The distance d can then be 
computed straightforward, 

       (2) 

where fmod denotes the modulation frequency, c the speed of light. For reasons of 
periodicity of the cosine-shaped modulation signal, the validity of this equation is 
limited to distances smaller than c/(2 · fmod). At a typical modulation frequency of 20 
MHz, the non-ambiguity range is about 7.5 m. The TOF imaging technology benefits 
from several advantages over other 3-D surface acquisition techniques. The device is 
compact, portable and easy to integrate. It also provides precise metric information 
in the sensor coordinate system in real-time, and no calibration steps are necessary. 
With respect to potential applications in the security, automotive and consumer 
electronics industry (Kolb et al. 2009), a decrease of manufacturing costs can be 
expected with mass production being an all-solid-state off-the-shelf technology. 
Figure 6 shows the principle of a TOF camera. 
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Figure 6. Operating mode of a time-of-flight camera 

5.2 A Detailed Look at the Patient’s Work Place 
Figure 7 shows a patient during a session. The light is directed towards the 

patient’s face to have controlled illumination. The speech signal is recorded via 2 
stereo microphones at 22.05 kHz (16 bit). The webcam records a 640x480 pixel 
color image stream (24 bit per pixel). The TOF camera produces a 176x144 pixel 
depth map (16 bit depth information, 8 bit intensity). The patient either sees the face 
of the therapist (whenever the therapist wants to demonstrate an exercise) or a 
control image of himself. The patient can check whether the illumination, the 
position, and the distance to the recording devices are in a valid range, because this 
is indicated with an ellipsis around the face. For this the localization of the face both 
in the 2-D webcam image and the 3-D TOF image is necessary. We use the Viola-
Jones Algorithm (Viola & Jones 2001). Normally, only the webcam image stream 
and the speech signal are transmitted to the therapist in real-time. The number of 
pictures per second depends on the Internet connection (see below). For certain 
exercises, e.g., pursing the lips, a 3-D model of the face is created. For this, the TOF 
depth map and the webcam are registered. After the exercise, this 3-D model is 
transferred to the therapist. For an exercise lasting about 3 seconds, ca. 480 kB of 
data have to be transferred. Figure 8 shows a test person during the exercise 
“showing the teeth”. Here, the viewing direction and the time change from left to 
right are visible. In the leftmost image, the mouth is still closed; in the central image, 
the teeth are visible, and in the right image, the mouth is closed again. The viewing 
direction can be altered by the therapist using the mouse.  

Distance d = time t * speed 
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Figure 7.The recording station for the patient 

Figure 8. Face of a test person during the exercise “showing the teeth” from 
different viewing directions 

Figure 9 shows the work place of the therapist. In the normal mode, only the 2-D 
image stream is shown (left image in Figure 9). During an exercise, a 3-D face 
model is computed which is transferred to the therapist (right image in Figure 9) who 
can then look at the exercise from different viewing angles.  

Figure 9. Screen of the therapist’s work place 

Stereo microphones

Illumination

TOF camera

Webcam

Control image  
for the patient
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5.3 Results Concerning Transmission Speed 
In the last section, we have described some extensions of PEAKS towards a 

telemedical system. We have created a mobile workplace that can be used from the 
home of a patient or in a rehabilitation clinic with a remotely located therapist 
performing a therapy session or checking whether a patient is correctly performing 
exercises performed between therapy sessions. In this section, we will describe some 
experiments concerning the transmission speed of such a telemedical system. For 
this we performed some test therapy sessions where the test person first read “The 
North Wind and the Sun” and then performed 4 typical facial exercises which lasted 
about three seconds each: 

Raising of the eyebrows 
Closing of the eyes 
Showing the teeth 
Pursing of the lips 

Even though we have a module that automatically classifies the asymmetry of the 
face during these exercises (Gebhard et al. 2001), we will only report here on the 
transmission speed with different Internet connections. Since we only used 
volunteers without facial pareses during the development of our system, we tested 
three different scenarios: 

The work place of the patient and the therapist are in one LAN. Transmission 
speed is 100 MBit (scenario LAN). 

The work place of the patient and the therapist are connected via Internet with a 
DSL 6000 connection (scenario DSL). 

The work place of the patient and the therapist are connected via Internet with a 
UMTS stick for the patient’s computer (scenario UMTS). 

Using the parameters described in Chapter 5.2., we measured the number of 
images per second for reading the text and the transmission time for the 3-D models 
of the exercises. As can be seen in Table 1, the UMTS scenario is not yet applicable 
without much stronger compression for telemedical applications. In the DSL and the 
LAN scenario, the transmission speed is fast enough to perform some tests with real 
patients. 

Table 1. Transmission speed for different Internet connections 
 Live images per sec. Duration of 3-D 

transmission (in sec.) 

Scenario LAN 20  1 

Scenario DSL   3 10 

Scenario UMTS   2 24 

6 Outlook and Summary 
We have presented some preliminary work towards a computer-assisted 

telemedical diagnosis and therapy system for people with dysarthria. The system is 
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intended for real-time telemedical therapy sessions or for computer-assisted exercise 
sessions. In both setups, the transmission speed is of crucial importance and it is 
desirable that an automatic analysis of the patient’s performance can be done, both 
with respect to the acoustic signal and the symmetry properties of the face. In the 
therapy session scenario, the automatic analysis acts as a second, objective opinion, 
by diagnosing the speech of the patient with respect to properties like 
“intelligibility”, “prosody”, and “roughness” and assessing the symmetry properties 
of the face during exercises after facial paresis. The system also automatically 
documents the progress of the therapy. In the exercise scenario, the system has to 
“supervise” the patient during the exercises that he performs between two therapy 
sessions and summarizes these sessions for the therapist. In a pilot study, we have 
shown that the acoustic analysis is in high agreement with the judgment of a panel of 
experienced speech therapists. We have also shown that the transmission speed is 
acceptable for a LAN and a DSL scenario. This could even further be improved 
using compression of the depth data as proposed in Stürmer et al. (2008). We are 
currently conducting data collection in a rehabilitation clinic with dysarthric patients. 
This will allow us to verify these very encouraging results with respect to the speech 
analysis on a larger group of patients and to reevaluate and improve the classification 
of facial pareses described in Gebhard et al. 2001. There, only a 2-D image was 
available and we expect significant improvements with the additional 3-D 
information. During this study, we want to compare the telemedical setup with a 
face-to-face setup.  

Furthermore, we will develop instruction dialogues so that the system can analyze 
exercises between therapy sessions. Finally, we want to improve the UMTS 
scenario, i.e., increase the compression rate until the transmission speed is acceptable 
and test whether the quality of the images is good enough to allow a telemedical live 
session. 
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