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Purpose: This work introduces a rigid registration framework for patient positioning in radiother-

apy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of

the system are also investigated for future gating/tracking strategies.

Methods: A novel preregistration algorithm, based on translation and rotation-invariant features

representing surface structures, was developed. Using these features, corresponding three-

dimensional points were computed in order to determine initial registration parameters. These pa-

rameters became a robust input to an accelerated version of the iterative closest point (ICP) algo-

rithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were

used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the fea-

ture based preregistration over an “ICP only” strategy was evaluated, as well as the robustness of

the rigid-transformation-based method to deformation.

Results: The proposed surface registration method was validated using phantom data. A mean tar-

get registration error (TRE) for translations and rotations of 1.62 6 1.08 mm and 0.07�6 0.05�,
respectively, was achieved. There was a temporal delay of about 65 ms in the registration output,

which can be seen as negligible considering the dynamics of biological systems. Feature based pre-

registration allowed for accurate and robust registrations even at very large initial displacements.

Deformations affected the accuracy of the results, necessitating particular care in cases of deformed

surfaces.

Conclusions: The proposed solution is able to solve surface registration problems with an accuracy

suitable for radiotherapy cases where external surfaces offer primary or complementary information

to patient positioning. The system shows promising dynamic properties for its use in gating/track-

ing applications. The overall system is competitive with commonly-used surface registration tech-

nologies. Its main benefit is the usage of a cost-effective off-the-shelf technology for surface

acquisition. Further strategies to improve the registration accuracy are under development. VC 2012
American Association of Physicists in Medicine. [DOI: 10.1118/1.3664006]
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I. INTRODUCTION

Recent advances in computer technology and medical imag-

ing devices have created new opportunities for medical

applications such as image-guided diagnostics and interven-

tional procedures. In order to benefit from the complemen-

tary information from these new imaging modalities, a

registration of either mono-modal or multimodal image data

are often required. Several image registration solutions are

available, e.g., image-based or surface-based registration.1

Modern radiotherapy calls for effective and efficient, as

well as safe treatments. Within this framework, image regis-

tration plays a key role in the treatment planning as well as

in the delivery phase. The introduction of image guided ra-

dio therapy (IGRT) has gained great attention because of its

potential for more effective and safe radiotherapy treat-

ments.2 X-ray imaging is currently the most widely used

IGRT approach. However, though it offers the possibility of

visualizing internal structures, it does so by exposing

patients to additional radiation doses. Ongoing investigations

on the integration of radiotherapy devices with no dose, high

soft tissue contrast imaging modalities are currently being

developed.3 Furthermore, many efforts are focused on opti-

mizing the radiotherapy workflow by:
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1. decreasing the time slot allocated to treating each patient;

2. potentially increasing the throughput of the radiotherapy

device;

3. reducing the negative impact of long treatment times on

the patient.

These two goals—the need for dose reduction in IGRT

and workflow optimization—have stimulated the investiga-

tion of noninvasive surface-based positioning systems in

order to:

• properly align and monitor patients in an expeditious

manner;
• reduce the radiation dose by advantageous surface-based

positioning or monitoring.

Motion management has also gained increasing attention

in order to further maximize the tumor control rate and mini-

mize the probability of normal tissue complications, espe-

cially in emerging hypofractionated regimens. Interfraction

motion management is tightly linked to patient positioning

and, to some extent, to the emerging adaptive radiotherapy

(ART) techniques.4 Intrafraction motion management con-

sists of gating5 and tracking. Tracking can be applied to the

entire patient (patient tracking6—often known also as patient

surveillance with the possibility of compensating for the

patient movement), or to the tumor (tumor tracking7—using

internal anatomycal images with a possible link to external

information through correlation models8). Thus, a natural de-

velopment of surface-based systems will be their evolution

from patient positioning applications, to patient and tumor

tracking. This implies, in turn, that there will be a particular

emphasis on fast response systems.

Most of the available surface-based positioning systems are

based on technologies like laser range scanners9 or active

stereo camera systems.10 Representative commercially avail-

able systems are the laser range scanners Galaxy (LAP GmbH,

Lueneburg, Germany), Sentinel (C-RAD AB, Uppsala,

Sweden), and the stereo system AlignRT (Vision RT, London,

UK). According to LAP, the Galaxy scanner has a patient posi-

tioning accuracy of less than 1 mm at a scan speed (for a single

surface) of up to 5 s,11 which can be critical in terms of real-

time gating/tracking. The registration error of the Sentinel sys-

tem evaluated on phantoms is reported as less than 0.5 mm for

the translational and less than 0.5� for the rotational compo-

nent.12 The AlignRT system has been evaluated on both

patients and phantoms. In real-time mode, AlignRT reaches a

surface image capture rate of 0.1–0.3 frames per second (fps).

Using a head-and-neck phantom, Peng et al. reported a mean

registration error of 1.2 6 0.7mm (mean 6 standard deviation)

in the translational and 0.7�6 0.4� in the rotational compo-

nent.10. The evaluation on patients was performed on five sub-

jects who received intracranial stereotactic radiotherapy

(SRT). Thereby, the isocenter positioning accuracy was

0.2 6 0.3 mm in the translational and 0.2�6 0.6� in the rota-

tional component. As reference datasets for the registration

they utilized previously recorded surface images of the phan-

tom and the patients, respectively. In Bert et al., the accuracy

of the AlignRT system was evaluated with phantoms for

relative translations of 61 cm and rotations of 65�.13 As ref-

erence surface, the acquisition before the couch translation/

rotation was used. They reported a mean Euclidean distance of

0.95 6 0.58 mm and a maximum of 2.2 mm between the real

and the computed translation. The mean rotational error was

below 0.1�, but was not exactly specified.

Besides these acknowledged limitations regarding accu-

racy, available systems often exhibit the following additional

drawbacks:

• Laser scanners acquire a scene consecutively: this is an

essential drawback of laser scanners if dynamic scenes are

acquired;
• Structured light systems involve a sensitive polyocular

configuration. Small vibrations can slightly change their

stereo base setup, which in turn affects the accuracy of the

whole system. Consequently, polyocular systems are more

sensitive to extraneous influences (e.g., forces, etc.), which

may necessitate regular recalibration;10,14

• Both systems are currently expensive, which may prevent

the large scale adoption of these solutions.

Thus, we propose an alternative to laser scanners and

active stereo camera systems, which is based on time of

flight (ToF) cameras. ToF sensors are a relatively novel tech-

nology for acquiring three-dimensional (3D) data in real-

time. Thus, there is a limited body of work on the employ-

ment of ToF sensors in the medical field. The more closely

related work is that by Schaller et al.15 who first investigated

the suitability of ToF technology for patient positioning and

respiratory motion gating. They analyzed the positioning ac-

curacy using both a body phantom and three human subjects.

In their evaluation, the authors ignored rotations and consid-

ered ground truth translations of up to 10 cm at a working

distance of 80 cm. They reported a mean registration error of

2.88 6 1.84 mm for the phantom and 3.38 6 2.00 mm for the

human subjects. This first approach was further enhanced

and evaluated on a rigid phantom for small translations of up

to 10 mm.16 For this “translation only” scenario, a registra-

tion accuracy of 0.74 6 0.37 mm was achieved. Another

interesting application involves the use of ToF sensors in the

registration of organ surfaces with data extracted from a

computed tomography volume. In that work, Müller et al.
report a mean surface-to-surface distance of 1.70 6 0.36 mm

(after registration) on four porcine livers acquired with a

ToF camera at a camera-object distance of 60 cm.17

In this paper, we present a surface-based registration

framework using a time-of-flight (ToF) camera. ToF tech-

nology allows a single shot acquisition and is less suscepti-

ble to vibrations, since it is based on a single optic module.

Currently, the price of ToF cameras starts at 1000 USD and

will probably decrease in the future as the sensors become

more widely used, driven by the increased demand in auto-

motive and consumer electronic industries. ToF cameras

emit intensity-modulated eye-safe near-infrared light. By

calculating the phase shift between the emitted and reflected

light, ToF sensors measure distances at each pixel. Current

cameras provide more than 40 000 3D points at about 25 fps.

In addition to the distance data, ToF cameras also provide a
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two-dimensional (2D) gray-scale image of the scene, which

is called amplitude image. Details about the principle of

operation of ToF cameras can be found in Ref. 18.

Some other medical applications for ToF cameras have

been recently published, e.g., inverse C-arm positioning,19

building and tracking of root shapes20 and quantitative 3D en-

doscopy.21 In the field of respiratory motion analysis, ToF

cameras are used for gating,22 the creation of a patient specific

model based on 4D computer tomography (CT) Data23 and

3D respiratory motion detection.24,25 Furthermore, Fayad

et al. investigated the correlation of respiratory motion

between the external patient surface acquired by a ToF cam-

era and internal anatomical landmarks.26

Despite their increasing popularity, ToF cameras still suf-

fer from several sources of noise and systematic distance

deviations. Systematic distance errors include the “wiggling”

error, the intensity-related distance error, the temperature-

related distance error, as well as the integration-time-de-

pendent distance error.27 “Flying pixels,” motion artifacts,

and multiple reflections are additional sources of noise.9

According to the manufacturers, the per-pixel accuracy of

recent ToF cameras without postprocessing is about 1 cm.

The aim of this work is to develop and validate a method

for increasing the accuracy of a ToF camera based system to

a degree that is acceptable for radiotherapy applications (i.e.,

less than 2 mm (Ref. 28) for emerging techniques like ste-

reotactic body radiotherapy—SBRT—or in the range of

approximately 1.5–11 mm (Refs. 29 and 30) for coarse skin-

marker laser-based patient positioning in conventional radio-

therapy). By using just a single ToF camera for fast patient

motion applications, the implementation of the solution

becomes easier and less expensive. The ToF camera may be

the primary source of motion information for those cases

where surface data are considered sufficient for driving

radiotherapy applications (e.g., in the whole breast), while it

may provide complementary information when surface in-

formation alone is inadequate. In particular, it may be used

to replace laser-based coarse patient positioning, allowing

for a fast, automatic positioning workflow.

Patient positioning and tracking in radiotherapy require

the determination of transformation parameters between a

reference dataset and the currently acquired data of the

patient. Therefore, we evaluated the patient positioning ac-

curacy/robustness and also started to investigate the dynamic

properties of the proposed solution for future applications to

motion management. In gating applications, the respiratory

signal could be extracted over a selected region of interest in

the acquired field of view. In patient tracking applications,

the acquired field of view is used to perform a real-time cor-

rection based on rigid registration (e.g., by the table or by

multileaf collimator leaf positions), with the additional con-

straint that, if the displacement exceeds a given threshold, a

beam off signal is sent to the linear accelerator (linac). Tu-

mor tracking is beyond the scope of the current investiga-

tion, but it is one of the future directions of this work,

especially developing a correlation model between internal

markers and the external surface:20 the possibility of using

the entire or a part of the acquired surface to create a robust

and accurate correlation model holds a significant potential

over the current marker based correlation.

II. MATERIALS AND METHODS

The proposed framework is capable of reducing the ToF

measurement noise by means of distance calibration and

temporal Kalman filtering of the distance data. After these

preprocessing steps, a pair of mutually rotated and translated

surface datasets are matched using a two-step registration

algorithm: rotation and translation invariant features are

used for preregistration, followed by a fast version of the

iterative closest point (ICP) algorithm.

II.A Processing pipeline

An overview of the processing pipeline is shown in Fig. 1.

The input consists of two datasets denoted as a dynamic live
dataset (acquired, e.g., during daily treatment delivery) and a

static reference dataset (acquired, e.g., in the first treatment

session or a surface automatically extracted from planning/

pretreatment tomographic images). In this work, we have

used only ToF inputs. Before the ToF datasets are registered,

the data quality is improved by applying a distance correction

followed by Kalman filtering. Furthermore, patient and back-

ground regions are separated in a body segmentation step.

II.A.1 Distance correction

In order to reduce systematic errors, a per-pixel correction

of the distance values is performed a priori to improve the

spatial accuracy. The distance correction is independent

from the final position of the camera in the treatment room.

However, it should be regarded, that the calibrated distance

range (here: 1.0–1.4 m) approximately corresponds to the

range of distance values in the area of interest in the treat-

ment room. For the proposed calibration, range images of

eight large boards with different infrared reflectivity were

acquired at three known distances (f1.0; 1.2; 1.4g m) with a

fixed integration time. The eight calibration boards were fab-

ricated with manufacturing accuracy sufficient for correcting

FIG. 1. Processing pipeline of the registration framework.
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distance deviations in the submillimeter range. The system-

atic distance deviations were determined by comparing the

ideal distance values (given by the calibration boards) to the

ToF distance measurements in every pixel. The detected dis-

tance offsets were stored in lookup tables depending on the

three distances, the eight intensities and all the pixel indices.

During runtime, the errors are corrected by means of a

Kochanek-Bartels spline interpolation31 in the intensity do-

main and a linear interpolation in the distance domain. We

also tried linear interpolation in the intensity domain. How-

ever, in our experiments the accuracy of the corrected dis-

tance values using spline interpolation was on average 0.5

mm better than the results obtained by linear interpolation.

In order to quantitatively measure the quality of the dis-

tance calibration, we acquire images of a flat board at three

arbitrary distances lying between the distance samples used

for the calibration. In each of the three acquisitions, the N
measured 3D plane coordinates ui that correspond to the flat

board are approximated by a plane Pc using linear regres-

sion. Based on these measurements, a quality criterion Gc is

computed as the mean of absolute distance (MAD) between

the measured points and the approximated plane

Gc ¼
1

N

XN

i¼1

dðPc; uiÞj j: (1)

II.A.2 Kalman filtering

Quantum noise in the distance data is further reduced via

Kalman filtering.32 By employing this technique, we are ca-

pable of reducing the distance noise, while preserving possi-

ble motion, with very small delays. In our Kalman filtering

step, we are processing the distance data pixel-wise over

time according to an a priori acquired, bivariate measure-

ment noise model, which depends on the amplitude and dis-

tance values. We use a 3D state vector, which incorporates

the current distance, speed and acceleration (first and second

derivatives of the distance). The derivatives with higher

orders (�3) are considered process noise, which is adjustable

and provides a trade-off between processing delay and noise

reduction.

Unlike the most typically used noise removal techniques

(e.g., median filtering or a filter with finite impulse response),

Kalman filtering belongs to the class of prediction filters. As

such, it is subject to an additional risk of overcompensating,

especially when applied to very noisy data (like the distance

values in a ToF pixel). However, the Kalman filter is regarded

as an optimal linear filter, if the input data are corrupted with

white, Gaussian distributed noise.33 In our analyses of the

PMD CamCube ToF camera (PMD Technologies, Siegen,

Germany), we could measure approximately white, Gaussian

noise in the raw distance values provided by the camera. This,

coupled together with the time-domain filtering which is

native to prediction filters, makes Kalman filtering particularly

well-suited for this application. Figure 2 illustrates the effect

of applying a Kalman filter to one pixel on the abdomen of a

male, breathing patient: in general, Kalman filters do not

involve a fixed delay in the output signal. Nevertheless, if the

cross correlation between the unfiltered and the filtered signal

is measured, we could approximate a mean delay of about

two camera frames (ca. 65 ms). Low delays play a key role in

real-time applications like gating/tracking, which demand a

fast dynamic response of the system.

II.A.3 Body segmentation

After the temporal filtering step, all image points related to

the patient are segmented in 3D for both the live and the refer-

ence datasets. In order to distinguish between patient and non-

patient image areas, the treatment table is used as a separation

plane. The table surface and coordinate system are detected in

a one-time calibration step by rotating and shifting the treat-

ment couch and observing with the ToF camera a checker-

board pattern lying on the table. Corresponding checkerboard

corners are detected in the amplitude images in order to esti-

mate the coordinate system of the table.

At runtime, the height of the separation plane is adapted

according to the varying table height given by the couch

FIG. 2. Effects of Kalman filtering in the distance

domain: Unfiltered signal and signal after Kalman

filtering.
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controller. Points lying below the table are assigned to the

background. Points lying above the table plane are consid-

ered as body pixels, since no other objects (except the

patient) should be positioned in the area between the ToF

camera and the treatment couch. The 3D vertices corre-

sponding to the body pixels are triangulated by subdividing

blocks of four adjacent pixels into two triangles. Vertex nor-

mals are computed by averaging over the eight neighboring

triangle normals of the current pixel.

II.A.4 Surface registration algorithms

Having segmented the body surfaces in the ToF datasets,

a two-stage surface registration algorithm is performed.

First, an initial registration estimate is obtained based on

new translation- and rotation-invariant features. During the

2nd stage, the registration parameters are gradually refined

through an accelerated ICP algorithm.

Step 1: A key component of our methodology is the intro-

duction of novel surface features computed in the frequency

domain. These features are particularly suitable for handling

registration problems with large rotational/translational dis-

placements and slightly overlapping surfaces. The feature

computation for the live and the reference dataset differ in

one aspect: in order to reduce the complexity, the features in

the live dataset are only computed on a regularly subsampled

grid in the index space (we use a reduction factor of 8 in

both image dimensions). For the reference dataset, all points

are considered. A single feature vector in the live/reference

dataset is extracted as follows:

(i) Define a local neighborhood around the current point

pj by starting a region growing procedure on the sur-

face mesh (with pj as seed point). The region growing

algorithm runs over all points within a fixed, maximum

distance rmax to the seed point. In our implementation,

a spatial threshold rmax¼ 60 mm is used.

(ii) Compute the mean normal nz at the current point by

means of an area weighted averaging over all triangle

normals in the local neighborhood.

(iii) Define a local 3D coordinate system with the current

point pj as origin and the average normal nz as z-axis.

The x- and y-axis (nx, ny) are chosen arbitrarily, but

perpendicular to each other and the z-axis. Transform

all points in the local neighborhood into the new coor-

dinate system. The new z-values can now be handled

as the function values of a bivariate (x, y) function.

(iv) Resample the local function in polar coordinates [sig-

nal g(r, u)] for several different radii rn. In our system,

we use a radius stepsize of 10 mm. The previous steps

(i)–(iv) are defining a proper, local coordinate system

(see Fig. 3 for a schematic illustration).

(v) Transform the circular, isoradial 1D signals [i.e., g(rk,

u)] into Fourier space. Construct the feature vector for

the current point by including a fixed number of low

Fourier magnitude coefficients as well as a fixed

FIG. 3. Visualization of the steps (i)-(iv) of the feature

computation algorithm: (1) Definition of local neigh-

borhood, (2) normal computation, (3) coordinate sys-

tem definition, (4) resampling in polar coordinates.
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number of differential phase coefficients. For our eval-

uation, we chose 24 Fourier magnitude coefficients and

their corresponding differential phase coefficients (that

means 48 coefficients in total). The transformation into

Fourier space is required to keep the features invariant

to rotations around the normal axis of the surface

patch. A translation of the radial 1D signal results in a

linear phase in the Fourier domain.

With these feature vectors, corresponding points in the

live and the reference dataset are computed by minimizing

the n-dimensional Euclidean distance of a feature vector in

the live dataset to all feature vectors of the reference dataset.

An example output of the correspondence-finding step is

illustrated in Fig. 4. False correspondences (e.g., due to high

noise or occlusion effects) are removed by analyzing the in-

ternal, pairwise distances of corresponding points in the two

datasets P (live dataset) and Q (reference dataset)

dRMSð j;P;QÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðkpi � pjk � kqi � qjkÞ2
vuut ; (2)

where (pj, qj) denotes the jth 3D point correspondence (j [
f1,…,Ng), N is the number of found correspondences and

k.k represents the Euclidean norm. Poor matches are elimi-

nated by iteratively removing the correspondences with the

worst dRMS values, as long as all correspondences fulfill (2)

with a threshold of 10 mm. Good correspondences (usually

>80%) are then used to compute an initial rigid body trans-

form according to

ðR0; t0Þ ¼ argmin
R;t

XN

j¼1

kRpj þ t; qjk2: (3)

R0 and R represent 3� 3 rotation matrices, t0 and t are 3D

translation vectors.

Step 2: The initial transformation computed by means of

the surface features is then refined with a modified version

of the ICP algorithm. This second stage is based on the tech-

nique described in Ref. 34. Typically, space partitioning

trees or projection strategies are used to determine closest

points. In our framework, we precompute closest points on a

dense voxel grid enveloping the whole reference dataset.

Thereby, the complexity of determining the closest points is

reduced to a single memory lookup. For the precomputation

of closest points, the Euclidean distance is used as distance

measure. In order to attenuate the influence of outliers, the

computation of R and t includes a weighting w
ðiÞ
j

w
ðiÞ
j ¼

1

1þ p
ðiÞ
j � qj

���
���2
; (4)

where p
ðiÞ
j and qj form a point correspondence in iteration i.

Correspondences containing a point lying on a surface bor-

der are rejected to avoid problems with not completely over-

lapping datasets. Contrary to the step described in Eq. (2), a

point-to-plane distance (dpl) optimizer as in Eq. (4) is used in

detecting the final rigid body transform between the point

sets P and Q

ðRðiÞ; tðiÞÞ ¼ argmin
R;t

XN

j¼1

w
ðiÞ
j d2

pl Rp
ðiÞ
j þ t; qj

� �
: (5)

For small rotation angles (which are ensured by the preregis-

tration), a linear estimator is available for detecting the rigid

body transform.35 The plane used in the distance measure dpl

is defined by the current reference point qj and its surface nor-

mal. In order to find the closed form solution to Eq. (4), we

implemented two variants that match the degrees of freedom

of the most commonly-used treatment couches: one variant

uses six degrees of freedom (three rotation angles around the

table axes and a 3D translation vector) and one that employs

four degrees of freedom (a rotation angle around the table nor-

mal and a 3D translation vector). The output parameters can

be used to move the patient into the correct position.

II.B. Evaluation setup

The accuracy of the introduced surface registration sys-

tem was evaluated on an ONCOR table (Siemens Health-

care, Erlangen, Germany) using a CamCube2 ToF camera

with a field of view of 40� 40�. In our test room the back-

ground illumination was kept constant. Nevertheless, the

system shows low sensitivity regarding changing back-

ground light (if it is not direct sunlight), since the CamCube2

offers a feature called “suppression of background

illumination” (SBI).36

For the evaluation a rigid plaster cast body phantom with

infrared reflectivity similar to skin was put on the table.37

The small gap between the thorax and the abdomen is due to

the phantom’s capability to simulate thoracic and abdominal

respiration. The static phantom was moved along the three

table axes and rotated around the normal axis of the table.

The ground truth table rotation and translations provided by

the table control were compared to the values computed by

the registration framework. Since the utilized ONCOR treat-

ment table allows only a rotation around the table’s normal

axis (isocentric rotations), we calculated the transformation

between the two datasets using four degrees of freedom

(rotation a around the z-axis, 3D translation t). The accuracy

of the ground truth values was 0.1� for the rotational compo-

nent and 1 mm for each of the three translation parameters.

For each table movement the target registration error (TRE)

was computed. We define the TRE as the Euclidean distance

between the true/computed translational component on the

one hand [Eq. (5)] and the absolute angle difference [Eq.

(6)] on the other hand

FIG. 4. Corresponding coordinates in live (right) and reference (left) dataset

identified using the introduced features.
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TREtranslation ¼ tcomputed � ttrue

�� ��; (6)

TRErotation ¼ acomputed � atrue

�� ��: (7)

Two modes were investigated: the positioning mode (simu-

lating patient positioning phase) and the tracking mode (to

evaluate the dynamic properties of the system to be used in

future works on gating/tracking). After having found the cor-

rect transformation by the preregistration algorithm (posi-

tioning mode), the system switches to a “guided” tracking

mode, where the rotation and translation parameters of the

last frame are used as initializations for the ICP.

The ToF camera was mounted on the ceiling above the

treatment table. It observed the table region between the lin-

ear accelerator gantry at an incident angle of 78� and at a

mean working distance of 1.2 m. The mean working distance

and incident angle in the evaluation was not varied because

of the limited space in our linac test room. Rotations and

translations along the table axis were analyzed independ-

ently of each other. For the feature based preregistration,

150–250 feature vectors (48-dimensional) were used (neigh-

borhood radius: 6 cm, four sample radii at f1; 2; 3; 4g cm).

In order to show the benefit of the introduced preregistra-

tion method, we compared the registration output of the

processing pipeline (Fig. 1) to the output of another pipeline,

where the feature based preregistration is replaced by cent-

roid matching of the two surfaces. For this evaluation we

applied transformations consisting of physical translation

(i.e., moving the table) and virtual rotation (i.e., transforming

the live dataset with a rotation matrix). Furthermore, we also

analyzed the effect of cropping the body along a sagittal

plane, so that only the right half of the live dataset goes into

the registration with the complete reference dataset: this

evaluates the robustness of the method to partial surface

view.

To investigate the dynamic properties of the proposed

system, we applied a translational movement to the phantom

in the lateral direction equal to 30 mm. We then evaluated

the time needed for the system to detect the motion and to

calculate the correct transformation compensating for the

movement.

II.C Robustness to deformations

In order to test the robustness of our surface registration

method to deformations, we virtually deformed the surface

of our phantom (Fig. 5) by simulating both thoracic and ab-

dominal respiration. We introduce a simple deformation

model, which transforms the original surface vertices of the

body according to the following equation:

ztrafo;1=2 ¼ zoriginal þ abreath � cos min

x
y
z

0
@

1
A

original

�
x
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z
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@
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A

thorax=abdomen

�������

�������
� 1

dneighborhood

� p
2
;

p
2

0
B@

1
CA

0
B@

1
CA; (8)

where (xoriginal, yoriginal, zoriginal) denote the original 3D coor-

dinates of the surface and ztrafo,1/2 represents the transformed

coordinate after thoracic (number 1) or abdominal respira-

tion (number 2), respectively. The x- and y-coordinates are

left unchanged. The centroid of the thorax and abdomen are

denoted by (xthorax, ythroax, zthorax) and (xabdomen, yabdomen,

zabdomen). All points within a maximum vertex-centroid dis-

tance dneighborhood are transformed, whereby points farther

away from the thorax/abdomen centroid are less influenced

by the deformation. The current amplitude of the respiration

is represented by abreath. In our evaluation we configured the

virtual deformation by setting dneighborhood¼ 20 cm and

abreath within the range [�20 mm, 20 mm]. We also eval-

uated combined thoracic and abdominal respiration, whereby

the deformation is constructed by adding the z-deformation

for the thorax and the abdomen

ztrafo;combined ¼ ztrafo;1 þ ztrafo;2: (9)

III. RESULTS

III.A Distance correction benefit

Figure 6 compares the quality criterion Gc defined in Sec.

II A 1 with and without the application of distance correction.

For the sake of completeness, the distance correction results

are also visualized for the case of linear interpolation in the in-

tensity domain (blue curve). Without distance correction Gc

shows a mean (and standard deviation) of 1.90 6 0.08 mm,

with linear interpolation the mean is 0.94 6 0.05 mm and with

spline interpolation we achieve a value of 0.44 6 0.02 mm.

As can be seen in Fig. 6, after distance correction the

measured board points are on average around 1.5 mm closer

FIG. 5. Color image of the plaster cast phantom used for the evaluation.
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to a perfect plane than before distance correction. That corre-

sponds to an improvement of approx. 200%. Although the

distance space is sampled quite coarsely for calibration (at

20 cm intervals), the distance correction improves the depth

accuracy, so that the MAD between the approximated plane

and the measured points is below 0.5 mm for each of the

three board measurements.

III.B. Patient positioning accuracy and robustness

The detailed registration results are listed in Table I–V.

Our registration method performs best for rotations around

the z-axis as well as x- and y-translations. The z-axis accu-

racy was somewhat lower, since systematic distance devia-

tions have the most influence on that coordinate axis. Our

proposed distance correction (see Sec. II A) improves the z-

accuracy of the positioning system (see Tables IV and V).

On average, the Euclidean error decreased by 20.5%. Con-

sidering all measurements, we achieved a mean TRE of

1.62 6 1.08 mm in the translational and 0.07�6 0.05� in the

rotational component. An example visualization of the regis-

tration result is shown in Fig. 7.

The results of comparative evaluation with and without

feature based preregistration as well as of partial surface

view are summarized in Table VI and Fig. 8.

As shown in Table VI, centroid matching is not a suffi-

cient preregistration technique for very large rotations

(larger than 80�) and cropped datasets. The introduced fea-

ture based preregistration, however, allows for a consistently

fast convergence of an accurate registration by means of ICP

(25 iterations take about 1 s with our current configuration).

Furthermore, the output parameters of the successful regis-

trations were exactly equal to the artificially applied parame-

ters, representing the ground truth. For a rotation of 0� and

centroid matching, the failed registration in the half body

case appears like an outlier. However, this is due to the very

low overlap after the centroid matching for 0�. When the

dataset is slightly rotated, the overlap in the upper right body

part increases and the registration succeeds for small

rotations.

III.C. Robustness to deformations

Before applying the deformation described in Eq. (8), we

applied a virtual rotation of 90� to our test live dataset, which

is also translated by 60 mm in the y-direction with respect to

the reference dataset. In order to further test the robustness of

our methodology, we additionally limited the live dataset to

the abdomen and thorax area, respectively. Even though the

live dataset is modified via cropping, translation, rotation, and

deformation, more than 50% of the correspondences we

obtain from our feature based preregistration are good, i.e.,

they satisfy Eq. (2) with a threshold of 30 mm. All further

processing steps are performed using only these well-

corresponded points. Figure 9 shows an example registration

result for a respiration amplitude abreath of �20 mm in the live

dataset and 0 mm in the reference dataset for both thoracic

and abdominal respirations.

In a quantitative evaluation we compared the registration

results using four different configurations of the live dataset:

no respiration (static full torso), abdomnial respiration (abdo-

men only), thoracic respiration (thorax only), and combined

abdominal and thoracic respirations (dynamic full torso). As

evaluation criteria, we used the mean surface-to-surface dis-

tance (after applying the ground truth transformation and after

FIG. 6. Quality criterion Gc with and without distance correction.

TABLE I. TRE for rotations around the isocentric table axis.

Ground truth Euclidean error (mm) Angular error (deg)

�9.0� 1.98 0.15

�6.0� 1.50 0.13

�3.0� 1.99 0.13

3.0� 0.75 0.01

6.0� 1.46 0.05

9.0� 1.96 0.11

Mean 1.61 0.10

SD 0.49 0.05

TABLE II. TRE for translations along the lateral table axis (x).

Ground truth Euclidean error (mm) Angular error (deg)

�90 mm 1.57 0.18

�60 mm 1.12 0.11

�30 mm 0.83 0.05

30 mm 0.53 0.07

60 mm 0.46 0.08

90 mm 1.42 0.10

Mean 0.99 0.10

SD 0.46 0.05

TABLE III. TRE for translations along the longitudinal table axis (y).

Ground truth Euclidean error (mm) Angular error (deg)

�90 mm 1.04 0.03

�60 mm 1.11 0.04

�30 mm 0.29 0.02

30 mm 0.95 0.02

60 mm 1.16 0.04

90 mm 1.16 0.04

Mean 0.95 0.03

SD 0.33 0.01
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the transformation computed by our registration system) and

the numeric distance to the ground truth transformation pa-

rameters. The results are listed in Table VII.

In all cases, the surface-to-surface distance with the com-

puted transformation outperforms its corresponding gain

value using the ground truth parameters (0 mm, 60 mm,

0 mm, 90�). The reason for this effect is the partial compen-

sation of the deformation through the rigid body transforma-

tion parameters.

We further evaluated the effects of missing the correct re-

spiratory phase with abdominal respiration by using the de-

formation simulation itself. Therefore, we measured both the

translational and the angular TREs between the reference

(respiration amplitude abreath¼ 0 mm) and the live datasets

for different respiration amplitudes abreath. The results are

visualized in Fig. 10 (see also videos 1–4).

It can be observed, that large deformations in the abdo-

men (e.g., due to respiration) lead to a combination of trans-

lational and rotational deviations. For deformations within

an amplitude range abreath of [�20 mm, 20 mm], the final

TRE is always below 25 mm in the translational (euclidean)

and 0.45� in the rotational component.

III.D. Runtime aspects: Positioning and tracking
modes

In positioning mode, the whole framework processed two

surface datasets (both �10 000 points) in 561 ms (not paral-

lelized) on a 2.26 GHz Intel Core2Duo CPU. More specifi-

cally, the processing time is broken down to 24 ms for

preprocessing, 473 ms for feature based preregistration and

64 ms for ICP (involving ten iterations).

In “guided” tracking mode, the processing time for one

frame is reduced to around 100 ms. Accordingly, in such a

mode our system is running within 40% of the maximum

possible framerate, since the utilized ToF camera provides a

framerate of 25 fps. The system needed about 100 ms to

detect motion and about 2 s to calculate the correct transfor-

mation compensating for the movement.

IV. DISCUSSION

IV.A. Comparative evaluation

The proposed approach has several advantages over the

previously published work on patient positioning using ToF

technology. The approaches shown in Refs. 15 and 16 use

ToF-ToF surface registration for patient positioning but do

not involve distance calibration and preregistration of the

surfaces. Our method improves the registration accuracy for

the phantoms shown in Ref. 15 from 3.38 6 2.00 to

1.62 6 1.08 mm, even though the working distance is

increased from 80 to 120 cm. Our rotations and translations

were much larger than 1 cm. Thus, the registration accuracy

of 0.74 6 0.37 mm cited in Ref. 16 is not directly compara-

ble to our results—the accuracy of the registration parame-

ters decreases with increasing translations/rotations due to

distance deviations of the ToF camera.

The most referenced surface features in literature are

based on curvature38,39 and spherical integral operations40,41

When using such techniques, only a fractional amount of the

local surface information is considered. More sophisticated

approaches like spin images42 or shape contexts43 utilize

very high dimensional vectors to represent the local geome-

try. Compared to these techniques, the features introduced in

this work have the following key advantages. Contrary to

spin images, no topological information in the signal is lost

due to the computation of histograms. Compared to shape
contexts, the rotational invariance of features is ensured by

robust transformations instead of the more noise-sensitive

estimation of a local reference axis.

Although the sensor specific, systematic distance devia-

tions negatively influence the registration, we are still able to

improve the positioning results by applying a distance cali-

bration to the ToF camera. By defining a proper, automatic

calibration protocol (e.g., by using the treatment couch to

place the calibration boards in a number of different posi-

tions), the distance correction samples become denser, and

thus, the registration accuracy is further improved.

TABLE IV. TRE along table normal (z) without distance calibration.

Ground truth Euclidean error (mm) Angular error (deg)

�90 mm 5.43 0.07

�60 mm 3.76 0.15

�30 mm 1.70 0.01

30 mm 1.52 0.04

60 mm 3.62 0.12

90 mm 5.95 0.01

Mean 3.66 0.07

SD 1.83 0.06

TABLE V. TRE along table normal (z) with distance calibration.

Ground truth Euclidean error (mm) Angular error (deg)

�90 mm 4.64 0.03

�60 mm 3.14 0.08

�30 mm 1.46 0.05

30 mm 1.14 0.03

60 mm 2.85 0.06

90 mm 4.24 0.09

Mean 2.91 0.06

SD 1.42 0.03

FIG. 7. Color coded distance between two registered body surfaces (mm).
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As we use the patient surface for registration, respiratory

motion is completely reflected by the transformation param-

eters returned by the registration pipeline. In the current

work, we focus on the evaluation of rigid motion using ToF

cameras as a new modality and its potential for patient posi-

tioning. Our evaluation results are comparable to existing

systems like AlignRT, Galaxy, and Sentinel, which are also

evaluated assuming rigid motion, and to recently published

results on optical systems in radiotherapy/radiosurgery.44

Interfraction (e.g., loss of weight) and intrafraction (e.g., res-

piration related) nonrigid components of the patient surface

are likely to be present and to affect the results of positioning

and tracking in real applications. Nevertheless, nonrigid in-

formation cannot be currently exploited, since even modern

TABLE VI. Comparison between feature based preregistration and centroid matching registrations when using virtual rotation in combination with physical

translation of the phantom considering the full surface as well as half of the body surface.

Virtual rotation

(deg)

Physical Y-translation

(mm)

Only right

half of body

Success with centroid matching

(number of ICP iterations)

Success with

feature based preregistration

0 60 no yes (�10 iterations) yes (�10 iterations)

0 60 yes no yes (�10 iterations)

10 60 no yes (�15 iterations) yes (�10 iterations)

10 60 yes yes (�60 iterations) yes (�10 iterations)

20 60 no yes (�25 iterations) yes (�10 iterations)

20 60 yes yes (�45 iterations) yes (�10 iterations)

30 60 no yes (�35 iterations) yes (�10 iterations)

30 60 yes yes (�70 iterations) yes (�10 iterations)

40 60 no yes (�65 iterations) yes (�10 iterations)

40 60 yes yes (� 00 iterations) yes (�10 iterations)

50 60 no yes (� 85 iterations) yes (�10 iterations)

50 60 yes yes (�100 iterations) yes (�10 iterations)

60 60 no yes (�110 iterations) yes (�10 iterations)

60 60 yes yes (�100 iterations) yes (�10 iterations)

70 60 no yes (�145 iterations) yes (�10 iterations)

70 60 yes yes (�135 iterations) yes (�10 iterations)

80 60 no yes (�175 iterations) yes (�10 iterations)

80 60 yes yes (�200 iterations) yes (�10 iterations)

85 60 no yes (�215 iterations) yes (�10 iterations)

85 60 yes no yes (�10 iterations)

86 60 no no yes (�10 iterations)

86 60 yes no yes (�10 iterations)

87 60 no no yes (�10 iterations)

87 60 yes no yes (�10 iterations)

88 60 no no yes (�10 iterations)

88 60 yes no yes (�10 iterations)

90 60 no no yes (�10 iterations)

90 60 yes no yes (�10 iterations)

FIG. 8. Registration results for the half body case using rotation angles 0�, 30�, 60�, and 90� (unregistered live datasets in top row, centroid matching based

registration in middle row, feature-based registration in bottom row). The unregistered and registered live datasets cover half of the torso, whereas the refer-

ence dataset covers the full torso.
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radiotherapy devices are only able to deal with six degrees

of freedom. Furthermore, advanced techniques for respira-

tory tracking like the Synchrony system (Accuray Inc., Sun-

nyvale, US) currently compensate only through rigid body

transformation. Irregularities of the breathing cycle are not

taken into account in our investigation. Future work will

focus on the possibility of acquiring two time series of sur-

face: one at the simulation phase and another prior to the

treatment, calling for a series-to-series surface registration to

minimize the effect of breathing irregularities. Also, in

exploiting nonrigid components, it would be necessary to

propagate the patient surface deformation to the internal

structure surrounding the target, which is the actual focus of

the radiotherapy treatment. This could be achieved via, for

example, finite element method techniques. This approach is

clearly interesting, but it is beyond the scope of the current

investigation. For a more qualitative evaluation of the non-

rigid error, we proposed a color coded visualization (see

Figs. 6 and 7), where errors larger than 5 mm are highlighted

in red: this provides a tool for possible large mismatch

visualization.

In practice, potential deformations of the patient surface

need to be considered to evaluate possible target misalign-

ment. By simulating possible thoracic and abdominal defor-

mations (e.g., generated by respiration) and their

combination, we could show that the developed feature

based preregistration still detects a sufficient number of good

point correspondences that can act as an adequate initializa-

tion for the refining ICP step. This is also valid, even if the

input dataset covers only a part of the reference dataset (in

our evaluation only the abdomen) and is additionally rotated

and translated. Nevertheless, similar results are also

expected when using other optical systems.

To limit the effect of surface deformation, it could be use-

ful to restrict the surface acquisition to a limited area. On the

other hand, especially in smooth surface areas with little

details like the abdominal region, registration accuracy is

linked to the extension of the surfaces. Thus, the optimal sur-

face area to be considered is a trade-off between the stability

of the registration parameters and the management of local

surface deformations. In our experiments, minimal surface

extension should not be less than 500 cm2.

Given that the ground truth of this investigation was pro-

vided by the table coordinates of our test linac table consist-

ing of only four degrees of freedom (no pitch and roll), it

was not possible to investigate the effect of the other two

degrees of freedom on the surface registration accuracy.

Nevertheless, these additional degrees of freedom are signifi-

cant in current radiotherapy treatments,45 and should be con-

sidered in further investigations.

IV.B. Clinical applications

The proposed method will likely play an important role in

radiotherapy, similarly to other surface-based techniques.1

The experimental evaluation using the cropped half body

surface with a table rotation of 90� was designed for testing

the possibility of monitoring the position of the patient when

noncoplanar treatments are applied (e.g., couch 90�, gantry

35�). These treatments are likely to become more common

due to the current trend toward hypofractionated treatments,

where noncoplanarity will play an important role. The goal

FIG. 9. Registration in the presence of thoracic (first

row) and abdominal deformations (second row). Left:

Untransformed live dataset of thorax/abdomen and ref-

erence surface; Middle: Transformed live dataset of

thorax/abdomen and reference surface; Right: Distance

map between live and reference surface after registra-

tion (same color code as used in Fig. 7).

TABLE VII. Quantitative evaluation of the registration output in the presence of deformations produced by virtual respiration and comparison to corresponding

gain values of the ground truth transformation.

Respiration type None Abdominal Thoracic Combined

abreath 0 mm �20 mm �20 mm �20 mm

Region Static full torso Abdomen Thoracic Dynamic full torso

Mean surface distance after applying ground truth transformation (mm) 1.15 7.34 7.50 7.91

Mean surface distance after applying computed transformation (mm) 0.99 2.46 5.57 4.71

Distance to ground truth translation after registration (x, y, z) (mm) (�0.60,0.58,0.63) (2.18,0.55, 14.69) (�1.99, 4.08, 3.71) (�0.19, �8.18, 8.66)

Absolute distance to ground truth rotation after registration (�) 0.06� 0.38� 0.16� 0.01�
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would then be to correlate the position of the patient at the

couch at 90� with the corresponding one at the couch at 0�.
Unfortunately, CT images of patients are available only with

the couch at 0� (with the couch at 90� no CT image can be

acquired due to a gantry/couch collision). Thus, the possibility

of correlating the surface of the patient when the couch is at

90� to the CT images where the couch is at 0� will be an im-

portant tool in assuring that the target is still in the correct

position. This correlation can be based on the two surfaces

acquired when the couch is set to 0� and 90�. Patient surface

could be acquired directly with the ToF camera or automati-

cally extracted from the CT images. Note that, when the

couch is at 90�, the ToF camera will be able to capture a par-

tial surface view of the patient only from one side, so it is

essential to test the accuracy and the robustness of the method

in such an extreme condition. The success of the feature based

registration over the ICP-only approach indicates the impor-

tance of using such a method for large displacements like in

noncoplanar treatments. The constistently fast convergence

(always less than 1 s) when using the feature based preregis-

tration allows the interbeam time to be minimized, decreasing

in turn the probability of patient movement. Furthermore, the

exhibited accuracy in the experiments of the artificially

applied rotations and translations demonstrates the precise

correlation of the two patient positions when the couch is at

0� and 90�.
One could use a patient positioning system based on CT

surface extraction and a 90� rotation. However, CT acquisi-

tion is usually performed before the treatment starts and

assumes no movement during treatment delivery. Thus, the

use of a ToF surface acquisition at 0� and 90� angles allows

for a more accurate control of patient position prior to the

couch rotation. Also, the most widely used cone beam CT

(CBCT) acquisitions used in IGRT suffer from respiration

artefacts which affect the accuracy of the registration. Con-

versely, rapid ToF acquistions are able to smooth out these

artefacts, allowing also for a series-to-series 4D registration.

Physiological deformations, which may happen due to

weight loss over the treatment course or respiration, are an

important source of error and must be carefully considered.

Our results show that even when simulating large deforma-

tions and partial surface view, the system is still competitive,

in terms of accuracy, over laser-based coarse positioning in a

large range of cases. The color coded visualization supports

the user in highlighting the mismatch and triggering action

toward complementary image acquisition such as CT. The

series-to-series registration we will investigate in our future

work will help minimize the error related to different respira-

tion phases.

The dynamic properties of the proposed system suggest

promising applications to gating/tracking. In fact, the accu-

racy of the system (TRE of 1.62 6 1.08 mm in the transla-

tional component) as well as the very small time delay (about

two frames) support the acquisition of surfaces with sufficient

spatial and temporal resolutions. The short time delay needed

to detect motion allows for a fast beam off switch during radi-

ation therapy dose delivery, minimizing possible errors related

to patient motion: this minimization becomes essential due to

currently implemented fast treatments. After motion detec-

tion, the 2 s time needed to find the correct transformation

appears a reasonably short time frame to perform patient

tracking. Another possible implementation could consist of

decreasing the dose rate at the time of motion detection wait-

ing for the evaluation of the motion correction needed: if

larger than a given threshold, then, the beam is switched off;

otherwise the beam stays on at low dose rate and reaches

again the maximum dose rate value when the motion compen-

sation has been applied. Nevertheless, in clinical applications

patients are immobilized through masks or vacuum cushions

to minimize large movements. In addition to patient tracking,

the dynamic information provided by the proposed system

can be used to either extract the respiratory signal for gating

or tumor tracking creating a correlation between internal

markers and external surfaces (or points selected on a sur-

face). This will ultimately allow the development of a motion

management system like Synchrony or Real-time Position

Management (Varian Medical Systems, Palo alto, US), with

the additional advantange of either selecting points across the

surface or using the entire surface itself.

In general, for applications like brain46 or breast47 radio-

therapy as well as thoraco-abdominal radiotherapy, surface-

based techniques are likely to play an important role10 for

FIG. 10. Effects of different respiration amplitudes on the translational and rotational TRE (enhanced online). Video 1 [URL: http://dx.doi.org/10.1118/

1.3664006.1]; Video 2 [URL: http://dx.doi.org/10.1118/1.3664006.2]; Video 3 [URL: http://dx.doi.org/10.1118/1.3664006.3]; Video 4 [URL: http://dx.doi.org/

10.1118/1.3664006.4].
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patient positioning and motion management. In more general

radiotherapy applications, the proposed system would be

mainly used as an additional modality that improves the ac-

curacy of other imaging data. It also has the potential of pos-

sibly reducing the number of images that are needed and

therefore the patient dose. Although our framework was pri-

marily developed for radiotherapy, it may also be applicable

to other medical fields requiring mono-modal or multimodal

surface registration.

V. CONCLUSIONS

We have developed and evaluated a ToF based system for

automatic surface registration in medical applications, with a

particular focus on radiotherapy. The ToF surface data are

improved by the incorporation of a distance calibration as

well as Kalman filtering. Furthermore, we introduced a new,

feature based method for preregistering two surface datasets.

This preregistration is used as a very accurate initialization

for the subsequent ICP optimization. This approach is likely

to have a significant impact on cases involving large dis-

placements in patient positioning, like in noncoplanar treat-

ments. We evaluated the presented framework on a typical

patient positioning application. The proposed system

achieved an accuracy of 1.62 6 1.08 mm in the translational

component and 0.07�6 0.05� in the rotational component.

Whereby, both of these uncertainties are caused by a combi-

nation of the imaging system (ToF camera with preprocess-

ing) and the automated registration process. The system is

characterised by promising dynamic properties which make

it a good candidate for use in gating/tracking applications.

Deformations may play an important role in surface-based

target misalignament and particular care must be taken to

assure an appropriate use of optical systems in clinical rou-

tine. Last, but not least, the introduced Fourier features

themselves can also be computed on surfaces extracted from

different modalities (e.g., CT or MRI), which will be one of

the goals of our future work.
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