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Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg
Martensstraße 3, 91058 Erlangen, GERMANY

korbinian.riedhammer@informatik.uni-erlangen.de

ABSTRACT

In this work we focus on speaker verification on channels of varying
quality, namely Skype and high frequency (HF) radio. In our setup,
we assume to have telephone recordings of speakers for training, but
recordings of different channels for testing with varying (lower) si-
gnal quality. Starting from a Gaussian mixture / support vector ma-
chine (GMM/SVM) baseline, we evaluate multi-condition training
(MCT), an ideal channel classification approach (ICC), and nuisance
attribute projection (NAP) to compensate for the loss of informati-
on due to the transmission. In an evaluation on Switchboard-2 data
using Skype and HF channel simulators, we show that, for good si-
gnal quality, NAP improves the baseline system performance from
5% EER to 3.33% EER (for both Skype and HF). For strongly dis-
torted data, MCT or, if adequate, ICC turn out to be the method of
choice.

Index Terms— speaker verification, channel compensation

1. INTRODUCTION

The task of speaker verification describes the two-class problem of
detecting speakers who pretend to be someone else, so-called im-
postors. In addition to the traditional scenario where speaker veri-
fication is applied to recordings from the telephone system or room
microphones, other channels of communication draw more attention,
e.g., Skype (http://www.skype.com) as a very popular (free)
voice-over-IP service or HF radio for long range communication as
for military, nautical or aviation purposes.

The state-of-the-art is to model a speaker by Gaussian mix-
ture models (GMM) [1] that are estimated by features extracted
from a spoken utterance, typically Mel frequency cepstrum coeffi-
cients (MFCCs). Our framework uses a universal background model
(UBM) representing a set of background speakers. This UBM is
then adapted to speaker specific models using maximum a posteriori
(MAP) adaptation [2]. The mean values of these models represent
each target speaker in a high-dimensional space. In a next step, for
each training speaker, a support vector machine (SVM) is trained
where the UBM is employed as imposter model. The classifica-
tion task is to determine whether a test speaker is closer to the
background speakers or to the target speaker [3].

One major problem in this scenario is session variability which
contains both, extrinsic and intrinsic speaker variations [4]. This has
been addressed by different techniques at different system levels.
On feature level, feature mapping (FM) [5] can be used to reduce
the effect of different channels. On model level, transformations like
nuisance attribute projection (NAP) [6] or joint factor analysis (JFA)
[7] can be applied. While FM and NAP do not handle the two kinds

of variability differently, JFA tries to model extrinsic and intrinsic
variations jointly.1

In this work we keep the intrinsic variations constant and fo-
cus on a “controlled” variation of the extrinsic factors, i.e., recor-
ding channel or codec differences. This is achieved by applying va-
rious channel simulators to a set of given telephone data. from the
Switchboard-2 [8] corpus. We exemplarily simulate high-frequency
(HF) recordings in various quality levels as defined by the CCIR [9]
and Skype codec compression in various quality settings using the
Skype API. For the latter, the variations are in packet loss and in bit
rate. Note that, for Skype, we focus on the actual simulated audio
data and not the encrypted stream as for example in [10].

In this work, we evaluate four types of systems, all based on the
previously described GMM/SVM architecture.

1. As a baseline, we train a GMM/SVM system using the origi-
nal telephone data, and test it on both, the original and simu-
lated data. This system is confronted with a strong acosutic
mismatch between training and test conditions.

2. An ideal channel classification system, i.e., we train an in-
dividual system for each channel setting using the simulated
training data and test on the respective simulated test data.
This results in one system trained specifically on each chan-
nel configuration. This system is designed to have the least
mismatch in training and test.

3. A general GMM/SVM system trained in a multi-condition
manner, all simulated data for each recording of the training
set are employed to train multi-condition speaker models. The
system is then tested on all test data.

4. A state-of-the-art intersession variability (ISV) compensation
GMM/SVM system where a NAP transformation is estima-
ted on various simulated quality settings of the training recor-
dings. This results in a system with speaker models trained
solely on the original (telephone) data but transformed into a
“channel-free” space. The system is applied to all simulation
conditions of the test data.

This article is structured as follows. After a brief introduction
of the data and the channel simulation in Section 2, we describe the
different speaker verification systems in Section 3. The results of
the different systems are analyzed in Sec. 4. We conclude with a
summary and an outlook in Sec. 5.

1As we use channel simulators to obtain several versions of the same re-
cordings thus eliminating the speaker variability, we chose the computatio-
nally easier NAP for this work.
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2. DATA

The original data was taken from the Switchboard-2 [8] corpus.
The UBM was estimated on 1894 speakers. For the evaluation,
60 training and test speakers (disjoint from the background spea-
kers) with two conversations each were selected to match a com-
mercial evaluation setup of our industrial partner MEDAV GmbH
(http://www.medav.de). One conversation was used for trai-
ning, the other conversation was used for testing. For the actual
evaluation, each of the 60 test utterances is paired with each of
the training speakers resulting in a total of 3600 (60 target, 3540
non-target) trials.

2.1. HF Channel Simulation

The HF channel simulator used in this work was designed by the
MEDAV GmbH and follows the respective CCIR recommendation
[9]. It defines three quality levels “good”, “moderate” and “poor”. In
addition, the resulting signal-to-noise ration can be varied between
0, 5, 10, 15, 20, 25 or 30 dB. Considering all different settings, the
original 120 recordings result in 2520 simulated HF transmissions.

2.2. Skype Channel Simulation

The MEDAV GmbH provided us with Skype channel simulations
using the Skype API. Using the quality settings 6, 8 and 12 kbps
(kilo bit per second), a packet loss of 0%, 20%, 40%, 60% and 80%
was simulated. These settings result in additional 1800 simulated
Skype transmissions.

3. SPEAKER IDENTIFICATION SYSTEMS

From the 8 kHz, 16 bit telephone data, the MFCCs are extracted
using a 25 ms window with a time-shift of 10 ms. The FFT coeffi-
cients are compressed using 25 equidistant Mel filters covering 300-
3400 Hz. After a discrete cosine transform (DCT) the first 12 co-
efficients are selected. The very first coefficient is replaced by the
short time energy. Furthermore, we extract deltas and delta-deltas,
and perform an utterance-based mean and variance normalization.
We used an energy-based voice activity detector to remove possible
silence frames.

3.1. Baseline

The systems in this work use 1024 Gaussian mixtures with diago-
nal covariances to model the background and target speakers. The
UBM is estimated from 1894 speakers using the well-known EM al-
gorithm. From this UBM, the target speaker models are derived by
applying MAP adaptation to the mean vectors with a relevance factor
r = 16 [2]. For the background and each speaker, the mean vectors
of the respective model form the supervector (SV). S linear kernel
SVM using the libSVM toolkit [11] is trained for each speaker of
the training set, labeling the background as −1 and target as +1.
After scoring the impostor trials, we apply the T-norm. This general
system design also applies to the following systems.

For the baseline system, only the original 60 training utterances
are used to compute the speaker models. For the original telephone
test set, it yields an EER of 5%.

3.2. Ideal Channel Classification

The motivation behind the ICC system(s) is that it is best to have
matching training and testing conditions. Therefore, for each of the

different channel configurations, an individual system is trained ana-
log to the baseline system, but using simulated channel training data
that matches the test conditions, instead of the original telephone da-
ta. Of course, the use of this system is somewhat theoretical as it
would require a perfect channel condition classification prior to the
actual system application.

3.3. Multi-Condition Training

The motivation for multi-condition training is to allow the statistical
models to learn the actual speaker characteristics aside from varying
channel side effects. The original 1894-speaker UBM is adapted to
the training data (both original telephone and simulated) of the trai-
ning data of the 60-speaker dataset in order to improve the modeling
capabilities for the new channels. In a second step, the speaker mo-
dels are adapted using all available training data. The resulting mo-
dels are supposed to be less specific but more robust against channel
variation.

3.4. Intersession Variability Compensation

Though the recent JFA [7] allows to jointly estimate session and
channel variability, we chose to apply the computationally easier
NAP [6] as we kept the intrinsic variabilty of the training and test
speakers constant because of the simulated channel data.

In short, NAP tries to eliminate “unnecessary” subspaces in the
training data {x} by finding a projection P = (1−vvt) constrained
by

v∗ = argmax
v,||v||2=1

X

i,j

Wij ||Pxi − Pxj ||2 . (1)

With a proper selection of the weights Wij , P can be used to mi-
nimize the distance between two points that should be close to each
other without reducing the dimensionality as for example with (ker-
nel) PCA. Here, we set Wij = 0, if the channels of xi and xj match
and Wij = 1 otherwise.

The solution to this optimization problem can be found via sol-
ving an Eigenvalue problem. Furthermore, P can be constructed to
have a “co-rank” corresponding to the number of Eigenvectors V
used instead of the single Eigenvector v corresponding to the largest
Eigenvalue. For this work, we use a co-rank of 4 Eigenvectors, as the
evaluation setup covers only 60 speakers.

The NAP transformation is estimated for Skype and HF separa-
tely using both original and respective simulated data. This is mo-
tivated by the application scenario, where the type of channel is
known, but the quality remains unknown or variable, and results in
an individual system for the two channel groups.

4. RESULTS

4.1. Skype

Fig. 1 shows the baseline system performance for the simulated Sky-
pe channel data. For the best quality (12 kbps, 0% loss), it yields
an EER of 5% as for the original test data. It however degrades to
16.67% for the worst setting (6 kbps, 80% loss). Both kbps and loss
seem to have a strong impact on the performance.

Figs. 2-4 show the four systems in comparison. Each figure fo-
cuses on a different skype quality (6,8, and 12 kbps) with varying
package loss (0-80%) in each figure. Note that the NAP system out-
performs all other systems as long as the loss remains below 40%
(6 kbps) and 60% (other) yielding an EER up to 3.33%. For the
strong lossy channels, MCT and ICC are the methods of choice. The
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Fig. 1. Overview of the baseline system performance for the Skype
channel data w.r.t to varying package loss.
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Fig. 2. System performance for Skype codec with various loss set-
tings at 6 kbps.
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Fig. 3. System performance for Skype codec with various loss set-
tings at 8 kbps.
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Fig. 4. System performance for Skype codec with various loss set-
tings at 12 kbps.
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Fig. 5. Overview of the baseline system performance for the HF
channel data.

rather weak performance of the MCT system for “good” channels
can be explained by an overall robust performance as it is a compro-
mise for all channel settings. Though the performance might look
disappointing, it is still remarkable that the systems still work sur-
prisingly good given the tremendous losses up to 80%. Interestingly,
the baseline system sometimes outperforms the ICC which can be
explained by overtraining to the channel effects.

4.2. HF

Fig. 5 shows the baseline system performance for the simulated HF
channels, also starting at an EER of 5%. In contrast to the results on
Skype data, the performance seems to be mainly dependent on the
SNR rather than the actual CCIR quality level. It is remarkable that
already the baseline system is somewhat able to handle 5 dB SNR
data which is of course heavily distorted.

Figs. 6-8 show the detailed system comparison for the three
CCIR quality levels w.r.t. SNR. Similar to the observation for the
Skype data, the NAP system outperforms the other systems between
an SNR range of 30 to 15 db in all quality levels. For the range bet-
ween 30 and 20 db the system achieves a constant EER of 3.33%.
Also, the results suggest to use MCT if low SNR data is expected,
suggesting that the MCT is indeed more robust than the baseline or
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Fig. 6. System performance for HF simulator setting “poor” at va-
rious SNR.
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Fig. 7. System performance for HF simulator setting “moderate” at
various SNR.

NAP system at the cost of performance on data with a high SNR.

5. SUMMARY

In this work we presented a detailed evaluation of channel compen-
sation for simulated HF and Skype channel data, two increasingly
important channels for speaker verification. The baseline performan-
ce could be greatly improved by applying NAP trained on various
channel quality settings. The improvement did however not hold for
low quality settings (high loss or low SNR). MCT or, if adequate,
ICC systems show a rather average performance for high quality data
but remain robust to strong distortions. As for future work, the pre-
sented experiments should be extended to a larger evaluation setup,
to both confirm the results and to allow more complex intersession
variability compensation techniques.
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Fig. 8. System performance for HF simulator setting “good” at va-
rious SNR.
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