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Abstract

We present a physics-based approach for illuminant
color estimation of arbitrary images, which is explicitly de-
signed for handling images with multiple illuminants. The
majority of techniques that extract the illuminant color as-
sume that the illumination is constant across the scene.
This, however, is not often the case. We propose an
illuminant-color estimation method which is based on ro-
bust local illuminant estimates. There are no assump-
tions on the number or type of illuminants. An illuminant
color estimate is obtained independently from distinct im-
age mini-regions. From these mini-regions a robust local
illumination color is computed by consensus. These lo-
cal estimates are then used in deriving the chromaticity of
the dominant illuminants. Experiments on an established
benchmark database of real-world images show that our
technique performs comparably to uniform-illuminant esti-
mation methods. Furthermore, extensive tests on real-world
images show that we can reliably process mixed illuminant
scenes.

1. Introduction
Whenever an imaging algorithm relies on surface color

information, the color of the illumination must be neutral-
ized. Such a process typically requires knowledge about
the color of the illuminant. Hence, a number of diverse
techniques for extracting the illuminant chromaticity has
been developed, ranging from statistical e.g. [4, 13, 32] to
physics-based ones e.g. [16, 22, 31]. Because the problem
of determining the illuminant color of an arbitrary image is
underconstrained, these methods generally assume that the
scene is uniformly illuminated. For an overview on existing
algorithms, see e.g. [18].

Many images, however, exhibit a mixture of illuminants
with distinct chromaticities. Consider, for example indoor
scenes which are lit by both indoor light sources and light
coming through the windows, or pictures taken using a
camera-flash. In outdoor scenes, parts of the image may

be in shadow while others are lit by sunlight or street lamps
etc. These multiple illuminant effects are further exagger-
ated by inter-reflections. Illuminant estimation methods that
assume uniform illumination can not accurately recover the
illuminant chromaticity in these cases.

There are illuminant estimation methods explicitly de-
signed to handle varying illumination. In 1997, Barnard
et al. [1] were the first ones to develop a methodology
that automatically detects non-uniform illumination. They
then proceeded with removing the illumination variation, at
which point they could apply any gamut-based color con-
stancy method such as [10]. Though this method was pio-
neering at that time, its assumptions of smooth illumination
and of a set of common illuminants, restrict its applicability
on real world images. Ebner [8] followed a different ap-
proach of applying a diffusion-based approach on the pixel
intensities. However, he too assumes a smoothly varying
illumination, which together with his underlying theory of
regional gray-world can result in inaccuracies, especially in
colorful scenes [20]. More recently, Kawakami et al. [21]
proposed a physics-based method specifically designed to
handle illumination variations between shadowed and non-
shadowed regions in outdoor scenes. Due to its explicit
assumption of hard shadows and sky-light/sunlight combi-
nation (or even more general Planckian illuminants), this
method does not generalize well on arbitrary images. Thus,
by construction, none of the existing multi-illuminant esti-
mation methods can handle arbitrary images and as such,
none of them has been extensively tested on a large variety
of real images.

We propose an illuminant color estimation method
which can explicitly handle multiple illuminants and is de-
signed for real-world images, such as the ones typically
found on the web. Like Ebner [8] we use a local ap-
proach, but employ the more physically-accurate dichro-
matic model which, together with multiple sampling, results
in statistically-robust illuminant-color estimates. In order to
extract the local illuminant-color information we extended
the method of Tan et al. [31] so as to a) avoid specular-
ity pre-segmentation and b) expressly test for conformity to
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the underlying theoretical assumptions. Since our method is
physics-based, its effectiveness is independent of the quality
of training data, a known weakness of the very successful
learning-based techniques [2]. We identify regions of dif-
ferent illuminants by creating local estimates and merging
them together to major areas of highly similar illumination.
Finally, we end up with a small number of dominant illumi-
nants in the scene.

Contributions. Our proposed technique for illuminant-
color estimation under multiple illuminants makes the fol-
lowing contributions:

• It introduces a localized variant of the Tan et al. [31]
method which avoids specularity pre-segmentation.

• It explicitly takes advantage of image redundancy (i.e.
many small regions are illuminated by the same light
source) through the computation of multiple indepen-
dent estimates.

• It groups the estimates for identifying multiple illumi-
nants. In this method, the image regions where these
illuminants have their strongest influence, as well as
the color of these illuminants, are estimated under min-
imal additional assumptions.

Our methodology has been extensively tested on bench-
mark databases of both laboratory and real-world images.
To our knowledge, the proposed technique is the first
physics-based technique tested on a large database of real
images (more than 11,000 images). In each of the databases
we got a median angular error of 4.4◦. In the real-world
database we outperformed all comparable methods. Please
note, that all reported results are for single color constancy
methods. It has been shown [17, 27, 29], that the fusion
of multiple color constancy methodologies significantly im-
proves performance. Our goal is to introduce a new illumi-
nant estimation method which could then be incorporated
into a multi-method scheme. Furthermore, we show how
information about scenes with multiple illuminants can be
extracted. To the best of our knowledge, no ground-truth
dataset exists for mixed illuminants. Thus, we present qual-
itative results to demonstrate the feasibility of this approach.
Our estimates determine only the dominant illuminant for a
particular image region. Thus, in the current state, a mixture
of two illuminants is not explicitly modeled.

The paper is organized as follows. Section 2 provides
a justification for selecting the Tan et al. [31] method as
the starting point of our methodology and briefly describes
the inverse intensity chromaticity space. In Section 3 we
present our method for local illumination-color estimation.
Section 4 describes how the local estimates are used in ex-
tracting the number of illuminants. Our experimental re-
sults are shown in Section 5, followed by a brief discussion
in Section 6.

2. Background on Illuminant-Color Estima-
tion

There is a large body of work on illuminant estimation
under the assumption of uniform illumination, which could
be used as a building block for a multiple-illuminant es-
timation method. Most of the uniform illuminant meth-
ods have to either learn illuminant classes, which how-
ever do not generalize well, or make restrictive assump-
tions. For example, some techniques, which indirectly esti-
mate the illuminant color, work best for Mondrian worlds
e.g. [11, 15, 23] or make assumptions about the overall
scene composition e.g. [5, 23]. Others, like the methodo-
logy proposed by Tominaga and Wandell [32], assume prior
knowledge, like known camera filter sensitivities, which can
often not be obtained. The methods of Brainard and Free-
man [4], Finlayson et al. [13] and Geusebroek et al. [16]
assume the scene is made of diffuse surfaces, while others,
e.g. [22, 24, 26, 31] exploit specular highlights. Though
such assumptions are justifiable, they often limit the appli-
cability of these methods on real-world images. Thus, pre-
vious work on uniform illuminant estimation on arbitrary
scenes is mostly based on machine learning techniques,
e.g. [6, 12, 13, 17, 27].

One could develop a multiple-illuminant estimation
method as an extension of one of the learning-based meth-
ods. However, its effectiveness would depend on the train-
ing samples [2], which for the large variety of possible
mixed illuminants would be challenging to obtain. Instead,
we chose to use Tan et al.’s [31] physics-based method as
the springboard for our multiple-illuminant estimation al-
gorithm. We selected [31] out of the various physics-based
methods for two main reasons: a) it exploits surfaces that
exhibit a mixture of diffuse and specular reflectance, which
are typically more common that purely diffuse surfaces and
b) more importantly, when evaluated on the Ciurea-Funt
benchmark database [7] its median angular error between
5.12◦ and 5.9◦ outperformed all other physics-based meth-
ods and was comparable with the best-performing learning-
based methods (for more details see Section 5) .

The method of Tan et al. [31] is based on the dichromatic
reflection model [30], which states that the amount of light
reflected from a point, x, of a dielectric, non-uniform mate-
rial is a linear combination of diffuse reflection and specular
reflection. Furthermore, it is assumed that the color of the
specular reflection approximates the color of the incident
light. Thus, the camera response Ic(x) for each color filter
c is:

Ic(x) = md(x)Λc(x) +ms(x)Γc (1)

where md(x) and ms(x) subsume the geometric parame-
ters of diffuse and specular reflection respectively. Λc(x) =
Bc(x)/

∑
iBi(x) and Γc = Gc/

∑
iGi, i ∈ {R,G,B}, are



the diffuse and specular chromaticies with Bc(x) and Gc

being the sensor response to the diffuse and specular re-
flectance accordingly. For the remainder of the paper, we
define i ∈ {R,G,B} and use this index for summing over
the color channels.

The image chromaticity, σc, is similarly defined:
σc(x) = Ic(x)/

∑
i Ii(x). Tan et al. [31] investigated

the relationship between diffuse, specular and image chro-
maticities and showed that there is a linear relationship be-
tween the image chromaticity σc and the inverse-intensity
1/
∑

i Ii(x):

σc(x) = pc(x)
1∑

i Ii(x)
+ Γc . (2)

where pc(x) is defined as pc(x) = md(x)(Λc(x)− Γc). In
this representation, pc(x) can be seen as the slope of a line
with intercept Γc, i.e. the specular chromaticity, which is
also the illuminant chromaticity. The domain of the line is
determined by 1/

∑
i Ii(x) and the range is given by 0 ≤

σc ≤ 1.
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Figure 1. Sample pixel distributions in IIC space (blue chromati-
city). Top: synthetic image. Bottom left: ideal distribution. Bot-
tom right: The highly specular pixels are shown in red.

This linear relationship can be easily visualized in the
inverse-intensity chromaticity (IIC) space [31]. Fig. 1 shows
sample distributions of pixels in IIC space. The horizontal
axis depicts the inverse-intensity 1/

∑
i Ii(x), and the verti-

cal axis σc, the illuminant chromaticity. Fig. 1(b) is an ideal
distribution of pixels of a monochrome object in IIC space.
The diffuse pixels lie on a single horizontal line, while pix-
els that exhibit specular reflection align, according to their
specific pc(x)-values, in lines between the illuminant color
on the vertical axis and the diffuse line. Fig. 1(c) is the pixel
distribution for the synthetic image with two distinct albe-
dos shown in Fig. 1(a). Note that the chromaticity value

where the specular clusters converge and intersect the verti-
cal axis is the illuminant chroma estimate.

Though the formulation is mathematically elegant, it is,
in general, not possible to directly compute pc(x) and con-
sequently Γc. One could, however, exploit the distribution
of pixels in IIC space in order to detect the σc intercept.
Tan et al. [31] developed such a methodology. They relied
on a specularity-segmentation pre-processing step to iden-
tify pixels that lie in the specular locus (in Fig. 1(c), highly
specular pixels are plotted red for the purpose of illustra-
tion). Each such highly specular pixel contributed to the es-
timation of a single illuminant color via a Hough transform
with parameters pc(x) and Γc. For a complete discussion
on the properties of IIC-space, see [31].

3. Local Illuminant-Color Estimates
The investigation of chromaticity distributions in IIC-

space can also be performed per image region. Such a local-
ized investigation has several advantages, besides allowing
for the extraction of local illumination estimates:

1. It is best suited for complex colorful scenes, whose
chromaticity distributions do not form clearly separa-
ble clusters (see Fig. 2).

2. One can explicitly test whether the selected region
forms a non-horizontal (i.e. non-diffuse) cluster in IIC-
space. As a consequence: a) one avoids the spec-
ularity segmentation step, which can be unreliable
and thus lead to imprecise illuminant color estima-
tion [14, 28] and b) typically, a larger number of pixels
is used in the illuminant-color estimation, making the
result less sensitive to outliers.

3. Local independent analysis of different regions gener-
ates distinct sources of information on the illuminant.
By combining these independent illuminant estimates
one can obtain a statistically robust illuminant-color
estimate.

3.1. Region Screening

Consider a small image region rj which can be used for
estimating the illuminant color. According to eq.(2), purely
diffuse pixels should be excluded from the computation of
the σc intercept. Thus, if rj is a purely diffuse region (i.e. it
forms a horizontal cluster in IIC space), it should not be
used in the Tan et al. [31] method. Furthermore, if the
non-diffuse pixels have the same underlying albedo, they
will form tighter clusters and thus tighter convergence to
σc intercept. Thus, instead of pre-segmenting the image
specularities, one can select an image region rj and verify
whether it satisfies the underlying assumptions of [31]. We
propose the following conformity criteria:
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Figure 2. (a) Example real-world image. (b) Selected regions. (c)
The distribution of all the pixels of image (a) in IIC space (blue
chromaticity). (d) The distribution of pixels of the regions from
(b) in IIC space (blue chromaticity).

• uniform albedo,

• elongated, non-horizontal clusters in IIC space.

The following region selection process increases the
probability that a selected region rj satisfies the conformity
criteria.

1. Superpixel segmentation Segment the image in su-
perpixels of approximately uniform chromaticity val-
ues. A superpixel is a locally connected region of pix-
els that share low-level properties, like in our case sim-
ilar chromaticity values. We use the graph-based seg-
mentation by Felzenszwalb and Huttenlocher [9], but
any segmentation method that decomposes an image
into regions with approximately the same albedo could
also be employed.

2. Select mini-regions within each superpixel Sam-
ple with replacement small regions within superpixels
with probability proportional to the size of the super-
pixel. Any iid sampling which results in small regions
of approximately uniform albedo could be employed.

3. Exclude horizontal symmetric clusters Examine the
shape of the distribution of pixels in the candidate re-
gion. One way of doing this is via PCA. Let PIIC be
the set of pixels under investigation in IIC space, λ1

its largest eigenvalue, λ2 its second largest eigenvalue.

Then the eccentricity ecc(PIIC) is

ecc(PIIC) =

√
1−
√
λ2√
λ1

. (3)

We consider only sets PIIC that have at least an order of
magitude difference between the minor and major axes
of the covariance ellipse, i.e. ecc(PIIC) > 0.94. In or-
der to avoid purely diffuse pixels we compute also the
slope of the eigenvector v1 of λ1. A set PIIC must also
satisfy a minimum slope (0.003, in our experiments).
See Section 5 for further discussion on the region size.

A mini-region rj selected through this process generates
an illuminant estimate ĝj by computing the point of inter-
section of v1 with the σc axis. Please note that like [31]
we exclude pixels with duplicate values when generating
the distribution of pixels in IIC space. We also exclude any
pixels that are very close to the limits of the dynamic range
of the camera (i.e. saturated and very dim pixels). Note
that the mathematical formulation of the algorithm assumes
linear camera response. Since real-world images contain
typically a gamma factor, it might be necessary to correct
for this, using e.g. the method by Lin et al. [25].

3.2. Multiple Samples

One of the goals of our local illumination methodology is
to provide statistically robust estimates. We, thus, take ad-
vantage of the redundancy of information that is typically
available in an image: nearby mini-regions are often illu-
minated by approximately the same illuminant. Hence, one
of the key ideas of the proposed methodology is the deriva-
tion of a robust local illuminant estimate Γ = (ΓR,ΓG,ΓB)
per superpixel through the use of multiple mini-region esti-
mates ĝj . This superpixel estimate is obtained from k inde-
pendent and identically distributed (iid) samples.

The overall goal is to minimize the estimation error E,

E = cos−1

(
Γ · Γ̂
‖Γ‖‖Γ̂‖

)
, (4)

between the true illuminant Γ and the final estimate Γ̂. Our
approach is to sample over each superpixel. This leads to a
set E = {ĝj |j = 1..k} of iid estimates. This set consists of
“good” samples G = {ĝj |nj < ε}, ĝj = gj + nj(where nj

is noise), and of “bad” samples N = {ĝj |nj ≥ ε},

E = G ∪ N . (5)

Then, the elements of G form a unimodal distribution
around the true illuminant Γ, such that

lim
|G|→∞

argmax Hist(G) = Γ , (6)



where Hist(G) denotes the histogram of the illuminant es-
timates in G. The elements of N can be arbitrarily dis-
tributed. Our goal is to reduce the influence of N while
preserving G, so that finally

lim
|E|→∞

argmax Hist(E) = Γ . (7)

By verifying that each sample region rj satisfies the con-
formity criteria (through the process descibed in 3.1) we
increase the probability that the estimate gj obtained from
such a local region rj will be a good estimate (i.e. gj ∈ G).

4. Multiple Illuminants
Once local illuminant estimates are obtained per super-

pixel, the local information can be combined as follows for
the final computation of the number and color of the domi-
nant illuminants in the scene.

1. Group local estimates into regions with consis-
tent/similar illuminant color.

2. Obtain a new estimate per illuminant region.

An example of this process is shown in Fig. 3. The details
of each of the aforementioned steps are provided in the fol-
lowing subsections.

(a) (b) (c)

Figure 3. (a) Original image (b) Local illuminant estimation (c)
Segmented regions, colored according to the illuminant estimate.

We extended our algorithm as described in Sec. 3 to han-
dle multiple illuminants by examining the estimates per su-
perpixel more closely. Note two assumptions. First, mul-
tiple illuminants are often clearly visible in the superpixel
map, see Fig. 3 (b) for an example. Second, outlier esti-
mates occur typically isolated, both spatially and in the dis-
tribution of estimated colors. In order to extract the regions
of the dominant regions, we do the following steps.

1. Create an illuminant map by recoloring every super-
pixel by its local illuminant estimate.

2. Downscale the map, such that the larger dimension of
this image is only 140 pixels.

3. Group regions of similar estimates with the Quick
Shift algorithm [33].

The downscaling suppresses a large amount of relatively
small noisy regions. Its purpose is to speed up the Quick
Shift algorithm. Quick Shift is a method for seeking modes
in densities, which is why we preferred it over [9] for group-
ing similar estimates. In our case, we obtained the best re-
sults by applying it on the joint spatial and chromaticity do-
main, using red and blue chromaticities. Quick Shift creates
trees of data points and distances between these nodes, such
that similar regions can be segmented by separating subtrees
from this graph. By discarding smaller segments, we typ-
ically obtain three to six major regions in the downscaled
image.

For refining the estimation, we use the estimated illumi-
nant regions for iid sampling instead of the whole image.
The resulting per-region illuminant estimates can further be
merged. In this work, we merged regions that were smaller
than a predefined threshold of 10% of the image region.

5. Experiments
We quantitatively evaluated our methodology on two

widely used datasets. The first dataset contains images
taken indoors under tightly controlled imaging conditions.
The second database contains real-world images of both in-
door and outdoor scenes which are more representative of
the type of arbitrary images often found on the web. For
the detection of multiple illuminants, we present qualitative
results on images downloaded from websites like flickr. We
also examined the images used by Hsu et al. [20]. The code
for our method can be downloaded from the web1.

5.1. Error measure for benchmark data

The error metric used in the evaluation of the two bench-
mark datasets is the angular error e,

e = cos−1

(
Γl · Γe

‖Γl‖‖Γe‖

)
, (8)

between the ground truth illuminant color Γl and the esti-
mated color Γe. To summarize the angular errors for the
different images of a dataset, the median of the estimates is
computed, as recommended in [19].

5.2. Parameter selection

For the segmentation of the chromaticity images by
Felzenszwalb and Huttenlocher [9], the parameters were
fixed by visual inspection to σ = 0.3, k = 200, and min-
imum segment size m = 15. The sampling rectangle size
was set to 7 × 31 pixels. Our tests, however, indicated that
the lab database was more challenging for our methodology,

1http://www5.cs.fau.de/



Figure 4. Examples of benchmark laboratory images.

Scene Median e
Gamut mapping 3.1◦

Gray-World 8.8◦

White-Patch 5.0◦

Color-by-Correlation 8.6◦

Original IIC Method -
Physics-based diff+spec 4.4◦

Table 1. Algorithm performance on benchmark laboratory images.

since it did not closely satisfy our design criteria. Hence, for
the lab images we tried different rectangles and concluded
that a larger size of 30×55 pixels gave the best performance.

5.3. Benchmark laboratory images under uniform
illumination

The database of Barnard et al. [3] contains images of rel-
atively simple scenes (few objects, uniform background) il-
luminated by a single light source and captured with a high
quality 3-CCD camera (Sony DXC-930). There are 31 dif-
ferent scenes taken under 11 different illuminants. Out of
the 31 scenes, only 9 include items which are not purely
diffuse. Thus, we tested our methodology on these 9 scenes
under all available illuminants, for a total of 99 test images.
A subset of these images is shown in Fig. 4.

Table 1 summarizes the performance of the presented
methodology in comparison to state-of-the-art algorithms.
Our physics-based technique is only outperformed by the
gamut mapping, which, however, is dependent on a train-
ing stage. With the original method by Tan et al. [31], it
turned out that the specularity segmentation parameters are
not easy to handle. Manual adjustment of the parameters for
every image individually gave very good results. However,
we were unable to find a single fixed parameter set that gave
satisfying results on the whole database.

5.4. Benchmark real-world images under uniform
illumination

The database of Ciurea and Funt [7] includes images that
are more representative of the pictures taken by arbitrary
users. The dataset contains around 11,000 images from 15
quite diverse scenes. Sample images are shown in Fig. 5.

As can be seen in Table 2, the proposed physics-based
method achieves a significant improvement over different
state-of-the-art methods. The referenced angular errors

Figure 5. Examples of benchmark real-world images.

Scene Median e
Regular gamut with offset-model 5.7◦

Gray-World 7.0◦

White-Patch 6.7◦

Color-by-Correlation 6.5◦

1st-order Gray-Edge 5.2◦ (∗)
2nd-order Gray-Edge 5.4◦ (∗)
Original IIC-based method 5.1◦ (∗)
Physics-based diff+spec 4.4◦

Table 2. Algorithm performance on benchmark real-world images.

Scene Γr Γg Γb

Town 0.37± 0.02 0.34± 0.01 0.29± 0.02
Woman 0.33± 0.01 0.34± 0.01 0.33± 0.00
Pool 0.42± 0.04 0.37± 0.02 0.21± 0.02
Sculpture 0.31± 0.07 0.36± 0.05 0.33± 0.08

Table 3. Stability of the algorithm results on single-illuminant real-
world images. For the images of Fig.6, the mean chromaticities
and standard deviations of ten estimation runs are listed.

marked with an asterisk (∗) are taken from [27] and are
evaluated only on a subset of 711 images. The remaining
measurements are extracted from [17] and are, like our eval-
uation, computed on the entire set of 11,000 images.

Out of the 15 provided scenes, the best result was ob-
tained for “FalseCreek1” (e = 1.57◦), while “CIC2002 3”
resulted in the worst performance (e = 11.46◦).

5.5. Arbitrary real-world images under mixed illu-
mination

Since our algorithm was designed for illuminant estima-
tion of images typically found on the web, we performed
a qualitative evaluation on a set of almost 300 images we
downloaded from various websites. The database contains
images both of indoor and outdoor scenes (see Fig. 6), and
different subjects, such as nature, people, animals and archi-
tecture. Within this set, we collected also about 30 mixed-
illuminant scenes.

To illustrate the performance of the physics-based esti-
mation method on different lighting and scene contents, we
present estimates we obtained on a subset of representative
images. The example images in Fig. 6 are all captured un-
der different illumination conditions. Table 3 lists the cor-
responding estimates. For each scene, the mean estimate of



(a) Town (b) Woman

(c) Pool (d) Sculpture

(e) Dancer (f) Guide

(g) Doors

Figure 6. Subset of the selected real-world images. Single-
illuminant images are shown in the first two rows. In the two
bottom rows, the multi-illuminant images are annotated with the
segment numbers.

Scene Segment 1 Segment 2
Dancer (0.327, 0.336, 0.337) (0.330, 0.334, 0.336)
Guide (0.312, 0.343, 0.345) (0.347, 0.336, 0.316)
Doors (0.309, 0.339, 0.352) (0.294, 0.337, 0.369)
Scene Segment 3 Segment 4
Dancer (0.415, 0.306, 0.279) (0.354, 0.319, 0.327)
Guide (0.343, 0.327, 0.330) (0.331, 0.334, 0.335)
Doors (0.379, 0.334, 0.287) -

Table 4. Per segment illuminant chromaticity estimates for the
multi-illuminant images.

ten randomized runs is given in combination with the stan-
dard deviation.

One can expect that the red component of the illumi-
nant color in the outdoor scenes decreases between “Town”,
Fig. 6(a) and “Woman” Fig. 6(b). At the same time, the
blue component is increasing. This tendency is captured
quite well in the estimation results (Table 3). For the indoor
images ( Fig. 6(c) and Fig. 6(d)), the estimation for “Pool”
contains a strong red portion as expected, while the greenish
estimation for “Sculpture” is most likely a failure case.

The two next rows of Fig. 6 contain example scenes with
multiple illuminants. The spatial location of the segments
is denoted by their overlaid respective numbers in the im-
ages. In Fig. 6(e), flash light illuminates the heads of the
spectators, while the remaining scene is mainly reddish il-
luminates. In Fig. 6(f), the tourist in the foreground is il-
luminated from behind by a blueish light source. The rest
of the scene contains mainly light from the lamps. Finally,
Fig. 6(g) is taken from the dataset by Hsu et al. [20]. Table 4
shows the illuminant estimates per segment. The tendency
of the illuminant colors is well captured by the localized
estimates.

6. Discussion

We consider these results as a starting point for investi-
gating the recovery of multiple, spatially distributed illumi-
nants. Estimating on smaller image regions leads naturally
to locally weaker results. We aim to compensate this loss
with a combination of local estimation, grouping of simi-
lar estimates, and reestimation on a coarser scale. Qualita-
tive results on a number of images looked promising. One
drawback is the lack of ground truth for scenes under non-
uniform illumination. In future work, we aim to capture and
use such data. A limitation of the presented method is that
only one dominant illuminant can be estimated per region.
A more elegant formulation, also subject to future work,
would probably estimate a set of scene illuminants, and a
per-region contribution of each of these.

7. Conclusions and future work

In this paper we have introduced a physics-based method
for the automated estimation of the illuminant color which
was specifically designed for handling real-world images
with multiple illuminants. Its building block is the com-
putation of statistically robust local illuminant estimates
which are then used in deriving the number and color of
the dominant illuminants. When tested on a large bench-
mark database for uniform illuminant tests, it performed
comparably to state-of-the-art uniform illuminant methods.
Qualitative experiments on real-world images with mixed
illuminants demonstrated the effectiveness of our method.
In future work, we plan to collect ground truth data under
non-uniform illumination for quantitative evaluation. Addi-
tionally, we seek a formulation to estimate the per-segment



contribution of a light source, as stated in Section 6.
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