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Abstract

Traditionally, most camera calibrations rely on a planegeawith well-known marks. However,
the localization error of the marks in the image is a sourcmaccuracy. We propose the use
of high-resolution digital displays ectivecalibration targets to obtain more accurate calibra-
tion results for all types of cameras. The display shows @s@f coded patterns to generate
correspondences between world points and image points. HHsi several advantages. No spe-
cial calibration hardware is necessary since suitablelaispare practically ubiquitious. The
method is fully automatic, no identification of marks is nesary. For a coding scheme based
on phase shifting, the localization accuracy is approxifyaindependent of the camera focus
settings. Most importantly, higher accuracy can be achim@mpared tgassivetargets like
printed checkerboards. A rigorous evaluation is perfortoeslibstantiate this claim. Our active
target method is compared to standard calibrations usirgeekerboard target. We performed
camera calibrations with different combinations of digglecameras and lenses, as well as with
simulated images and find markedly lower reprojection srmen using active targets. For
example, in a stereo reconstruction task the accuracy cftarsycalibrated with an active target

is five times better.



1 Introduction

A calibrated camera makes it possible to relate measuranmemages to metric quan-
tities in the world. The calibration process is thereforgnmasic and essential to every
computer vision task that involves image based measurem&fdany different ways
of calibrating cameras have been developed [1]. So-cadlfdalibration methods do
not assume any knowledge about the scene [2]. They are fonmgavery useful for
autonomous navigation. Metrology applications aim foihieist accuracy and typically
use dedicated calibration targets with well-known markem& methods use three-
dimensional targets|[3] but planar targets are more comradhey are easier to build
and handle. We aim to offer an alternative to the latter. falglisplays that can be
found on everybody’s desk can be usechatve calibration targets. This has many
advantages. There is no need to manufacture and validaeesmbEarget. The displays
are produced lithographically to a very high standard ofisacy. The marks on the
target do not have to be laboriously identified in an erramgrmanual process, as is
often the case. Instead of marks, we propose the use of @teddtight coding scheme
that is tolerant against defocusing, so the target doesawetto be in focus for the cal-
ibration. This makes it possible to position the cameraectosthe target and easily
cover the whole field of view. The displays typically haveldstivivel base so that dif-
ferent poses can be set up very comfortably. Example codertergte and decode the
necessary images will be made publicly available at [4].tlyeend most importantly
the achievable accuracy (as measured in the RMS reprajestior) is comparable to
the best published calibration results and much better tiatypical values reached
with passive targets.

Self-identification of the calibration marks can also beieetd in other ways, for
example by using ARTags![5], but it comes for free with thevactalibration. The
idea of using a Structured Light coding scheme for cameriaregion has also been
proposed by [6], where it was used to undistort the imagesvaifia-angle camera in
a model-free manner. In contrast, we perform a full cameliéregion and recover

the camera parameters, as they are needed for many tasé&safople 3D reconstruc-



tion. A similar active calibration approach is also brieflemtioned in([7] and.[8] in

the context of calibrating a catadioptric wide-angle caamexll these works focus on
calibration for wide-angle imaging and do not include thayb quantitative perfor-
mance comparisons with other calibration methods. We atleeobpinion that active
camera calibration has advantages for any camera, not wirnee wide-angle cam-
eras where the traditional pinhole model breaks down. Wetaunkiate that claim with
experiments demonstrating a clear improvement in the jegtion errors.

The contributions of this work are:

e We generate virtual calibration marks from the correspaondenaps which are

backward compatible with any classic calibration algarith

e We introduce a correction for the refraction effects causgdhe glass plate

covering the display.

e We perform an extensive comparative evaluation and shotthleaactive cali-
bration technique yields more accurate calibration resdtnpared to a passive

calibration with a checkerboard target.

2 Prior Work

A camera calibration consists of two parts. The extern@baion refers to the camera
pose relative to fixed world coordinate system. It maps timeera coordinate system,
defined by the cameraimage plane, to the world coordinatersysften defined by the
calibration target (see figuke 2.1). It can be described bgré&meters - 3 for rotation
and 3 for translation. Additionally, there are intrinsicraeters, which depend on
the camera model that is employed. For an ideal pinhole aantas is the principal
point[ug, vo] and the scale factdy,, f,]. In homogenous coordinates the perspective
projection mapping the point,,, Y.,, Z., 1]7 in the world coordinate system to the

point[u, v, 1] in the image coordinate system (see figure 2.2) can be weten
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whereA is the camera matrix anl the projection matrix. The coordinate transforma-
tion from world to camera coordinates is given by rotatiod &manslation parameters
[R|t]. The parametef is the focal lengthd, andd, are the pixel pitch in the x and y

directions, and:.y, andv, are the pixel coordinates of the principal point of the image

Fig. 2.1: The world coordinate system (top) is often defined by thébcafion target.
The camera coordinate system (bottom) is defined by the @amer
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Fig. 2.2: Perspective projection of a poiftin space to a point on the image plane.

2.1 Camera Models

Real cameras use lenses and always exhibit some degree gé ihistortion, espe-
cially for wide-angle lenses. This also has to be modelldtk fiost common camera
model is the pinhole model augmented by parameters forlradéhtangential distor-
tion. Tsai presented a relatively simple variant [9] witHyolwvo parameters for radial
distortion. Heikkila [10] used two parameters for radiatdition and two for tangen-
tial distortion. The model (and calibration algorithm) posed by Zhang [11] is very
popular, especially because it is available in the widegdu®penCYV library [12] and
as a Matlab toolbox [13]. These implementations supporbujvé parameters, three
(k1, ko, k3) for radial and two %, p2) for tangential distortion. Zhang’s model maps

undistorted image coordinatgs,, v, to distorted image coordinatés;, v4] via

tig =t (1+ kar? + kor® + kgr®) + 2p1a, v + p2 (r* 4 20,°)  (2.2)

Vg = Uy (1 + kr? + kort + k3r6) + 2potiy, Uy, + P1 (7"2 + 21112) (2.3)

Whereuy 4 = Uy,q — U, Vid = Vu.q — vo andr? = 1,2 + v,2.
All these models assume that the principal point is also émter of distortion and

that all rays pass through the pinhole. This generally hinldiypical applications with



limited distortion, but not always [14, 15]. There are alsthfgeneric camera models
that work for any type of camera, like extreme wide angle @navon-single-viewpoint
catadioptric cameras [116,/17]. However, such generic nsodieliver lower accuracy
for narrow-angle cameras |18].

The actual input data to perform a calibration are lists ofegspondences between
points on the calibration target (in world coordinates) #redr image coordinates. For
the usual planar calibration targets, several differersepoof the camera relative to
the target are required. From these lists a calibrationrithgo Tsai [9], Heikkild and
Silven [10], Zhang|[11] calculates the internal camera pertars and the coordinate

transformation for each pose.

2.2 Feature-based Calibration

The usual planar calibration patterns are checkerboards.c@rners of the checkers
are the fiducial marks. They are typically localized by istating lines fitted to the

sides of the checkers or by looking for a saddle point in tlaelgnt (as is implemented
in OpenCV). An alternative target type consists of an arfayroular dots. The centers

of the dots are commonly computed via centroid methodpsaliitting to the contours,

or deformable templates. However, for oblique viewing clilens, the detected ellipse
center is not the projection of the original circle’s cerdad has to be corrected [10].
Image distortion also reduces the localization accuracydts [19].

There is little comprehensive information in the literaabout achievable feature
localization accuracy. Shortis et al. [20] tested differ@gorithms for circular marks.
He reported errors in the range of a few hundreths of a pixgldiad not include noise
in his analysis. Heikkild [3] shows lighting-dependentftshof up to 0.5 pixels in the
location of circular marks. Mohr [21] found errors of arouhd pixels in corner local-
ization. White and Schowengerdt [22] examine the effechefgoint spread function
on edge localization accuracy and find errors of up to 0.2lpiXdallon and Whelan
[19] show errors around 0.1 pixels for circular marks (withdistortion bias) and up
to 0.03 pixels for a checkerboard target. Chen and Zhangji28]errors of about 0.05

pixels for checkerboard corner localization.



The final calibration errors are within the same range. HE&iK8] claims that
an accuracy of 0.02 pixels is a realistic goal. He achievés isynthetic images and
reports 0.061 pixels on real images. Douxchamps and Chjad}&ven reach 0.0065
pixels on synthetic images and 0.045 on real images. Howavéis widely known
paper [11], Zhang gives an RMS reprojection error of aboBtixels. Albarelli et
al. [25] achieve an initial error of 0.23 pixels but reduceadit0.089 by additional
bundle adjustment [26]. Fiala and Shu [5] also reach valfiesaund 0.2 pixels. The
differences between these figures might be due to outlieovahsteps, differences
in image and target quality, or simply different pixel sizda conclusion, an RMS
reprojection error of 0.05 pixels seems to be a lower bound f@ry careful calibration
in an optimal environment, while errors up to 0.3 pixels azeegtable in day-to-day

calibrations.

2.3 Active Targets

We compare the calibration results achieved with a tradtipassivetarget toactive
digital displays as calibration targets. One practicalaaudage of the latter is the self-
identifying nature of the patterns that can be shown on teplay. Tedious manual
mark identification therefore becomes unnecessary. Didisplays are suitable for
calibration tasks as they are manufactured to very highigicecusing lithographic
techniques. The pixel pitch is well-known, therefore po@brdinates can be converted
to metric 2D coordinates. One could simply show a checkethboa the display and
use that for calibration. However, such a method would kélisubject to the noise-
prone corner localization step. Instead, we propose thefuseeries of coded patterns
which can uniquely identify each individual pixel.

Such patterns are widely researched in the subfield of Strettight. Many cod-
ing schemes are possible [27]. Phase shifting offers vagi precision and dense
coding. This is because it does not involve any differeiatiabr binarization steps but
works directly with the measured image intensities in eagklp We use two four-
bucket phase shift sequences, one horizontal and onealetticletermine the andy

components of the pixel coordinates. The recovered phasalisguous, however. To



obtain a unique phase value we have to “unwrap” the phasewsalthere are various
ways to achieve this. In our case it is known that the targidisso naive unwrapping
would work. But since calibration is not a time-critical kasve use additional Gray
Code sequences. Details of this standard Structured Lighihg scheme can be found
for example in ] or@g]. It has the additional advantalgattthe decoding is very
simple. To facilitate the use of this method, code to geeeant decode the necessary
images will be made publicly available u [4]. Allin all, alfpattern sequence consists
of 4 images for the phase shift and 8 for the Gray Code (depgrati display resolu-
tion). Some of the resulting camera images are shown in figieNonlinear display
brightness is a concern for a high-quality phase shift, asitusoidal intensity pattern
is distorted. However, the four-bucket phaseshift is robgsinst such errort[iO], o)

a precise gamma calibration is not necessary.

"
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Fig. 2.3: A pattern sequence to uniquely identify all pixels of thepthy. Only the
vertical component is shown. The four images in the frontused to com-
pute ambiguous phase values. The images in the back formrépe@de
used to unwrap the phase.

Examples of the final unwrapped phase maps can be seen in@glresing the
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Fig. 2.4: Phase coordg, andy, components with contour lines as seen by the cam-
era. The values are normalized[f 1]. In this particular view the camera
was rotated by approximately 180 degrees relative to thaalis
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phase mapg, andy, we can find correspondences of world coordinates with image
coordinates. These can then be used as input for the caniénatian just as before.
The actual lookup of the subpixel image coordindtesy;) for given phase coordi-
nates(z,, y,) is done by the “reverse” bilinear interpolation describealgorithm1

(see also figurie 2.5).

Algorithm 1 Subpixel Phase Lookup

1. Find a block of four neighboring pixel§p,} in the phase maps where both
min(ex(pr)) < xp < max(pz (pr)) andmin(py (pr)) < yp < max(py (pr))-

2. Fita planeP, to the values ofp, in {p;}. Fit a planeP, to the values of,, in
{pr}. The sef{p, } can be augmented by additional neighbors.

3. IntersectP, with the planep, = z, and P, with the planep, = y,. This gives
two lines.

4. Set the phase-component of the lines to zero and caldhkaiatersection point
(w4, y:)

With algorithm[1 we can generate “virtual” marks from the phanaps with ar-
bitrary density. As the apparent display brightness chamgth the viewing angle, it
can happen that some areas of the display appear very darknden other parts of
the image have optimal brightness. Because of quantizaffents the accuracy of the
phase map suffers if the local dynamic range is close to Zarthat case a High Dy-
namic Range approach with multiple different exposure sicen be employed. The
plane fitting in step 2 of algorithfid 1 also provides us withstendard deviation of the
measured phase values from the fitted plane. Good phase m&psrg smooth, so
typical values of the standard deviation are arol@id®. If the phase map is noisy, the

standard deviation is higher and those marks can be distarde

2.3.1 Ray offsets

A further improvement can be achieved by modelling the rtfoa caused by the glass
plate that covers the pixels of the display. The protectigsgplate refracts the emitted
light and causes a shift in the pixels’ apparent positioncdivect for this effect we use

a three-step algorithm. We first calibrate with the pointrespondences we found as

10



Fig. 2.5: Phase coordinate lookup for one component. The dots are #asured
phase values. Magenta indicates the original block of fixelg. The blue
dots are additional neighbors used in the plane fit. The gptsme is the
linear local approximation of the phasB,). The blue plane¢ = z) rep-
resents the sought-after phase value. The intersectidmedfito planes is
marked by the red line. The second phase component yieldserime (not
shown here). The intersection of both lines gives the pigehtion of the
phase coordinate of interest.
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if there were no glass plate. We obtain approximations ottraera poses relative to
the display. In the second step we compute the offsets intediby oblique viewing

angles through the glass. The height offset is

tan aq

h=d. (1— tamz) 2.4)

wherea;andas are related by Snell’s law (figufe2.6). Finally we calibraggmin with
the corrected coordinates.

The thickness of the glass layer and its index of refractienomly approximately
known. For our experiments we assumed a refractive imdex1.5, which is typical
for glass and glass-like substances. We estimated thendsskof the coating as =
1mm. In the example plot of the height offsets shown in figuré B& difference in
the height offset between a perpendicular view in the cartdran oblique view at the
edges is only 0.04mm, while the pixel size is 0.272mm. Ther¢ioffsets introduced

are thus below 0.1 pixels.

a b

Fig. 2.6: The glass plate refracts the ray coming from pixel (a) so itisadpparent
position is (b). Adding the offsét corrects the error.

3 Experimental evaluation

While the use of active calibration certainly has practamantages, the most impor-
tant factor is the calibration quality that can be achievedamparison to alternative

methods. Other authors like Sagawa etlal. [6], Tardif el@]. Grossberg and Nayar
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Fig. 2.7: Offsets introduced by the glass plate of display 2 for théhigsolution cam-
era with an 8.5mm lens. Arbitrary units in x and y direction.

E] have used similar approaches, but only for extreme veidgle and catadioptric
cameras, and did not provide systematic accuracy evahsatibs they used different
cameras and different encoding schemes, we cannot comparesults to theirs. In-
stead, the proposed calibration method was evaluated eralesther ways. We used
simulated images where the ground truth camera parameteigawn. We tested
various real-world setups with different combinations afreras, lenses and displays.
In each test, the calibration with an active target is corapao a calibration using a
checkerboard pattern. Finally, we compared the stereoguiation accuracy of the
two calibration methods.

The standard targets in our lab are checkerboard targdtsselated squares. Their
advantage is that the unoccupied space in between the madebe used to perform
projector calibrations. On a regular dense checkerboargitbjected marks are much
harder to detect. The targets have been examined with aiocateemeasuring ma-
chine, so the mark locations are known with very high precisiThe corners of the

checkers are localized in the camera image either with tkel8&oint method (SP)

13



[31] or with the Line Intersection technique (LI) |32]. Weauthe standard SP imple-
mentation provided by OpenCV and a self-implemented Llardri Since we use a
Phase Shift coding for the active target, our proposed ndeithabbreviated as PS in
the subsequent sections.

All calibrations use the camera model and optimization @fgm proposed by
Zhang, as implemented in the OpenCYV library. The error mesed is the undistorted
RMS reprojection error between the observed and undistarsrk coordinates and the
projected mark coordinates in the images. This is a standatdc and should be com-
parable with results presented in different publicatiofise projected mark locations
[uz, v;] are computed from the known world coordinates of the markgisiquation
2. The tilde indicates that these coordinates are caexlilay pure perspective pro-
jection without image distortion. Another way to obtain gbe'ideal” coordinates is
to correct the distortion in the observed coordinates. Tittgatorted mark coordinates
[4;, ;] are denoted with a hat. They are computed from the obsergtorid mark

positions by inverting equatiofs 2.2 dndl2.3. The repr@adirror is then

1 N
e= NZ(@- — )%+ (0 — 0;)° (3.1)
=1

HereN is the total number of points used for the calibration. Anvirdial calibration

mark can occur several times in the images from differentezarposes.

3.1 Simulated images

Calibration images in five camera poses were rendered withalated resolution of
800x600 pixels. No noise was added to the images. We tookean@imize aliasing
artifacts by avoiding poses aligned with the camera axes. fiVk poses used can be
seen in figure3]1. Tab[é 1 shows the resulting internal cap@rameters and reprojec-
tion error for all three calibration methods. While LI givaeslightly higher reprojection
error than SP, the recovered parameters are closer to theTie parameters obtained
with the proposed method are much closer to the real valaesahy of the other two

methods. The remaining error is probably due to quantimat@mse.
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Fig. 3.1: Simulated Camera Poses. The red circles are marks, thene=ttlie camera
z-axes. The blue line pairs indicate the camera image planes

ideal  PS LI SP

[mm] 12 12.0004 11.9973 12.0059

ky (22 0  -1.03 -467  -15.06

k1] | 0 474 1947 373.38
ks 1071 0 -6.87  -115.42 -2205.61

p1 [20] 0 0442 -1405  -5.46

p2 [107] 0O 654 -681 14751
ug [pr] | 399.5 399.491 399.421 399.948
v lpr] | 299.5 299.508 299.514 299.342
RMSE[pz] | 0O 001424 0.07156 0.06434

Tab. 1: Calibration results for simulated images. The parametmavered with the
proposed PS method are closest to the ground truth. Whileethr@jection
error of the SP method is better than for the LI method, theedgarameter
values are worse.
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3.2 Real images

In our real-world experiments we used combinations of diff displays, cameras and
lenses. The details of the displays and cameras are calliectablg 2. The lenses had
focal lengths of 12.5mm, 8.5mm, 6.0mm and 4.8mm. We usedramiber of 8 and

an object distance of 0.5m in our image acquisition.

Name | Type Resolution  Pixel Size
D1 ScenicView A24W  1920x1200 0.270mm
D2 | SyncMaster 2433LW 1920x1080 0.272mm

(a) Displays

Name | Type Resolution  Pixel Size
HR ‘BaslerScoutlBQOm 1392x1040  4.65um

LR Basler A312fc 780x580 8.3um
(b) Cameras
Tab. 2: Hardware used for experiments
03 T T T T
HsP
L
0.3 [CIPs DY
__ _ |mmPs D3
0.2% - J
X 0 .
L
2
=015 8
0.1F J
0.0% 8
0
4.8mm 6.0mm 8.5mm 12.5mm

Fig. 3.2: Results for the low-resolution camera. The LI method ishiligbetter than
SP. The errors of the proposed method are much lower.

The results are shown in figuries13.2 3.3. The main conclusithat PS is the
best method for the low-resolution camera by a large margirfar the high-resolution
camera by a smaller margin. Compared to the LI method, theojesgiion error is
between a factor four and five better in the low-resolutiosecand up to a factor two

better in the high-resolution case. Please note that gedgpooducibility of the poses
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Fig. 3.3: Results for the high-resolution camera. The errors of tlpesed method
are slightly lower than the LI method. The SP method perfonmist.

used for the calibrations can only be guaranteed with a folsetup. Lacking that,

the poses in our experiments were arranged manually. Hémeg are not perfectly

identical in the different experiments. We therefore regdifferences of a hundredth
of a pixel or lower as not significant. Still, display 2 corsigly gave slightly better

results than display 1. The existance of display-specifitesyatic errors, especially
non-perfect planarity, is a topic for further study.

The SP method performs worst. This comes as a surprise, isiiscihe standard
method for users of OpenCV. The residuals of the SP caldwathow a systematic
error as the corner positions are mostly shifted towardscérger of the calibration
squares, compared to the LI positions (figurd 3.4). Fiala$imd Fiala and Shu [5]
have identified this effect as related to lighting; it seemarise for defocusing as well.
In a true checkerboard the shift should cancel out betweemwvib touching corners.
The high-quality targets at our lab have isolated squaceswgsuse only the LI method
in the following experiments. In talé 1, L1 on a 'sparse’ ckerboard was compared to
SP on atraditional 'dense’ checkerboard pattern. It paréat comparably with respect
to the reprojection error and better with respect to the gddwuth camera parameters,
so LI can be used as a reference calibration method.

The difference in the PS residual error between the HR anddriecas is approx-
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Fig. 3.4: Typical corner detection images, enlarged by a factor 20e gJiteen cross
marks the LI corner position, the red cross the SP cornetiposLeft: High
resolution image. Right: Low resolution image.

imately in line with the difference in pixel size (talile 3 &)d This is consistent with

a constant size focus spot on the sensor that depends on pheyechlens.

D1 | 48mm  6mm  85mm 12.5mm
LRRMS [px] | 0.0704 0.0770 0.0596 0.0572
HR RMS [px] | 0.1557 0.1180 0.1250 0.0819
LRRMS [mm] | 0.5845 0.6392 0.4948 0.4754

HR RMS [mm] | 0.7242 0.5488 0.5815 0.3812

Tab. 3: The reprojection error for different lenses with display Bxpressed in mi-
crometers the values are similar between the low resolatiatithe high reso-
lution cameras.

D2 | 48mm  6mm  85mm 12.5mm
LRRMS [px] | 0.0512 0.0528 0.0435 0.0432
HRRMS [px] | 0.1123 0.1027 0.0908 0.0620
LRRMS [mm] | 0.4250 0.4388 0.3611 0.3585

HR RMS [mm] | 0.5223 0.4777 0.4224 0.2886

Tab. 4: The reprojection error for different lenses with display Expressed in mi-
crometers the values are similar between the low resolatiatithe high reso-
lution cameras.

3.2.1 Poses

The choice of camera poses is of course a major factor in thktyjof a calibration.

We tried to use comparable poses, that is with similar anglékse target. They are
shown in figuré_3J5 and figufe_3]5b. Table 5 shows that the jegtion error barely
changes, whether 3, 5 or all 7 poses are used for the catihratiowever, the resulting

internal camera parameters do change. There is no grouthdttrcompare against,

18



but it seems reasonable to have higher confidence in a dadibrasult if it is based on

more poses.

5004

2
o L\ Q
\(

300

mm

2004

1004
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-400 -200

-200 -400
mm 0 -600 e

(a) Poses in front of the checkerboard target  (b) Poses in front of the active target. Blue: 1, 2, 3.
Green: 4, 5. Black: 6, 7.

Fig. 3.5: Example camera poses.

poses| RMSE [px]  wo [pz] vo [px] f [mm)]

7 0.1481 702.9860 526.0807 6.1911
5 0.1474 701.9275 526.4855 6.1961
3 0.1469 701.3100 526.6469 6.1979

Tab. 5: RMS errors for different number of poses and some of the tiaguinternal
parameters. High-resolution camera with 6.0 mm lens.

3.2.2 Mark Density

The density of marks generated with the PS approach has ilittluence (tablgl6).
However, as already stated in the previous section, whewutkhere is no reason
not to use as many marks as possible. Also, for the calibraifoa fully generic

non-parametric camera model, dense correspondencesogamt and can be easily

generated with PS.

3.2.3 Defocusing

For the classic checkerboard targets, high feature I@t#diz accuracy depends on a

sharp image. This can be a problem, for example when deptieldfis limited. PS
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HR 8.5mm D2
number of markg poses RMSE [px]
23238 4 0.09105
2583 4 0.09085
466 4 0.09449
224 4 0.08456
LR 4.8mm D1
number of markg poses RMSE [px]
10876 4 0.07173
1739 4 0.07042
435 4 0.06890
106 4 0.06187

Tab. 6: Influence of mark density. For comparison, a typical view chackerboard
yields around 100 marks.

results are robust against defocusing (téble 7). The medslrase at a given pixel
does not change when the image is blurred, only the consasticed. In fact, PS
even profits from a moderate amount of defocusing as alidsétgeen the display
pixel grid and the camera pixel grid is reduced. Therefoie ffossible to move the

camera close to the display during calibration so that thieesield of view is covered.

f-stop | RMSE LI [px] RMSE PS [px]
5.6 0.1834 0.1312
11 0.1367 0.1400

Tab. 7: Robustness against defocusing. High-resolution cameheda8mm lens.

3.2.4 Glass Plate Offsets

As mentioned in section 2.3.1, the protective glass plafecint of the display pixels
introduces a shiftin the apparent mark coordinates. As eaebn in tablel8, modelling
this refraction does indeed result in an improvement of éipeajection error. However,
the effect is relatively minor. It is on the order of a few tlsands of a pixel only, while
the mark offsets are up to 0.1 pixels in the lateral directibhis is because the shifts

can be partially compensated by the camera distortion peteam

20



4.8mm 6.0mm 85mm 12.5mm
D1+LR 0.0755 0.0825 0.0692 0.0598
D1+LR+glass| 0.0704 0.0770 0.0596 0.0572
D1+HR 0.1592 0.1168 0.1286 0.0846
D1+HR+glass| 0.1557 0.1180 0.1250 0.0819
D2+LR 0.0523 0.0548 0.0449 0.0435
D2+LR+glass| 0.0512 0.0528 0.0435 0.0432
D2+HR 0.1161 0.1048 0.0925 0.0625
D2+HR+glass| 0.1123 0.1027 0.0908 0.0620

Tab. 8: Improvements by modelling the ray offsets introduced bydteess cover of
the display.

3.3 Repeatability

Another important test for the proposed calibration metisoepeatability. We per-
formed ten external calibrations of a pre-calibrated Bas84 2fc camera with a 12.5mm
lens. Purely external calibration has the advantage thatéesview of the calibration
target suffices, so no parts of the setup had to be moved. Aiclgsature-based tar-
get and an active target were used. The resulting posesattedpin figurd-3.6. The
standard deviations of the translational parameters arersin table[®. The mean
offsets from the mean position were 5.3um for the activébeation target and 22.1um
for the classic target. The absolute distances to the régpealibration targets were

practically equal at 258mm and 256mm.

| oz [mMm] oy, [mm] o, [mm]
classic| 0.0146 0.0173 0.0138
active | 0.0014 0.0023 0.0060

Tab. 9: Standard deviations of the translation parameters for ssidaand an active
target.

3.4 Stereo calibration

As seen in tabl€]l1l and also noted by![25], a lower reprojedtivar does not auto-
matically imply a more correct calibration. Therefore, wsted the proposed method
further. We performed a stereo calibration and subsequerghgulated the positions
of the calibration marks. We then compared the known passtiaf the marks to the

triangulation results. Since the display was positionedel to the camera than the
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dz [mm]
dz [mm]

-0.0t

0.01

dy [mm] 05 0.05 dx [mm] dy [mm] dx [mm]

(a) Poses recovered from the classic target  (b) Poses recovered from the classic target

Fig. 3.6: Repeatability of external calibration. The camera indiceithave the same
size, but the scales are different. The red lines indicae#mera z-axis, the
different colors for the x and y-axes are for better visufibdéntiation.

checkerboard target, we also normalized the errors. Ouecstdy consisted of two
Basler A312fc cameras (the low resolution model in the mresiexperiments) with
8.5mm lenses and a baseline of approximately 150mm. Fowspwesre used. The
checkerboard target yielded 169 marks visible in both cas)éhe active target yielded
1219 marks to triangulate. As can be seen in table 10, thesaare much lower for the
proposed Phase Shift calibration. The accuracy is imprapgdoximately by a factor

of five, which is consistent with the results of the monocuaklibration (figuré3.12).

error [mm] normalized error [mm/m]
‘ mean  sigma| mean sigma
PS| 0.0299 0.0175 0.1153 0.0643
LI ‘ 0.3028 0.2283 0.5528 0.3947

Tab. 10: Stereo Triangulation Results. The error for the proposedeeBnique is
approximately one fifth of the error resulting from the LI ined.

4 Conclusions

There are many variables that influence the quality of a atiitn, from the choice
of camera poses to the tuning of algorithm parameters. #ubdilly, errors are often
compounded, so the source of problems is not always obvidescalibration method

with active targets has several advantages. It is fully matec, no user interaction
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to identify marks is necessary, and no labeling errors canrodigital displays are
highly accurate targets, so there is no need for costly tamiglation. The only input
parameters are the display resolution and the pixel size.rméthod is robust against
defocusing and easy to set up. Lastly and most importah#yathievable accuracy is
very high. One possible disadvantage is that the calibragquires multiple images
per pose and cannot be performed with a hand-held cameraedoywve provided
a thorough evaluation and found a marked increase of therasitin quality. We are
therefore of the opinion that the additional accuracy ovelaasic feature-based cali-

bration is worth the effort for tasks like precise 3D recomstion.
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