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Abstract
X-ray-based 2D digital subtraction angiography (DSA) plays a major role in
the diagnosis, treatment planning and assessment of cerebrovascular disease,
i.e. aneurysms, arteriovenous malformations and intracranial stenosis. DSA
information is increasingly used for secondary image post-processing such as
vessel segmentation, registration and comparison to hemodynamic calculation
using computational fluid dynamics. Depending on the amount of injected
contrast agent and the duration of injection, these DSA series may not
exhibit one single DSA image showing the entire vessel tree. The interesting
information for these algorithms, however, is usually depicted within a few
images. If these images would be combined into one image the complexity
of segmentation or registration methods using DSA series would drastically
decrease. In this paper, we propose a novel method automatically splitting
a DSA series into three parts, i.e. mask, arterial and parenchymal phase, to
provide one final image showing all important vessels with less noise and
moving artifacts. This final image covers all arterial phase images, either
by image summation or by taking the minimum intensities. The phase
classification is done by a two-step approach. The mask/arterial phase border is
determined by a Perceptron-based method trained from a set of DSA series. The
arterial/parenchymal phase border is specified by a threshold-based method.
The evaluation of the proposed method is two-sided: (1) comparison between
automatic and medical expert-based phase selection and (2) the quality of the
final image is measured by gradient magnitudes inside the vessels and signal-
to-noise (SNR) outside. Experimental results show a match between expert
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and automatic phase separation of 93%/50% and an average SNR increase of
up to 182% compared to summing up the entire series.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Digital subtraction angiography (DSA) represents the state-of-the-art image modality for
cerebrovascular diseases (aneurysms or stenosis) in terms of vessel analysis in diagnosis,
interventional treatment planning and to assess the success of an intervention (Brody 1982).
DSA series have become more and more important concerning post-processing applications as
the literature shows, e.g. vessel segmentation (Franchi et al 2008, Sang et al 2007, Bouattour
and Paulus 2007, Franchi et al 2009), vessel-type classification (Kang et al 2009), registration
of patient images acquired at different times (Erik et al 1999) and catheter tracking (Baert et al
2003). This acquisition technique leads to three different image phases within a DSA series, i.e.
mask, arterial and parenchymal phases. Figure 1 gives an impression how the DSA series used
in this work look like. Moreover, there are realtime algorithms working on bolus propagation
detection and tracking (Wu and Qian 1998, Cheong et al 2003, Lu et al 2006). While the
contrast agent injection starts, the image acquisition is already running. Images of the mask
phase contain no information about the vessel tree since the contrast agent has not reached the
region of interest. The arterial phase images usually depict the most important information
to analyze aneurysms or stenosis because the contrast medium flows through the major vessel
branches. This phase reveals information about vessel diameters, dome size of aneurysms and
degree of stenosis which is of particular interest for post-processing algorithms such as vessel
segmentation, registration or comparison between DSA acquired hemodynamic information
and computational fluid dynamics blood flow results. Unfortunately, this information is often
split up in several images because of the dynamic nature. This makes it difficult for post-
processing applications to handle vessel segmentation or registration. Thus, the complexity
of such kind of methods rapidly increases while computing satisfying results. Finally, the
parenchymal phase consists of images showing capillary or the beginning of venous blood
flow. Consequently, the borders between vessels and background are rather blurred out.
One final image covering all major vessel branches without parenchymal filling would make
segmentation and registration tasks easier to perform. This can be done by either manual
selection of the arterial phase images or simple summation over all images of the DSA series.
However, the summation over all series images will lead to a final image that is blurred by the
parenchymal phase images and contains more noise.

We propose a novel DSA image summation algorithm which is based on a classification
method to compute one final image, given a DSA series. This final image only consists of
images belonging to the arterial phase and it is computed either by the sum or by taking the
minimum intensity of all these images. Hence, the borders of the aforementioned phases are
automatically detected. Our approach is experimentally evaluated on 14 image series from six
different patients with a total of 249 frames showing the performance of our method.

2. Methods

The algorithm starts with a DSA series, si, as input and computes a final image, si,final, which
contains all major vessels. Our approach is divided into two main steps: (1) automatic
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Figure 1. Phase classification results for DSA series S3, S6 and S7. The color of the image
number shows the phase association computed by the classification-based separation method, i.e.
green, red and blue denote mask, arterial and parenchymal phase, respectively.

separation of the series si into the three predefined phases (mask, arterial and parenchymal)
and (2) combination of all DSA images corresponding to the arterial phase by summation or
minimum intensity. The mask/arterial phase border is determined by a classifier based on
three features (see figure 2(a) and figure 3) and the arterial/parenchymal phase border is found
by a threshold-based method working on the change images (see figure 4).

The method section is organized as follows: subsection 2.1 describes the main idea of our
method followed by subsection 2.2 that introduces the applied features for the phase separation
in detail. The remaining sections (2.3 and 2.4) delineate the classification methods applied to
detect the mask/arterial and arterial/parenchymal phase borders.

2.1. Idea

A DSA series comprises a set of DSA frames si = 〈si,j 〉N−1
j=0 where N denotes the total number

of frames within the series. Given series si, one final image si,final denotes the combination
(sum/minimum intensity) of all images of si belonging to the arterial phase, i.e. it depicts all
major vessel structures. The final sum image is computed by

si,finalSum =
U∑

j=L

si,j (1)

and the final min image looks as follows:

si,finalMin = min
j∈L...U ;v

si,j,v(j,x) (2)

where L and U denote the lower and upper bounds of the sum, respectively. v(j,x) is the
pixel intensity on the j th image at position x ∈ R

2. The elements of the sum belong to a fixed
interval which is a subsequence of the acquired series si. The bounds, L and U, can usually
be found by two approaches: (1) manual selection and summation or (2) L and U is simply
set to zero and N − 1, respectively, such that the sum covers all images within the series, i.e.
equation (1) can be rewritten in terms of phases as follows:

si,final =
L−1∑
j=0

si,j

︸ ︷︷ ︸
Mask

+
U∑

j=L

si,j

︸ ︷︷ ︸
Arterial

+
N−1∑

j=U+1

si,j

︸ ︷︷ ︸
Parenchymal

. (3)

For the remainder of the paper, the mask/arterial and arterial/parenchymal phase borders
are denoted as L and U, respectively. Now, we address the feature-based classification of these
two borders such that si can be automatically divided into the three aforementioned phases.
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Figure 2. Schematic illustration of the automatic phase border computation process. (a) The
feature space of the training data in 2D and 3D. The 2D images (top row) depict orthogonal
projections of the 3D feature space on the three planes. DEV abbreviates sum of difference of
the eigenvalues. (b) A schematic illustration of the automatic phase separation together with the
computation of the change images. (c) The skewness of change images. The border between
arterial and parenchymal phases is detected by a switch of the skewness from negative to positive
range.

2.2. Feature selection

The features are computed on two regions of interest (ROI) as illustrated in figure 3 (upper-left
corner). The ROIs can be defined due to the prior knowledge about the position of the patient
on the table of the C-Arm system, i.e. the inflow of the contrast agent (intra-arterial injected)
on the image is from the bottom to the top. The border L is computed on the region rL covering
the lower 20% of a DSA frame. rL is indicated by the boxes in figure 3 (upper-left corner).

The first frame of the arterial phase si,L is characterized by the very first appearance of
contrast agent inflow on the image. The following three features are chosen to quantify this
observation: the mean of intensities μ, the skewness γ of the intensity histogram and the
vesselness measure v. Figure 2(a) gives an overview about the feature space.
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Figure 3. Behavior of the selected features over an entire DSA series containing 16 frames. The
border between mask and arterial images is clearly indicated by the mean (a), skewness (b) and
sum of differences of eigenvalues (DEV) (c) at frame 3. These features are computed within the
box rL which is illustrated in the upper-left corner.

DSA frame DSA frame Change image

Figure 4. An example for the computation of a change image. Only the upper 80% of the images
are shown. Within region A of DSA frame 5 there is additional vessel information which is not
present in DSA frame 4 and vice versa in region B.

To perform the feature extraction, the intensities of a DSA series are normalized in two
ways resulting in two different DSA series, i.e. sf s,i and sss,i . The intensities of sf s,i are
rescaled per frame between zero and 1. Within series sss,i , the entire intensity range of the
series is considered for normalization of the intensities between zero and 1. sf s,i is used to
amplify the shift of the intensity mean between images of the mask and the arterial phase.
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This shift can be visualized by comparing the black intensities of mask and arterial images.
The black intensities of arterial images are much lower than those within images of the mask
phase due to the inflowing contrast agent. Consequently, the background intensities covering
90% of the image are shifted to higher intensities inducing an entire shift of the intensity mean.
The skewness γ and the vesselness measure v are computed on sss,i . v is based on the Hessian
matrix and the corresponding eigenvalues λ0 and λ1 (Frangi et al 1998). v is defined as

v =
∑
k∈rL

∣∣λk,1 − λk,0

∣∣ , (4)

where k ∈ R
2 denotes a pixel of the region rL. The behavior of the three features concerning

a DSA series is depicted in figure 3. The inflowing contrast agent leads to a rapid change of
the values of the features. The intensity mean regarding ROI rL computed on sf s,i is shifted
in positive direction (see figure 3(a)). As illustrated in figure 3(b), the skewness becomes
highly negative and the vesselness measure value v is rapidly increasing. These features are
summarized within the feature vector fL:

fL =
⎛
⎝m

γ

v

⎞
⎠ . (5)

The upper border U (arterial/parenchymal phase) is determined using the so-called change
image. A change image denotes the subtraction of two subsequent images within the series
sss,i :

si,j,change = sss,i,j+1 − sss,i,j j = L, . . . , N − 2. (6)

Here, the upper 80% of si,j,change denotes the region rU that is used to detect the upper border
U. si,j,change is scaled between zero and 1. Vessels which are not present within sss,i but within
sss,i,j+1 will appear darker in si,j,change than those that have already been depicted in sss,i . One
example of a change image is shown in figure 4. The region A of DSA frame 5 contains vessel
information that is not present in DSA frame 4 and appears darker in the corresponding change
image. Region B shows the opposite. The transition between the arterial and parenchymal
phases is characterized by the absence of major additional vessels meaning that the change
image becomes more and more brighter. Again, this behavior can simply be observed by
the skewness γ ′ of the region rU. Negative skewness means darker structure on brighter
background and positive skewness means vice versa. Thus, the border between the arterial
and parenchymal phases is distinguished by one feature.

2.3. Learning-based classification of the lower border L

The classification of the lower border L denotes a two-class problem, i.e. the separation of
images into the mask and arterial phases. Supervised training of our classifier is performed
by manual selection of M frames of the mask and arterial phases of different DSA series. The
set T contains the feature vectors, fL,i, of the training data together with a class label ci, i.e.
zero equals the mask phase and 1 denotes the arterial phase:

T = {fL,i, ci}M−1
i=0 . (7)

The feature vectors are normalized at its zero empirical mean. The goal now is to set up
a linear discriminant function g(fL), i.e. a plane E which separates the features of the mask
phase from those of the arterial phase. E is defined as

E : g(fL) = nT fL − d, (8)
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where n ∈ R
3 is the normal vector and d ∈ R is the distance to the origin. The principal

component analysis (PCA) without dimension reduction performed on the 3D feature space
yields three eigenvectors {φj }j=0,1,2 ∈ R

3 with three eigenvalues λ0, λ1 and λ2 (λ0 � λ1 � λ2)
that are used as an initial estimation of E. φ0 and φ1 span the initial plane Einit with its normal
vector φ2, i.e. n is initialized with φ2. The perceptron algorithm (Duda et al 2001) is applied to
iteratively optimize the position and orientation of Einit such that the misclassification becomes
minimal. The perceptron criterion function is the sum of distances of misclassified features:

Dp(n, d) = −
∑

fL,i∈ϒ

yi(nT fL,i − d) (9)

where ϒ is the set of misclassified feature vectors and yi is defined as

yi =
{

1; class 1, i.e; mask images
−1; class 2, i.e; arterial images.

(10)

The response function δL of the classifier which separates the DSA frames of the mask phase
and the arterial phase is now defined as

δL(fL) =
{

0, if g(fL) < 0
1, if g(fL) � 0,

(11)

where zero and 1 mean that the DSA frame belongs to the mask and arterial phases, respectively.

2.4. Threshold-based classification of the upper border U

As illustrated within figure 2(c), the upper border U is determined by the skewness of the
change image si,U,change. When the arterial phase fades to the parenchymal phase the skewness
of the change image switches from negative values to positive ones. This change of sign is
considered as the feature indicating the beginning of the parenchymal phase.

3. Results

Our automatic summation method is evaluated on 14 different 2D DSA series with a length
varying from 12 to 32 frames. The series were acquired during endovascular interventions at
the Department of Neuroradiology (University Hospital Erlangen) using the Siemens C-Arm
System (AXIOM Artis dBA, Siemens AG Healthcare Sector, Forchheim, Germany). The
x/y dimension of the series ranges between 512×512 and 1440×1440. The pixel spacing
in x/y direction is 0.154/0.154 mm for all series. The injection protocol exhibits 5 ml of
contrast agent (concentration 300) with a flow rate of 2–3 ml s−1. The frame rate is two
images per second during the arterial phase and is lowered to 0.5 frames per second during
the parenchymal phase. The training of the classifier was done with eight DSA series which
were not part of the evaluation set.

3.1. Automatic phase selection—methods of evaluation

In order to evaluate the automatic phase selection a gold standard evaluation set was built by
a physician who manually partitioned each series of the evaluation set into the three phases.
The main focus, here, was on categorizing those images into the arterial phase which depict
major vessel branches concerning endovascular intervention planning, i.e. coil embolization
of aneurysms or stent placement. The partitioning results of our automatic summation method
are compared to this gold standard evaluation set.



1798 D Schuldhaus et al

3.2. Final image—methods of evaluation

This evaluation exhibits three final images. The first one is created by summing up the
entire DSA series, the second denotes the sum of all arterial phase images and the third one
represents the minimum intensity image of all arterial phase images. Furthermore, a mask
image is established defining two regions. For the first region all major vessel branches within
the vicinity of the pathology were manually segmented by a medical expert in order to evaluate
the quality of the final image with respect to foreground. For the second region areas in the
background were manually segmented by a medical expert in order to evaluate the quality of
the final image with respect to background. These background areas do not show any vessel
structures within the final images. The signal-to-noise-ratio (SNR) on background regions and
the sum of gradient magnitudes on foreground regions are used for quantitative comparison.
Unlike multimedia communication, the original input signal of the final image is not known.
For quality assessment, however, we consider the signal to be the intensity mean and noise as
the intensity standard deviation concerning selected background regions. We would ideally
expect a high mean and a rather low standard deviation because of image summation and the
absence of structural changes within these regions. The SNR is accordingly determined as

SNRback = mback

σback
(12)

where mback and σback are the intensity mean and the standard deviation of the background
region, respectively. The shapes of the background regions were chosen arbitrarily because it
is difficult to define a box region that is big enough and contains no vessel structure within all
final images (see figure 5, yellow boxes compared to the green regions).

Considering a perfect 2D DSA acquisition, the contrast agent will be uniformly distributed
within the vessels. Thus, the gradient magnitudes within the vessel branches should be very
small in an ideal case. The sum of gradient magnitudes is used to analyze the image quality
within the manual segmented vessel branches (figure 5, red regions) defined as

gsum = 1

M

M−1∑
i=0

|∇I (xi, yi)|2 (13)

where M denotes the number of pixels of the image and I (xi, yi) is the intensity value at pixel
position (xi, yi).

3.3. Experimental results

All experiments were conducted on an AMD Athlon 7750 Dual-Core, 1.38 GHz with 3 GB of
main memory. Our approach is implemented in C++. The computation time of this method
is on average 1 s. The first column of figure 5 shows the result of the third final image where
only the minimum intensities of all arterial phase images are taken. The second column
illustrates the second final image after summing up the arterial phase images and the third
column illustrates that after summing over the entire DSA series. In the last column, the
aforementioned mask image is depicted. The red regions correspond to foreground areas and
the green regions to background areas.

Tables 1 and 2 give a quantitative insight on all experimental results. According to table 1,
the detection result of the lower and upper borders of the arterial phase yields a correspondence
of 93% and 50% comparing to the expert-based border selection. The maximum shift between
the expert-based and our automatic phase separation methods is one image. The SNR of the
background regions is increased concerning both final images (see table 2), i.e. the summation
and the minimum intensity image concerning all arterial phase images show an average
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Arterial Phase All Phase Mask Image

S3
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Figure 5. This set of images shows the final image concerning the DSA series S3, S6, and S7:
first- and second-left columns—automatic method covering only arterial phase images (minimum
intensity/summation); third-left column—summation over all phases. The right column illustrates
the two different regions used to quantitatively evaluate the final sum images regarding SNR and
sum of gradients. The green and red colors denote the selected background (SNR) and foreground
(sum of gradients) regions, respectively.

increase of 160% (87 standard deviation) and 182% (92 standard deviation), respectively.
Within both final images, the vessel regions appear much smoother and homogeneous which
could be quantitatively shown by the results of the sum of gradients, e.g. its value could be
reduced on average by −17.68% (11 standard deviation) for the arterial summation image and
by −11.9% (10 standard deviation) for the minimum intensity image. The improvement of
the image quality can be clearly seen by figure 5.

The final images, covering only arterial phase images (figure 5, first- and second-left
columns), look clearer with less moving artifacts. Moreover, all major vessel branches within
the vicinity of the aneurysms (indicated by the orange arrows in figure 5) are evidently
illustrated allowing the physician to perform its diagnosis and treatment planning.

4. Discussion

This paper presents an efficient phase separation algorithm for 2D x-ray DSA image series.
To the best of our knowledge, there is no comparable method out in the field handling phase
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Table 1. Summary of the evaluation results. L and U denote lower and upper borders of the arterial
phase, respectively. Regarding column 4, one indicates a perfect match for the border detection
between our classifier and the medical expert.

Arterial phase classification

Study (frames) Expert Automatic Borders (L/U)

S1 (32) 5–9 5–8 1/0
S2 (15) 6–10 6–9 1/0
S3 (13) 5–9 5–8 1/0
S4 (13) 5–7 5–6 1/0
S5 (13) 5–7 5–6 1/0
S6 (12) 4–6 4–6 1/1
S7 (17) 3–6 3–6 1/1
S8 (14) 4–5 4–6 1/0
S9 (19) 5–8 5–8 1/1
S10 (26) 5–7 5–7 1/1
S11 (25) 4–12 4–12 1/1
S12 (16) 4–8 4–8 1/1
S13 (16) 4–7 4–8 1/0
S14 (18) 4–5 3–5 0/1
Average 93%/50%

separation on DSA series. The major contribution of this work states a classification-based
DSA image summation method which separates the DSA series into three phases and finally
provides one final image summarizing all arterial phase images. The experimental results
are promising for clinical application. The lower border of the arterial phase was detected
with a classification rate of 93%. The upper border yields a detection result of 50%. This is
because of the smooth transition between the arterial and parenchymal phases as illustrated
in figure 1 (S3: images 8,9; S6: images 6,7; S7: images 6,7). Hence, the position of the
upper border would be determined separately. A test on inter observer variability, however,
was not performed during this initial evaluation because the impact on the final image is low.
If one parenchymal image was spuriously added as an arterial phase image the quality of
the final image would not be significantly influenced. In this work, we used a classification
technique that is based on PCA and Rosenblatt perceptron because it is easy to be implemented
and worked well in our case. Considering the feature space, however, there might be other
classification methods suitable such as support vector machine delivering similar results. Our
classification method is robust regarding motion from the patient or the vessels. In fact, the
internal carotid artery shows some motion during the acquisition when comparing successive
images. The impact on the final image, however, is negligible because our features are
independent from motion.

Overall, the automatic summation of arterial phase images leads to a final image which
exhibits less noise and moving artifacts, i.e. the SNR could be increased on average up to
182%. When comparing the final images based on the arterial phase, it turns out that the
minimum intensity image shows slightly superior results regarding the visibility of small
vessel branches. This is highlighted with red circles in figure 5. Concerning medium and
large vessels both final images reveal similar results.

Such final images deliver various advantages during the diagnosis, treatment planning
and image post-processing. It may supersede browsing through image series to get an overview
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Table 2. Summary of the evaluation results. AP denotes arterial phase. SUM and MIN denote summation and minimum intensity, respectively.

Vessel region—sum of gradients Background region—SNR

Study All AP(MIN) versus All/AP All AP(MIN) versus All/AP
(frames) AP(MIN) AP(SUM) phases (SUM) versus All in % AP(MIN) AP(SUM) phases (SUM) versus All in %

S1 (32) 0.0208 0.0199 0.0210 −0.9/−5.5 73.3431 57.9115 14.8013 395.5/291.26
S2 (15) 0.0221 0.0202 0.0239 −7.3/−15.5 36.0246 27.6717 21.1786 70.1/30.66
S3 (13) 0.0155 0.0126 0.0192 −19.1/−34.6 37.7886 27.0608 22.1141 70.9/22.37
S4 (13) 0.0144 0.0165 0.0186 −22.3/−10.9 42.5421 35.7652 12.1529 250.1/194.29
S5 (13) 0.0202 0.0182 0.0229 −11.4/−20.6 34.1857 41.6519 12.2046 180.1/241.28
S6 (12) 0.0222 0.0223 0.0230 −3.5/−3.2 49.9320 37.7822 17.0831 192.3/121.17
S7 (17) 0.0235 0.0226 0.0293 −19.6/−22.9 67.9300 57.0660 17.1421 296.3/232.90
S8 (14) 0.0162 0.0146 0.0188 −13.7/−22.4 70.8132 80.5706 35.6433 98.7/126.05
S9 (19) 0.0194 0.0152 0.0236 −17.5/−35.6 75.7862 79.4825 25.3266 199.2/213.83
S10 (26) 0.0184 0.0175 0.0239 −22.8/−27.0 47,3056 59.9722 15.7078 201.2/281.80
S11 (25) 0.0145 0.0113 0.0131 11.1/−13.6 91.0556 108.3851 47.1789 93.0/129.73
S12 (16) 0.0194 0.0198 0.0208 −6.7/−5.2 70.4309 60.6687 23.5206 199.4/157.94
S13 (16) 0.0164 0.0157 0.0213 −22.5/−26.2 63.7816 46.3237 19.2673 231.0/140.43
S14 (18) 0.0193 0.0207 0.0216 −10.7/−4.3 58.5047 50.7174 33.2975 75.7/52.32

Avg. 0.0187 0.0176 0.0215 −11.9/−17.7 58.5303 55.0735 22.6156 182.4/159.72
Std. Dev. 0.0029 0.0035 0.0037 9.8/11.0 17.4718 22.5975 9.9849 91.7/87.39
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about the vessel tree. The complexity of post-processing algorithms such as vessel
segmentation or registration is decreased since all information is given at once and not
distributed over several images. This can be considered as an initialization step for the
vessel segmentation approaches described in Franchi et al (2008) and Sang et al (2007).

5. Outlook

The next steps will be a further clinical evaluation about the applicability of our automatic
phase separation method. This includes a comparison between the currently used classifier
and other classification techniques such as support vector machines, etc. Moreover, a database
of final images will be built for post-processing methods to allow quantitative comparisons in
terms of speed and accuracy with our registration algorithms.
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