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Abstract. Robust and accurate automatic detection of anatomical fea-
tures on organic shapes is a challenging task. Despite a rough similar-
ity, each shape is unique. To cope with this variety, we propose a novel
clustering-based feature detection scheme. The scheme can be used as a
standalone feature detection scheme or it can provide meaningful start-
ing points for surface analyzing-based detection algorithms. The scheme
includes the identification of a representative set of shapes and the us-
age of a specialized iterative closest point algorithm for the registra-
tion of shapes, which is followed by the projection of the features using
the transformation matrix of the registration. The proposed scheme was
successfully evaluated on a large set of expert annotated shapes and
showed superior performance compared to state-of-the-art surface ana-
lyzing methods. We achieve an increase in accuracy of 32 % and ensure
the detection of all features.

1 Introduction

Shape analysis typically involves the abstraction of complex structures by remov-
ing redundant details. It captures the essence of geometry via a representative set
of distinctive features, such as 3-D points, planes, curves or areas. These features
can be employed for classification, registration and for driving the automation of
shape transformations. The problem is very challenging due to the variability of
organic surfaces. In this work, we focus on the robust and accurate detection of
anatomical features found on ear impressions. An example ear impression with
annotated features is given in Fig. 1. Theses features provide the basic structure
for the automatic design of customized in-the-ear hearing aids [1,2].

Previous work in this field was reported by Paulsen et al., they employed
anatomical features (landmarks) to build a statistical shape model of the human
ear canal for shape analysis and the automatic design of customized hearing
aids [2,3]. Zouhar et al. focused on the detection of anatomical features to guide
a fast registration of 3-D ear impressions and also for automation purposes [4,5].
Baloch et al. worked on the detection of a canonical ear signature to capture
the structure of an ear impression [6]. So far, the proposed algorithms for fea-
ture detection on ear impressions were solely based on the analysis of surface
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Fig. 1. 3-D mesh representation of an ear impression (ear negative) consisting of the
external ear and the ear canal. Some of the later considered features are annotated.

properties, like peaks, depressions, concavities, ridges and bumps. Hence, the
result is sensitive to the quality of the acquired ear impression mesh and can
fail in case of unusual ear impressions [6]. Problematic cases are characterized
by containing large amounts of excess material, very short ear canals, holes all
over the impression and a very jagged opening contour at the bottom of the im-
pression. Furthermore, due to the shape variety some features will not always be
very distinctive. We specifically address the named problems by enhancing the
current methods with a clustering-based detection (CBD) scheme as described
in the following.

2 Materials and Methods

Our CBD scheme is based on three methods: (i) robust alignment of ear im-
pressions, (ii) identification of a representative set of ear impressions, and (iii)
feature projection from one impression to another.

Robust Alignment of Ear Impressions Similar to Zouhar et al. [4], we use a spe-
cifically adapted version of an iterative closest point (ICP) algorithm to register
ear impressions. In contrast to them, we employ a version without previously
detected features, since we want to be independent of them. Our approach is
divided in two steps: (i) rough registration using a centerline representation and
(ii) fine registration using the mesh representation.

The initial centerline is computed by equidistantly slicing the mesh parallel
to a plane defined by the open contour at the bottom of the impression (see
Fig. 1). For each slice the center of mass is computed resulting in an ordered
set of points l1, . . . , lN . Afterwards the centerline is refined and improved by
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applying internal and external forces as defined below:

Eint,i = li−1 + li+1 − 2li, (1)

Eext,i =
1

N

N∑

r=1

xr,i

|xr,i|
, (2)

l
′

i = li + αEint,i + βEext,i. (3)

In eqs. (1) to (3), xr,i denotes the intersection of a random ray r with the mesh
emitted from the centerline point li, and N is the number of rays. The final
update rule of a centerline point li is a weighted combination of the internal
and external force, where α = 0.04 and β = 1.0. The centerline points are
updated according to eq. (3) until convergence. An example for the initial and
final centerline is given in Fig. 2.

Fig. 2. Centerline of an ear impression. The ini-
tial centerline (jagged) is colored in red and the
refined smooth centerline in black. The initial cen-
terline is biased by the concha area (left part of
the impression), while the corrected centerline fol-
lows the canal.

A critical step of the ICP is the matching of point pairs, which can be computa-
tional expensive. We can use the fact that the centerlines are ordered from top to
bottom to employ an efficient point matching technique. We shift the centerlines
along each other. In each shift step the overlapping parts are extracted. The
point matching is then reduced to matching the index i. For every step, we com-
pute the ICP (point-to-point error metric) and store the transformation matrix
along with the registration error. To solve the ICP, we utilize the SVD-based
strategy proposed by Arun et al. [7]. For the fine registration an ICP with the
point-to-plane error metric is used. It utilizes the surface normals as additional
information and, therefore, allows that smooth or planar areas of the meshes
slide over each other easily. Here, no closed-form solutions are available. Thus,
we linearize the problem using the assumption that incremental rotations are
small, which is valid due to our centerline registration.

Identification of a Representative Set of Ear Impressions To identify a repre-
sentative set of ear impressions, we aligned a sample set of 473 ear impressions
with each other and stored the averaged squared error of each alignment along
with its transformation matrix T. This information was given as input into an
agglomerative hierarchical clustering (AHC) algorithm. AHC was used, because
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no evidence for a certain number of clusters was available. We employed the
complete-linkage criterion to identify the closest clusters and analyzed the de-
velopment of the dissimilarity measure along with scatter criteria to identify the
most natural clustering. The cluster centers collectively define our representative
set of ear impressions SRep = {S1, . . . , Sn}. Finally, each member of SRep was
annotated by an expert designer.

Feature Projection To detect the features on a so far unknown ear impression
Snew it is registered with each surface in SRep. In the following only surface
Sref ∈ SRep with the smallest registration error is considered. The features Fref

of Sref are transformed using Tref resulting in a new feature set F ′

ref. Since
the transformed features F ′

ref typically will not end up directly on the surface
Snew a final projection is necessary. Currently, we employ only simple projection
algorithms. In case of feature points or point sets, the projection is achieved by
projecting the given point on the closest point of Snew. In case of feature planes,
no projection is necessary.

3 Results

The clustering of a set of 473 ear impressions resulted in a representative set of
10 ear impressions. Major distinctive properties of the clusters are thickness of
the ear canal, direction of the ear canal, thickness and length of the helix and
the shape of the anti-tragus concavity (see Fig. 1).

For the evaluation of the feature detection we restricted ourselves to the
feature points listed in Tab. 1. We compared our CBD scheme with a surface-
analysis-based (SBD) one developed by Baloch et al. [6]. The results presented
in Tab. 1 are based on the evaluation of 117 expert annotated ear impressions.
For each feature point the accuracy (Euclidean distance to annotated feature),
the detection rate and the tolerance rate is calculated. The latter is defined as
not exceeding a certain threshold θ. In agreement with the design experts, θ was
set to 3 mm. The results clearly indicate that the CBD is superior. On average
it is 1 mm (≈ 32 %) closer to the target and offers a smaller standard deviation
compared to the SBD. The achieved detection rates are both very good: 98.8 %
for SBD and 100 % for CBD, respectively. As expected from the numbers given
in Tab. 1, the tolerance rates differ strongly. The SBD obtained a tolerable result
in 62.3 % of the cases, while the CBD obtained a good result in 71.0 % of the
cases.

4 Discussion

We presented a novel clustering-based feature detection scheme specifically adap-
ted to the application case of ear impressions. The scheme involves the identifi-
cation of a representative set of ear impressions and the development of a robust
alignment procedure for ear impressions. The feature detection is carried out
by registering a new impression with the impressions of the representative set.
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Feature point µSBD ±σSBD µCBD ±σCBD

tragus 2.91 2.53 1.94 1.18

anti-tragus 3.40 3.18 2.38 2.02

anti-helix 4.63 3.86 3.12 3.13

helix-peak 3.62 6.42 3.14 1.91

concha-peak 3.47 3.69 2.91 2.77

low-aperture 2.89 1.72 2.02 0.97

crus-concha-intersection 4.61 5.75 3.25 1.68

canal-concha-intersection 4.42 5.14 2.52 3.03

canal-crus-intersection 4.64 6.66 2.11 1.13

Overall 3.84 4.32 2.59 1.98

Table 1. Comparison of SBD and CBD. µ denotes the mean distance in mm and σ

the standard deviation.

Followed by a projection of the features taken from the impression with the best
registration result. We could show that our scheme is superior compared to an
approach that analyzes the surface for peaks, concavities, ridges and bumps. On
average an improvement of 1mm could be achieved. Due to the template based
approach, the detection rate is 100 %. The tolerance rate, defined as detecting a
feature in a certain area around the labeled feature, could be improved about 9
%. Furthermore, the standard deviation of the detection error is greatly reduced,
which corresponds to a more robust detection of the features. So far, the pre-
sented results are preliminary and restricted to feature points. The next steps in
our work are extending the implementation to feature planes and feature areas
and better feature projection algorithms.
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