
OpenCL, a Viable Solution for High-performance
Medical Image Reconstruction?

Christian Siegla, H. G. Hofmanna, B. Kecka, M. Prümmera and J. Horneggera,b

aPattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg;
bErlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany

ABSTRACT

Reconstruction of 3-D volumetric data from C-arm CT projections is a computationally demanding task. For
interventional image reconstruction, hardware optimization is mandatory. Manufacturers of medical equipment
use a variety of high-performance computing (HPC) platforms, like FPGAs, graphics cards, or multi-core CPUs.
A problem of this diversity is that many different frameworks and (vendor-specific) programming languages are
used. Furthermore, it is costly to switch the platform, since the code has to be re-written, verified, and optimized.

OpenCL, a relatively new industry standard for HPC, promises to enable portable code. Its key idea is to
abstract hardware in a way that allows an efficient mapping onto real CPUs, GPUs, and other hardware. The
code is compiled for the actual target by the device driver.

In this work we investigated the suitability of OpenCL as a tool to write portable code that runs efficiently
across different hardware. The problems chosen are back- and forward-projection, the most time-consuming
parts of (iterative) reconstruction. We present results on three platforms, a multi-core CPU system and two
GPUs, and compare them against manually optimized native implementations.

We found that OpenCL allows to share a common framework in one language across platforms. However,
considering differences in the underlying architecture, a hardware-oblivious implementation cannot be expected
to deliver maximal performance. By optimizing the OpenCL code for the specific hardware we reached over 90%
of native performance for both problems, back- and forward-projection, on all platforms.

Keywords: Back-projection, Benchmark, CBCT, CPU, CUDA, CT, Forward-projection, GPGPU, GPU, High-
performance, HPC, Multi-core, OpenCL, RECON

1. INTRODUCTION

In the field of medical image reconstruction and medical image processing, complex problems often have to be
solved with very strict time constraints. Especially in an interventional environment delays are critical. To solve
these problems in a reasonable amount of time, high performance computing (HPC) is employed. Today, vendors
draw on a variety of HPC solutions. Custom hardware like field-programmable gate arrays (FPGAs)1 is in use
as well as highly optimized CPU implementations,2 or graphics cards (GPUs).3,4 While all these platforms offer
plenty of parallel computing units, each has its own programming language and tool chain, e.g. VHDL, SIMD
intrinsics, OpenGL, or CUDA. To assess the performance of a new platform for an algorithm means to create an
implementation optimized specifically for it, using its own language. Updating a product to a new computing
platform is considerably impeded, as the new code has to be re-written, tested (FDA approved), and optimized
again.

In 2008, a consortium of hardware and software vendors created the Open Computing Language (OpenCL)5

which aims to address these problems by providing a common framework across platforms. The main goal of
OpenCL is to enable a single source code to be executed efficiently on any platform which supports OpenCL.
Therefore, it uses a common programming language and a generalized hardware abstraction layer which can be
efficiently mapped onto modern heterogeneous parallel architectures like GPUs, CPUs, or the CELL processor.

Further author information: Send correspondence to H.G.Hofmann. E-mail: hannes.hofmann@cs.fau.de;
Address: Lehrstuhl fuer Mustererkennung, c/o Hannes G. Hofmann, Martensstr. 3, 91058 Erlangen, Germany.

In this work we answer three obvious questions:

• Is OpenCL code portable, i.e. can a single source code be executed on different platforms?

• Is the shared code efficient (without specific optimizations)?

• Can (optimized) OpenCL code compete with a manually optimized implementation?

The rest of this paper is structured as follows: First, we introduce OpenCL and the algorithms we examine
in Sec. 2. Thereafter, in Sec. 3, we describe the hardware used. The various implementations and hardware-
specific optimizations are detailed in Sec. 4. Section 5 contains our evaluation methods and the results which are
discussed in Sec. 6. Finally, we conclude our findings and present an outlook onto future developments in Sec. 7.

2. MATERIALS AND METHODS

Reconstruction of Computed Tomography (CT) data requires vast amounts of computing power. Depending on
the reconstruction algorithm, the most computation time is spent on back-projection (analytical algorithms)6 or
back- and forward-projection (iterative methods).7 Therefore, we chose these problems for our comparison.

2.1 Open Computing Language

OpenCL is an open framework for parallel programming of heterogeneous systems. It provides a uniform program-
ming environment for software developers to write efficient and portable code for different platforms. Further-
more, OpenCL C extends C99 by some data types and functions to support parallel processing. The key-concept
of OpenCL, however, is a hardware abstraction layer, consisting of a platform, execution and memory model.

The platform model consists of a host connected to one or more OpenCL devices. An OpenCL device is
divided into one or more compute units (CUs) which are further divided into one or more processing elements
(PEs) which are the actual computing units. Execution of an OpenCL program is split into two parts: a host
program and kernels which are executed on the host and on one or more OpenCL devices, respectively. The host
program defines the context for the kernels and manages their execution.

The OpenCL execution model defines how the kernels are executed. When a kernel is submitted for execution
by the host program, an index space is defined and an instance of the kernel executed for each point in this index
space. One kernel instance is called a work-item, identified by its position in the index space. Each work-item
executes the same code, but the specific pathway through the code and the data operated upon can vary per
work-item. Work-items are organized into work-groups, providing a more coarse-grained decomposition of the
index space.

Using the OpenCL memory model the kernel executing work-items have access to four distinct memory
regions, each with different restrictions and access speed as shown in Table 1.

2.2 Back-projection / RabbitCT

The evaluation of our implementation of back-projection was performed using the open reconstruction benchmark
RabbitCT.8 It comprises a public clinical data set and an open-source test framework that allows for presentation
of comparable results. The RabbitCT data set contains already preprocessed projection images. Geometry
information is provided using projection matrices. Additionally to performance measurements, RabbitCT allows
easy verification of an implementation’s correctness.

The data set consists of N = 496 projections with a resolution of Su = 1248, Sv = 960 pixels. The size of the
reconstructed volume is 5123 voxels (L = 512).

memory type global mem. constant mem. local mem. private mem.

accessible by host and kernel (r/w) host (w) and kernel (r) one work-group (r/w) per kernel (r/w)

Table 1. Memory types specified by OpenCL and their accessibility. The order implies the speed, from left (slower) to
right (faster).

Algorithm 1: Back-projection for the n-th projection image.

input : In,An, f, L
output: f

// for each voxel in the volume f
for x = 0 to L− 1 do

for y = 0 to L− 1 do
for z = 0 to L− 1 do

// update the volume

f(x, y, z) = f(x, y, z) + 1
wn(x,y,z)

2 · p̂n(un(x, y, z), vn(x, y, z));

end

end

end

With RabbitCT, the part of back-projection that has to be implemented is reduced to incrementing every
voxel of the volume with the value from the current projection image. This value is obtained by projecting the
voxel onto the projection image using the provided projection matrix.

Since the data is preprocessed, the discrete version of the FDK algorithm6 breaks down to

f(x, y, z) =
N∑

n=1

1

wn(x, y, z)
2 · p̂n(un(x, y, z), vn(x, y, z)), (1)

where

un(x, y, z) = (a0x+ a3y + a6z + a9) · wn(x, y, z)−1

vn(x, y, z) = (a1x+ a4y + a7z + a10) · wn(x, y, z)−1

wn(x, y, z) = a2x+ a5y + a8z + a11

and

An =

a0 a3 a6 a9
a1 a4 a7 a10
a2 a5 a8 a11

 .

This particular mathematical notation has been chosen for its closeness to the implementation. f denotes
the reconstructed volume, N is the number of projection images, and An is the projection matrix. The function
p̂n : R × R 7→ R performs a bilinear interpolation with a zero boundary condition in the projection image In.
Pseudo code of the back-projection is given in Algorithm 1. For more details we refer the reader to the original
RabbitCT article.8

2.3 Forward-projection

We use a volumetric ray casting approach for the forward-projection step. Its basic functionality has been de-
scribed in literature.4,9 The attenuation observed by every detector pixel is determined for every view. Therefore,
a ray ~r is drawn pointing from the X-ray source position ~sn towards the pixel position (u, v). Then, the densities

ρ inside the volume are sampled equidistantly along the ray using trilinear interpolation f̂ . The accumulation
of these sampling values is the attenuation value in the projection, approximating Beer’s law (cf. Eq. (2)).

I = I0 · exp
(
−
∫
ρ(~r(t)) dt

)
(2)

Given a proper pre-processing of the projection images, which are corrected for the source intensity I0, only the
integral has to be computed in the forward projection step. Subtraction of this forward-projected volume from

Algorithm 2: Forward-projection for the n-th projection image.

input : In,An, f, Su, Sv

output: Dn

calculate ~sn, using An

for v = 0 to Sv do
for u = 0 to Su do

calculate ~r, the ray from ~sn to (u, v), using An

for each sample point ~x along ~r do

ProjectedV alue = ProjectedV alue+ f̂(~x)
end

Dn(u, v) = In(u, v)− ProjectedV alue
end

end

the n-th original projection image In yields the error Dn of the current volume estimate w.r.t. In (cf. Eq. (3)).
Pseudo code of the forward-projection is shown in Algorithm 2.

Dn(u, v) =

(
In(u, v)−

∑
t

f̂(~spn(t, u, v))

)
, (3)

where the sampling points ~sp are calculated as

~spn(t, u, v) = ~sn + t · α · ~r′n(u, v).

~r′n(u, v) denotes the normalized directional vector of the current ray ~r, and α the sampling step size.

To compensate for the error of the current volume estimate, Dn is back-projected into the volume after
applying a relaxation factor c.

3. HARDWARE AND OPENCL-FRAMEWORKS

We ran our tests on three different HPC systems:

• NVIDIA Tesla C1060; 4 GB device memory; CUDA 3.1 driver, including OpenCL 1.1.

• ATI Radeon HD 5870; 1 GB; ATI Stream SDK 2.3 including OpenCL 1.1.

• Intel Core2 Extreme X9650 CPU at 3.0 GHz; 4 GB RAM; ATI Stream SDK 2.1 including OpenCL 1.0.

At the time of writing ATI’s Stream SDK was the only framework featuring support for x86 CPUs.

4. OPENCL-SPECIFIC IMPLEMENTATION DETAILS

4.1 Back-projection

For one view, all voxels can be back-projected independently from each other. Therefore, parallelizing over the
voxels is the most efficient way. Although it has some potential to break the outer loop (over all projections) we
kept that one intact throughout all implementations. After all, we are not looking for the fastest back-projection
implementation, but for an assessment of OpenCL, and a fair comparison across hardware platforms.

Generic OpenCL Implementation: The first OpenCL implementation was similar to the LolaBunny reference
implementation from RabbitCT (cf. Algorithm 1). To exploit OpenCL’s support for 3-D problems, we eliminated
the inner loops (x, y, and z) in the kernel. Consequently, there was one kernel instance per voxel. This
implementation did not use OpenCL vector data types like float4.

Optimizations for Multi-core CPU: The generic version creates 5123 work-items (per projection image),
introducing lots of overhead. Therefore, the problem was re-organized as a 2-D problem to better suit the CPU’s

relatively low number of processing elements. Further, to enable efficient loading and storing of the volume data,
the innermost loop was transformed such that it traverses the volume in x-direction. Then, voxels processed in
consecutive iterations of the innermost loop are adjacent in memory, exploiting the concept of cachelines used
by CPUs to improve memory latencies.

The second optimization step was to exploit the vector units by using OpenCL’s vector data types. The
OpenCL-C language used for kernel code supports arithmetic operations with vector data types which simplifies
vectorization and increases readability.

Optimizations for NVIDIA GPU: GPUs provide many simple processing elements with plenty of computing
power. Furthermore, they feature special hardware units to make context switches very fast. So having a lot
more work-items than processing elements is desirable to hide memory latency. The generic implementation’s
partitioning as a 3-D problem ensured that many threads were available (NV1).

The first GPU-specific optimization was the use of OpenCL’s image2d t type (NV2). This image data type
not only provides the use of the graphics card’s texture caching capabilities but also allows utilization of hardware
texture interpolation. Note that image2d t is not fully supported by all OpenCL frameworks, yet.

In addition to many kernel instances, to get good throughput, memory accesses on graphics cards should meet
some constraints. Maximum performance is achieved when work-items within one work-group access contiguous
memory locations. This is called coalesced memory access.
To get better control over memory accesses and achieve higher performance, the problem was reorganized as a
2-D problem, where every kernel loops over all voxels in y-direction, analogous to the CUDA optimizations in
Scherl et al.3 (NV3). Together with work-groups that process all voxels in one line in x-direction, coalesced
memory access is ensured.

Optimizations for ATI GPU: Considering that the code again was targeted for a GPU platform we did not
expect too many changes to the NVIDIA code.

However, despite the device memory of 1 GB, the driver of the ATI GPU did not let us allocate buffers larger
than 128 MB (and 512 MB total). Only after setting two environment variables, we were able to allocate buffers
of 256 MB (1 GB total). This required splitting of the volume into two regions and some adaptions inside the
kernel. Therefore, the NVIDIA version was adapted to these constraints (ATI1).

As the performance of the adapted NVIDIA code did not meet our expectations, different problem organi-
zations were investigated. Since the technical documents by ATI don’t emphasize coalesced memory access as
much as NVIDIA’s documents, our second approach was to increase the number of work-items and again use a
3-D problem. The idea behind this is to increase the number of work-items and thus improve the possibility of
hiding memory latencies. Two versions of this approach were tested, one with one voxel per kernel (ATI2) and
one with two voxels per kernel (ATI3) originating from the two memory regions.

The fourth implementation (ATI4) used vectorized code, similar to the CPU-optimized version, but with a
memory access pattern suitable for graphics cards.

4.2 Forward-projection

All pixels can be forward-projected independently from each other. Therefore, parallelizing the forward-projection
over the pixels is the most efficient way.

Optimizations for Multi-core CPU: As runtimes of the proposed algorithm for iterative reconstruction are
far beyond practical relevance the performance of iterative reconstruction on the CPU was not investigated. On
a CPU one would rather use a simpler algorithm for forward-projecting rays, e.g. Joseph’s method.10 Comparing
against this would make no sense in this paper.

Optimizations for NVIDIA GPU: Every kernel processes one ray and sums up all volume elements along
it, including trilinear interpolation. As learnt from the back-projection, expoliting the hardware texture inter-
polation and caching is mandatory. Therefore, the volume data is stored as an image3d t. Also, the difference
image is stored as a texture, such that it can be used as input to the consecutive back-projection step without
copying.

[s]
0 10 20 30 40 50 60 70 80 90

44.7NV1 (g, 3-D)

38.6NV3 (c, 2-D, y)

18.3NV2 (t, 3-D)

16.3NV2+3 (c, t, 2-D, y)

14.7CUDA

71.0ATI1 (2-D, t, y)

75.8ATI2 (3-D, t)

79.9ATI4 (3-D, v, t)

83.6ATI3 (3-D, t, 2vx)
[s]

0 50 100 150 200 250 300 350

� 30minOCL (g, 3-D)

343.0OCL (2-D, x)

218.9OCL (2-D, v, x)

198.6TBB+SIMD

Figure 1. Back-projection runtimes on GPU (left) and CPU (right) in [s]. Shorter bars are better. In the left figure, the
top bars are for the NVIDIA card (NV), the bottom ones for ATI. (g) means generic, (c) coalesced, (t) textures units, (v)
vectorized. (x) and (y) denote the index of the innermost loop, (2vx) denotes the kernel that processes two voxels.

Note that the volume cannot be a 3-D texture in the back-projection since it is read and written to, which is
not allowed within one kernel. One possible solution would be to copy the volume to the host at the end of the
back-projection and load it back as a 3-D texture. However, the low speed of the PCIe-bus is prohibitive. Or,
one can hold two copies of the data on the GPU. This doubles the memory requirement, but updates are very
fast (see also Keck et al.4).

Optimizations for ATI GPU: As described above, an efficient implementation requires two volume copies on
the device. Since the ATI GPU used to test performance on only was equipped with 1 GB of graphics memory,
we decided to run only half of the problem (512× 512× 256) when making comparisons with this GPU.

Copying the volume within the device memory was more than 10 times slower on our ATI GPU with the
current ATI framework than with the NVIDIA card. Therefore, another solution for the synchronization of
the two memory regions had to be found. In contrast to current NVIDIA GPUs, the ATI GPU features the
possibility to write to image3d t-textures from a kernel. Still, two volume copies are required, since read and
write from within one kernel is forbidden.

However, with 3-D texture writes, we can get rid of the slow copy operation. The back-projector stores the
updated voxels not only to its float memory buffer, but also to the forward-projector’s image3d t texture. This
additional write operation had no impact on the runtime of the back-projecting kernel and thus copying the
volume into the texture is for free.

5. EVALUATION AND RESULTS

All benchmarks of the back-projection were run with RabbitCT. We also extended the open-source framework
to support iterative reconstruction.

The data set consists of 496 projections with a resolution of 1248× 960 pixels. The size of the reconstructed
volume was 5123 voxels.

5.1 Back-projection

The CUDA reference implementation was SpeedyGonzales, as published on www.rabbitct.com. The CPU refer-
ence implementation was manually optimized as described in Hofmann et al.2 (TBB+SIMD). The runtimes of
all our implementations on all three systems are shown in Figure 1.

The right diagram of Figure 1 presents the runtimes on the CPU system. The generic version took longer
than 30 minutes, hence we do not give an exact number here. Using a 2-D partitioning reduces the runtime to
1.7× the optimized version. Finally, the version using vector types achieved 91% of the native implementation’s
performance.

The top bars in the left diagram of Figure 1 show that the runtime of the generic version on the NVIDIA
GPU is about 3× slower than the CUDA version. Applying optimizations (using texture samplers and coalesced

[s]
0 50 100 150

146.3OpenCL

140.9CUDA

[s]
0 20 40 60 80

75.2NVIDIA

51.4ATI

Figure 2. Forward-projection runtimes in [s]. Left: NVIDIA GPU, OpenCL vs. native. Right: NVIDIA and ATI, both
OpenCL, only half volume. Shorter bars are better.

memory access) improved performance. Finally, a version with both optimizations was able to achieve 90% of
the CUDA implementation’s performance.

The bottom bars in Figure 1 (left) show the performance on the ATI GPU. Despite some efforts in optimizing
the implementation, the runtime of the different variants does not vary much. Even the fastest implementation
on ATI’s graphics card is 4.4× slower than what was achievable on the NVIDIA GPU.

5.2 Forward-projection

Figure 2 (left) shows that, only 4% behind, the OpenCL forward projection was almost as fast as the native
CUDA implementation on the NVIDIA GPU.

The right diagram in Figure 2 shows that for the forward-projection task the ATI Radeon HD 5870 is able
to outperform NVIDIA’s Tesla C1060 with only 68.4% of the runtime. As mentioned in Sec. 4 the runtimes
provided for the forward-projection are for half the problem due to the limited memory size of our ATI graphics
card.

6. DISCUSSION

During this work it became obvious that OpenCL allows to have a single codebase for all platforms which support
it. However, one cannot expect to get one solution which is efficient on all platforms. This is due to several
reasons:

• Fundamental differences in memory layout, size, and latency (e.g. device memory on PCIe boards)

• Fundamental differences in platform layout (e.g. number of cores between 1 and several hundreds)

• Fundamental differences in execution model (OS threads vs. hardware threads)

• Hardware-specific features (e.g. texture caching and samplers on GPUs)

Extensions supporting specific hardware features allow optimization, but break portability. While OpenCL
offers no benefit in terms of performance, yet, the code is no longer vendor-specific and should also be executable
on other devices which support OpenCL.

The performance results on the benchmarked systems are almost on par with the native implementations.
The small penalty of about 10% is most likely attributed to the compilers which are not as sophisticated, yet.
We expect this gap to become smaller over time.

On the CPU, vector data types keep the vectorized code readable and very close to the scalar version. The
effort for optimization is reduced to a minimum. The smaller than expected performance gain from vectorizing
the code can easily be explained by the fact that the compiler already does a good job in vectorizing the non-
vectorized version. The runtimes show that this automatic vectorization at the current point in time can’t keep
up with a hand vectorized version of the code.
The used version of the ATI Stream SDK does not support image data types on CPU devices. Hence, code that
uses this feature is not portable. Instead, bilinear interpolation had to be implemented manually in the CPU
version.
Another inconveniency stems from OpenCL’s memory model: even on a CPU host and device memory are
separate. Consequently, data is copied by the driver and memory consumption rises. This can be avoided by
using host pointers, but they would degrade performance on the GPU.

On NVIDIA GPUs, OpenCL and CUDA offer very similar concepts and even share intermediate binary
formats. Both are sensitive to hardware-specific optimizations such as the size of the work-groups or coalesced

memory access. In order to achieve maximum performance, GPU-specific features must be exploited. The
runtime differences between OpenCL and CUDA can be explained by the maturity of the compilers. NVIDIA
released their CUDA SDK before OpenCL became available and the compiler for CUDA thus is more optimized
and evolved. It can be expected that this gap closes over time and there will be no more or only marginal
differences in future versions.

On the ATI GPU we saw mixed results. Looking at the theoretical peak performance, the card should easily
be able to outperform every other system in our test setup. In the evaluation, however, it could not meet up
to this expectation. In reality, only for the forward-projector the performance was better, but drastically worse
for the back-projector, than on the NVIDIA counterpart. From running the code in different configurations and
review of technical documents we conclude that this is due to the following factors.
Compared to NVIDIA’s cards, current ATI graphics cards feature a main difference in device architecture. On
ATI GPUs the stream cores are subdivided into five processing elements (not correlated to OpenCL processing
elements). While this division dramatically increases the theoretical peak performance of the card, it is more or
less transparent to the programmer and only accessed by the compiler. In our experiments the so called packing
of the code onto these five processing elements never utilized more than 60% of the GPU (max. 38% for the
back-projector).
The used ATI graphics card has a compute unit to texture unit ratio of 4 to 1 compared to a ratio of 3 to 1
on the NVIDIA card. That means more processing elements have to share one texture unit and thus memory
latency goes up.
The last factor that impacts performance on the ATI graphics card is global memory access. It can be seen
that the forward-projection kernel, which only works on image data types, performs quite well, while the back-
projection kernel, which heavily uses global memory, performs much worse than expected. We ran this kernel in
many different configurations (e.g. only memory access, or no memory access, etc.) and we can conclude that
the limiting factor for performance is global memory access.

One key point in optimizing performance on all platforms that has very high impact on runtimes is the size
of work-groups in different dimensions. The layout of a work-group specifies how many points in the kernel
index space are processed by the work-group. Things to keep in mind when determining the optimal layout are,
for example, locality to optimize usage of the texture cache (resulting in a more cubic layout), or coalescing
of memory access (a layout that stretches across one line in index space). The work-group sizes have to be
chosen in a way that the global problem size in every dimension is divisible by the respective dimension of the
work-group size and the product of the work-group size in all dimensions should be a multiple of the smallest
possible execution unit on the used device. When it comes to work-group size it is important to know that some
experiments have to be done as devices often behave very counterintuitive. The presented results always use the
fastest configuration that has been found in experiments.

To set these problems into perspective it has to be considered that differences in source code, even between
optimized implementations, are small. Some of these changes could further vanish if vendors would emulate
functionality not provided by certain devices. For example, if image2d t and sampling would be handled by the
OpenCL framework/driver on the CPU, portability would increase a lot. For similar architectures, like different
graphics cards, similar optimizations are efficient. For example, ATI1, the implementation closest to the fastest
NVIDIA code, was also the one performing best on ATI. And even despite the fact that code has to be optimized
for different platforms independently it is important to keep in mind that all this happens in one programming
language using the same framework. This heavily reduces the complexity of this task.

7. CONCLUSION AND OUTLOOK

Picking up the questions that motivated this work we can conclude that it is well possible to write platform
independent software with OpenCL. Shared code, once optimized for a specific architecture, may also perform
well on another one (e.g. NV2+3 and ATI1). However, if the architectures are too different, specific optimizations
will be necessary. Optimization is eased by OpenCL features, the fact that a common language is used, and the
fact that only minor changes are required. By optimizing the implementations for the different platforms we
showed that OpenCL can perform on a level close to highly optimized native implementations. Since OpenCL

is supported by many vendors we expect it to become even better rapidly and compilers to perform many of the
optimizations automatically.

Two recent facts support these statements: The latest version of the ATI Stream SDK that was released
shortly after the evaluation for this paper was done supports image data types on the CPU. This means portability
increases. Another fact is the recent release of Intel’s OpenCL framework. The framework is still in alpha stage
but proves that all major vendors invest into OpenCL.

In summary, we conclude that interoperability is better than with any other framework we know of and we
encourage programmers to start using OpenCL.

REFERENCES

[1] Heigl, B. and Kowarschik, M., “High-speed reconstruction for C-arm computed tomography,” in [9th Inter-
national Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine],
25–28, www.fully3d.org, Lindau (July 2007).

[2] Hofmann, H. G., Keck, B., Rohkohl, C., and Hornegger, J., “Putting ’p’ in RabbitCT – Fast CT reconstruc-
tion using a standardized benchmark,” in [PARS-Mitteilungen (ISSN 0177-0454)], 91–100, Gesellschaft für
Informatik e.V., Bonn (Dec. 2009).

[3] Scherl, H., Keck, B., Kowarschik, M., and Hornegger, J., “Fast GPU-Based CT Reconstruction using the
Common Unified Device Architecture (CUDA),” in [Nuclear Science Symposium Conference Record, 2007.
NSS ’07. IEEE], Frey, E. C., ed., 6, 4464–4466 (Oct. 2007).

[4] Keck, B., Hofmann, H., Scherl, H., Kowarschik, M., and Hornegger, J., “GPU-accelerated SART reconstruc-
tion using the CUDA programming environment,” in [SPIE Medical Imaging Conference Proc.], Samei, E.
and Hsieh, J., eds., 7258, 72582B.1–72582B.9 (2009).

[5] Khronos Group, “OpenCL 1.1 Specification.” Website (2010). Available online at
http://www.khronos.org/opencl/.

[6] Feldkamp, L., Davis, L., and Kress, J., “Practical Cone-Beam Algorithm,” Journal of the Optical Society
of America A1(6), 612–619 (1984).

[7] Andersen, A. and Kak, A., “Simultaneous Algebraic Reconstruction Technique (SART): A superior imple-
mentation of the ART algorithm,” Ultrasonic Imaging 6, 81–94 (Jan. 1984).

[8] Rohkohl, C., Keck, B., Hofmann, H. G., and Hornegger, J., “RabbitCT—An Open Platform for Bench-
marking 3-D Cone-beam Reconstruction Algorithms,” Medical Physics 36, 3940–3944 (Sept. 2009).

[9] Engel, K., Hadwiger, M., Kniss, J. M., Rezk-Salama, C., and Weiskopf, D., [Real-time volume graphics],
AK Peters (2006).

[10] Joseph, P. M., “An improved algorithm for reprojecting rays through pixel images,” IEEE Transactions on
Medical Imaging MI-1(3), 192–196 (1982).

