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Abstract

Cerebral 3-D rotational angiography has become the state-of-the-art imaging mod-
ality in modern angio suites for diagnosis and treatment planning of cerebrovascu-
lar diseases, e. g. intracranial aneurysms. Among other reasons, it is believed that
the incidence of aneurysms is due to the local prevalent hemodynamic pattern. To
study such a hemodynamic behavior, the 3-D vessel geometry has to be extracted
from 3-D DSA data. Since 3-D DSA data may be influenced by beam hardening,
inhomogeneous contrast agent distribution, patient movement or the applied re-
construction kernel, this thesis describes a novel vessel segmentation framework
seamlessly combining 2-D and 3-D vessel information to overcome the aforemen-
tioned factors of influence. The main purpose of this framework is to validate
3-D segmentation results based on 2-D information and to increase the accuracy of
3-D vessel geometries by incorporating additional 2-D vessel information into the
3-D segmentation process. Three major algorithmic contributions are given within
this framework: (1) a classification-based summation algorithm of 2-D DSA series
such that 2-D vessel segmentation becomes feasible, (2) a 3-D ellipsoid-based ves-
sel segmentation method which allows for local adaptations driven by 2-D vessel
segmentations and (3) a mesh size evaluation study investigating the influence of
different mesh type elements and resolutions w. r. t. hemodynamic simulation re-
sults. Moreover, this work is chamfered by a simulation study which evaluates
the impact of different vessel geometries on the simulation result. The vessel ge-
ometries are computed by different segmentation techniques working on the same
patient dataset. The evaluation of each framework component revealed high ac-
curacy and algorithmic stability to be applied in a clinical environment.



Kurzübersicht

Zerebrale 3-D Rotationsangiographie ist seit einigen Jahren eine anerkannte Bildge-
bungsmodalität, die in modernen Neuroradiologieabteilungen zur Diagnose und
Therapieplanung von zerebralen Gefäßerkrankungen, wie zum Beispiel von in-
trakraniellen Aneurysmen, bevorzugt eingesetzt wird. Neben vielen anderen Grün-
den, nimmt man an, dass die Ursache für das Auftreten von Aneurysmen mit
den lokal vorherrschenden Druck- und Flussmustern zusammenhängt. Um solche
Flussmuster virtuell simulieren und untersuchen zu können, muss die entsprech-
ende 3-D Gefäßgeometrie aus dem 3-D DSA Datensatz so genau wie möglich ex-
trahiert werden. Dabei kann die Qualität von 3-D DSA Datensätzen von unter-
schiedlichen Faktoren (Aufhärtungsartefakte, heterogene Kontrastmittelverteilung,
Patientenbewegung, Rekonstruktionskern) beeinträchtigt sein, was eine exakte 3-D
Segmentierung der Gefäße erschwert. Diese Arbeit beschreibt ein neues System
zur Gefäßsegmentierung, das 2-D und 3-D Gefäßdaten geschickt miteinander kom-
biniert, um den Einfluss der vorher genannten Faktoren zu minimieren. Der Haupt-
zweck dieses Systems besteht darin, 3-D Segmentierungsergebnisse anhand von
2-D DSA Daten zu validieren sowie die Genauigkeit von 3-D Gefäßgeometrien
mittels zusätzlicher Einbindung von 2-D Gefäßinformation im 3-D Segmentier-
ungsprozess zu erhöhen. Der wissenschaftliche Beitrag dieses Systems ist dabei
dreigeteilt: (1) ein klassifikationsbasierender Algorithmus zur Aufsummierung
von DSA Serien, wodurch eine einfache 2-D Gefäßsegmentierung durchführbar
wird; (2) eine 3-D Gefäßsegmentierung basierend auf ineinander gesteckter Ellip-
soiden, die eine lokale Anpassung aufgrund von 2-D Segmentierungen erlaubt
und (3) eine Bewertungsstudie zur Netzunabhängigkeitsanalyse, die den Einfluss
von unterschiedlichen Netzgrößen und Typen auf die Blutflusssimulationsergeb-
nisse untersucht. Eine Simulationsstudie, die die Auswirkungen von unterschied-
lichen Gefäßsegmentierungen auf das Simulationsergebnis zeigt, rundet die Ar-
beit ab. Die Segmentierungen basieren dabei auf den gleichen Datensätzen. Jede
Komponente des Segmentierungssystems wurde ausgiebig evaluiert und getestet,
damit eine hohe Genauigkeit sowie algorithmische Stabilität für einen Klinikein-
satz gewährleistet sind.
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The human brain is one of the most complex systems in nature coordinating all
physical motions and being the origin of all our ideas, thoughts, fantasy and cre-
ativity. To keep this system running, it diligently needs oxygen and sugar such
that the cells stay alive. This is provided via the cerebral arterial vessel system
carrying oxygenated blood to the brain cells. The human brain is nurished by ves-
sel branches forming a complex vessel tree. Cerebrovascular disease, specifically
a sudden interruption of cerebral blood flow imply serious danger for human life
usually necessitating further clinical clarification and if necessary an intervention.
Three different imaging devices are available to work-up such a clinical event in
vivo, e. g. computed tomography (CT), X-ray based 3-D rotational angiography
(3-D DSA) and magnetic resonance imaging (MRI), respectively. Each of these im-
age modalities has its specific indication. Patients with an acute cerebrovascular
event are usually undergoing cross-sectional imaging of the brain, i. e. first a CT or
a MRI, in selected cases followed by subsequent conventional angiography using
DSA. If available, MRI is preferred and most often used for routine clarifications
or as follow up examination because it is free of radiation.

This thesis deals with the segmentation of cerebral vessels in 2-D and 3-D an-
giographic images and its subsequent blood flow simulation. X-ray based 2-D and
3-D angiography images denote the image modality on which the methods of this
thesis are working on. The purpose of this introduction is to shortly make its read-
ers familiar with the medical background and the characteristics of the applied
imaging modality.

The outline is as follows: First, an overview about major cerebral vessels to-
gether with cerebrovascular pathologies and endovascular therapeutic options, re-
spectively. Second, 2-D and 3-D angiography is introduced and the challenges are
described making accurate 3-D vessel segmentation a difficult task. The third part
details the hemodynamic simulation workflow which denotes one future post-
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Figure 1.1: Schematic illustration of the circle of Willis together with its major
cerebral vessel branches.

processing application of 3-D vessel segmentation results based on 3-D angiogra-
phy. The introduction concludes with the scientific focus and the outline of this
thesis.

1.1 Cerebrovascular Anatomy, Pathology and Interven-

tional Therapy

The Circle of Willis comprises the major hub within the human cerebrovascular
system [Osbo 99] as depicted in Figure 1.1. It is the connection between both ante-
rior circulations and concatenates to the vertebral-basilar system. The major artery
of the circle of Willis denotes the left and right internal carotid artery (ICA) which
branches to the corresponding left and right anterior cerebral arteries (ACA). Both
ACAs are connected by the anterior communicating artery (ACoA). The circle is
closed by the posterior circulation exhibiting the posterior communicating arteries
(PCoA) which connect to the posterior cerebral artery (PCA). The middle cerebral
arteries (MCA) and the basilar artery (BA) are not part of the circle of Willis, how-
ever, they provide a major contribution of the blood supply of the human brain.

In general, there are several cerebrovascular diseases which lead to serious
pathologies of the vessels, e. g. intracranial aneurysms, stenoses, and arteriove-
nous malformations. Intracranial aneurysms are balloon-like bulges of vessels
which are categorized according to (a) saccular aneurysms, (b) fusiform aneurysms
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Table 1.1: DSA acquisition protocols for 2-D DSA series and 3-D DSA performed
on Artis dBA system (Siemens AG, Healthcare Sector, Forchheim, Germany).

DSA
protocol

Contrast
agent
[ml]

Injection
[ml/sec]

Frame
rate

[1/sec]

Scan
time
[sec.]

Image size
[pixels]

Pixel size
[mm]

2-D DSA 5-6 5 0.5-2 ≤ 25 512×512-
1440×1440

0.154

3-D DSA 15-20 3.5-4 26.6 5 1240×960 0.321

and (c) dissecting aneurysms. A stenosis denotes an abnormal narrowing of a ves-
sel and an arteriovenous malformation describes a pathologic connection between
veins and arteries. The focus of this work is on intracranial aneurysm.

Cerebral aneurysms may arise at any location within the cerebrovascular sys-
tem. There are locations, however, which show a higher prevalence like the Cir-
cle of Willis [Osbo 99]. The anterior circulation exhibits approximately 90% of
all aneurysms whereas the vertebrobasilar system indicates only 10%. 30% of
aneurysms occur at the ACoA and the PCA. 20% rise at the MCA bi- or trifur-
cation. Among other reasons like drug abuse or infection, it is assumed that the
etiology of aneurysms is flow-related with high probability.

Most of these aneurysms, however, are accidently detected during MRI exam-
inations if patients show up in the clinic with specific symptoms. A much more
critical event denotes the rupture of an aneurysm implying a subarachnoid hem-
orrhage (SAH) which immediately requires a clinical clarification and especially
therapeutic intervention if possible. Annually, about 28,000 intracranial aneurysms
rupture in North America and 8% of these patients die before reaching the hospi-
tal [Atla 09]. There are two different types of therapies available to handle such
an event, i. e. the clipping approach and the endovascular procedure, also called
coiling. The therapy type is chosen depending on the aneurysm shape, location
and local institutional factors such as physician availability.

Within the past, the clipping approach was considered as the standard treat-
ment where neurosurgeons open the skull of the patient and approach the aneurysm
directly. The blood flow into the aneurysm sac is interrupted by the placement of
a small clip across the aneurysm neck. Although this approach is highly effective,
it implies a risk for patients morbidity and mortality.

Modern imaging devices allow endovascular procedure using guide wires to
prevent blood flow into the aneurysm [Wank 02, Doer 06]. A micro catheter is
used for the coiling procedure which is placed inside the patient’s arterial system
for both diagnosis and treatment. Again, the positioning of the micro catheter all
the way up through the vessel system and inside the aneurysm is done by guide
wires. After the approach, tiny helical-shaped platinum coils are passed through
the micro catheter into the aneurysm to fill and effectively seal it off. The entire
procedure is guided by X-ray imaging. This procedure significantly reduces the
number of complications, shortens the time for therapy and accelerated conva-
lescence. That is why it is nowadays considered as the state-of-the-art treatment
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(a) Mask image (b) Contrast image (c) DSA image

Figure 1.2: Example of digital subtraction angiography: (a) mask image, (b) con-
trast filled image and (c) DSA image.

method.
Concerning endovascular procedures, 2-D and 3-D angiography represent the es-
sential imaging technique to plan and perform this kind of interventional ther-
apies. Within the next two sections, this imaging modality is shortly described
together with its challenges when performing accurate vessel segmentation.

1.2 2-D Angiography

X-ray based 2-D angiography was first described in 1935 by Ziedses des Plantes
[Plan 35] which is an approach to visualize vessel structures on X-ray images using
intravascular contrast agent. The contrast agent is an iodine fluid with a higher
density than blood. Once injected into the arterial system, vessels are visible on
X-ray images due to its increased absorption rate.

This is especially utilized by subtraction angiography for objects which do not
move during the acquisition. The basic principle relies on three steps, i. e. (1) a
mask image is acquired depicting the region of interest for the examination, (2)
contrast agent is injected through a catheter making the vessels visible within X-
ray images and (3) the mask image is subsequently subtracted from the contrasted
images such that only the vessels remain on the image while the background is re-
moved. Figure 1.2 gives a qualitative insight how this method works and Table 1.1
(first row) shows typical acquisition protocol parameters. This provides the fun-
damental basis for a variety of therapies particulary within the field of interven-
tional procedures would not be imaginable. At the beginning, the performance of
this method was very time consuming since all X-ray images were saved on films
and its processing was slow. The advent of computers simplified the computation
of this method a lot by using digital subtraction angiography (DSA) [Krug 78].
Besides CT and MRI, 2-D angiography is one of the most important modalities
particularly within interventional laboratories.

Nowadays, 2-D DSA images are acquired using C-arm systems where the an-
gulation of the C-arm is kept fixed while performing the 2-D DSA series. C-
arm systems are especially designed to support interventional procedures, e. g.
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Figure 1.3: Modern C-arm system at the Department of Neuroradiology (Univer-
sity Hospital Erlangen, Germany) Siemens AXIOM Artis, Forchheim, Germany.

minimal invasive treatments like coil embolization. The X-ray tube and detec-
tor are mounted on a mechanical C-arm allowing the acquisition of X-ray images
from various directions (see Figure 1.3). Within the last two decades, substan-
tial progress has been made concerning both hardware and software, e. g. image
intensifier are more and more replaced by flat-panel detectors [Vano 05], various
types of algorithms have been implemented to perform motion correction, image
enhancement etc. [Meij 99a, Meij 99b, Bent 02].
Modern C-arm systems like Siemens AXIOM Artis deliver such 2-D X-ray images
in real-time with a spatial resolution of up to 0.25 mm [Brun 05]. This allows to
visualize vessel structures in a very high quality with clear vessel contours. Due
to the sharp vessel boundaries, these 2-D images are used to measure vessel diam-
eters, neck size of aneurysms or to determine the degree of a stenosis. These are
the reasons why 2-D DSA is still considered as „gold standard“ image modality
[Brin 09] if it comes to treatment planning and therapy performance concerning
cerebral vessel pathologies.
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1.3 C-arm CT and 3-D Rotational Angiography

Since the early seventies, 3-D imaging has been known within the medical com-
munity due to the invention of computed tomography (CT) [Buzu 02, Kale 06]. CT
captures a set of X-ray projection images around the object which are used to re-
construct a 3-D volume. It took over 25 years, however, until 3-D imaging has
found its way into interventional rooms. Comparable to CT, the C-arm rotates
around the patient acquiring projection images from various directions to com-
pute a 3-D volume using cone-beam reconstruction algorithms [Hopp 09]. This
interventional CT is also called C-arm CT which was first described by [Roug 93,
Sain 94, Kopp 95].

Its first application was found for cerebrovascular imaging where the C-arm
performs two rotations around the patient. X-ray projections are captured at pre-
defined positions during both rotations. The first run differs from the second one
in using contrast agent to make vessels on X-ray images visible as depicted in
Figure 1.4 (a). The corresponding projections of both runs are subtracted from
each other such that the irrelevant background structures are removed. The re-
constructed data clearly visualizes the cerebral vessel tree of the human brain as
depicted in Figure 1.4 (b). Table 1.1 (second row) details the parameters of the typ-
ical acquisition protocol used. This image modality is called 3-D rotational angiog-
raphy and denotes a major breakthrough within the field of neuroradiology con-
cerning diagnosis and treatment of vascular pathologies, e. g. cerebral aneurysm.

The tremendous improvement of the image quality and the availability of such
3-D information during interventions have prepared the ground for many other
clinical applications. C-arm CT delivers indispensable information for abdomi-
nal applications like liver lesion treatment. Motion compensated cardiac C-arm
CT allows to reconstruct the beating heart providing accurate morphological in-
formation before, during and after an interventional suite [Rohk 09, Rohk 10b].
Traditionally, catheter guidance was restricted to 2-D X-ray fluoroscopic images.
C-arm CT upgrades this guidance by 3-D information being integrated into 2-D
images. Further information can be found in [Stro 09].

The acquisiton time requires some seconds depending on the protocol and due
to the low rotation speed of the C-arm. This is rather slow compared to a modern
CT scanner. This, however, is more than compensated by the spatial resolution a
C-arm CT offers, i. e. regular CT reconstructed volume exhibits an isotropic res-
olution of up to 0.5 mm whereas a C-arm CT volume typically has a resolution
of 0.1 mm [Brun 05]. C-arm CT has the advantage against CT that it is able to
preserve small anatomical structures like cochlear implant electrode at petrosal
bones [Stru 10] or vessel morphologies in much more detail due to bone removal
and intra-arterial contrast agent injection. Moreover, C-arm CT and cerebral blood
volume imaging with intravenous contrast medium compares favorably with mul-
tislice perfusion CT such that the assessment of cerebral perfusion within the an-
giographic suite may improve the management of ischaemic stroke [Stru 11].

That is the reason why 3-D DSA modality are the preferred image volumes
when it comes to cerebral vessel segmentation. 3-D DSA volumes, however, are
subject to certain ambiguities in determining the exact position of the vessel bound-
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(a) 2-D DSA projections (b) Reconstructed vessel tree

Figure 1.4: Figure (a) shows a 3-D DSA volume and (b) the corresponding X-ray
projections used for reconstruction.

aries. This circumstance is caused by the factors of influence which characterize
the acquisition of a 3-D DSA volume, i. e. the amount of injected contrast agent,
injection timing, patient movement, vessel movement and the applied reconstruc-
tion algorithm with its kernel. That makes accurate 3-D vessel segmentation to
come up with quantitative measurements like diameter or aneurysm neck size a
challenging task because the vessel boundary exhibit a wide edge ramp such that
the exact position of the vessel boundary is not well-defined.

The focus of this thesis is on the development of a 3-D vessel segmentation
approach which is able to correctly determine the exact vessel boundary posi-
tion by incorporating corresponding 2-D DSA vessel information. As mentioned
within Section 1.2, 2-D DSA images offer a higher spatial resolution together with
a clearer position of the vessel boundary. The 2-D driven 3-D segmentation result
is then used to perform quantitative vessel measurements and to compute cere-
bral hemodynamic simulations describing one future post-processing application
of 3-D DSA.

1.4 Hemodynamic Simulation and Factors of Influence

Hemodynamic simulation describes the forces and physical measurements asso-
ciated with blood flow and circulation. It is assumed that hemodynamic effects
such as flow separation, certain circulation patterns or wall shear stress play a ma-
jor role in the development of cerebral aneurysms. Hence, the simulation of such
gains important information concerning a better understanding and treatment of
these vessel pathologies. The following enumeration gives a brief insight into the
constraints of such simulations describing influencing factors which illustrate its
diverse complexity. These factors can be categorized according to dedicated steps
within a common simulation workflow as illustrated in Figure 1.5.

1. The acquisition of vessel morphologies marks the base before one can even
think about hemodynamic simulations. Within this thesis, 3-D DSA volumes
are used to deliver cerebral vascular datasets because 3-D DSA offers the
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Vessel Segmentation

Mesh Generation

Simulation Parameters

Fluid Structure Interaction

Figure 1.5: Four factors having a substantial influence on the result of hemody-
namic simulations.

highest spatial resolution such that even small vessel structures are visible.
Several segmentation techniques are available to extract the vessel tree. The
segmentation results depend on the applied segmentation method because
of deviating vessel boundary determination. Hence, different vessel segmen-
tation results lead to different vessel geometries which heavily influences the
simulation results.

2. The conversion of a voxel-based vessel segmentation result into a surface
representation denotes the second step. This surface is usually created by
a set of triangles. The number and size of these triangles decide about the
accuracy of the surface approximation. Hence, regions with high curvature
need higher triangle mesh density to accurately model such areas. The inte-
rior of the vessel geometry also requires a proper approximation which can
be done by either tetrahedral or polyhedral elements. The decision about
the final number of surface triangles and tetrahedral/polyhedral elements is
crucial concerning the simulation result.

3. The third step represents the simulation parameters which steer the simula-
tion process. Blood denotes one parameter which is a complex composition
of fluid and solid components [Gano 01], i. e. blood plasma represents the
major fluid medium whereas several kinds of cells (erythrocytes, leukocytes
and thrombocytes) are solid particles. Velocity inflow curves describe the os-
cillating blood flow which can be either measured using MRI time-of-flight
imaging [Karm 08] or Doppler ultrasound [Fitz 82]. This flow curve has a
strong impact on the resulting flow pattern, pressure and wall shear stress
distributions. The blood modeling complexity is usually reduced by repre-
senting blood as a Newtonian fluid specified by two parameters, i. e. density
and viscosity.

4. The last step within this simulation workflow denotes fluid structure interac-
tion. The human heart mechanically pumps the blood through the vascular
system inducing an oscillatory blood flow. This oscillation leads to an inter-
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action between the moving blood and the vessel wall resulting in a certain
coupling. The vessel wall itself is a living tissue able to grow or re-model
depending on external stimulations. This interaction is called fluid structure
interaction and, hence, has to be properly modeled within an ideal simula-
tion case.

All steps together make hemodynamic simulation one of the most complex sim-
ulation challenges because most of the constraints remain unknown and only a
few can be measured in vivo - not to forget the challenges which are behind the
implementation of such a solver.

The scientific direction of hemodynamic simulations within this thesis is explic-
itly on vessel geometry related issues, i. e. the first and second step. An evaluation
has been performed regarding the influence of small vessel geometry changes on
the simulation result due to different segmentation techniques. Furthermore, the
usage of varying mesh sizes with different mesh elements has shed light on the im-
pact on the simulation. All simulation experiments were conducted using Gambit
and Fluent (ANSYS Inc.)1 as meshing and simulation software.

1.5 Scientific Focus and Contributions

The previous sections have introduced the framework in which this thesis is em-
bedded. In summary, the scientific focus of this thesis lies especially in the devel-
opment of a novel 3-D DSA vessel segmentation algorithm incorporating 2-D DSA
images to overcome the uncertainty of vessel boundary positions in 3-D. The clear
vessel contours within 2-D DSA images are used to locally control the 3-D vessel
segmentation method such that ambiguous 3-D vessel boundaries are enriched by
2-D information. The combination of innovative 2-D and 3-D related vessel seg-
mentation algorithms form a framework providing 3-D DSA vessel segmentation
results of highest accuracy.

This thesis provides scientific progress within the mentioned research fields
contributing to the community of medical image segmentation as well as to the
hemodynamic simulation community. Below, the list summarizes the major scien-
tific contributions:

• A novel summation algorithm for 2-D DSA series has been developed sepa-
rating DSA series into three parts automatically and provides one final sum
image showing all major vessel branches of the series. This summation is
based on strong features allowing a complete automatic classification. This
algorithm is detailed within Chapter 2 and published in [Schu 11a].

• 2-D DSA images are segmented by a local adaptive contrast enhancement
method which is a simple but effective approach overcoming the heteroge-
neous contrast agent distribution. This algorithm is described in Chapter 3
and has been already presented in [Schu 11b].

1www.ansys.com
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• A centerline method for 3-D rotational angiography data is presented within
this thesis which encodes a novel regularization to handle vessel artifacts
like inhomogeneous contrast distribution, large and elliptical-shaped ves-
sels. This regularizer keeps the centerline at the actual vessel center axis even
for vessel branches afflicted with such artifacts by using statistical threshold-
ing and distance map computation. Chapter 4 describes this methodology in
detail.

• Chapter 5 introduces a novel 2-D driven 3-D vessel segmentation algorithm
to overcome the uncertainty of the vessel boundary position in 3-D. The 3-D
segmentation is done by interleaved ellipsoids ensuring local adaptivity in
a parametric way. 2-D DSA edge information can be used and incorporated
to drive the 3-D parametric segmentation towards the 2-D vessel boundary
position.

• Chapter 6 and 7 outline one future application of the 3-D vessel segmen-
tation result, i. e. performance of blood flow simulation. Chapter 6 shows
for the first time a comparison between different meshing elements and a
corresponding mesh independence analysis for cerebral vessel geometries
[Spie 11c]. Chapter 7 illustrates the effects of different patient-specifc vessel
geometries w.r.t. blood flow simulation.

1.6 Outline

The outline of this thesis is structured according to the individual steps of the
hemodynamic simulation workflow. The main focus of this work is on vessel
segmentation in 2-D and 3-D DSA images covered by the first two parts. The
third part describes the impact of mesh accuracy and vessel geometry variations
on hemodynamic simulation results. An overview of the overall organization of
this thesis together with the interdigitation of the specific chapters is given in Fig-
ure 1.6.

Part I of this thesis describes the 2-D pre-processing and segmentation steps
which are necessary to perform the 2-D driven 3-D vessel segmentation approach
introduced in Part II of this thesis.

Chapter 2 details a novel classification-based summation algorithm for 2-D
DSA series. Since the vessel information is usually depicted within a few im-
ages, the proposed method automatically splits such DSA series into three parts,
i.e. mask, arterial and parenchymal phase to provide one final image showing all
important vessels. The phase border detection regarding mask/arterial phase
is done by classification methods like Perceptron, SVM etc. and for the arte-
rial/parenchymal phase, a simple but effective threshold-based method is applied.
The evaluation shows that the final image exhibits less noise. The signal-to-noise
ratio (SNR) increased by up to 182%. The phase borders have been correctly deter-
mined with a detection rate of 93% and 50% respectively. This final image partially
delivers the input for the 2-D vessel segmentation approach illustrated in Chap-
ter 3.
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Figure 1.6: Thesis structure. The core part of this thesis is highlighted by the yellow
box where each blue box represents one chapter numbered by the orange circle.

Chapter 3 introduces a novel semi-automatic vessel segmentation method based
on local adaptive contrast enhancement. Its input is either the final image from
Chapter 2 or the 2-D X-ray projection images which were acquired during the ac-
quisition of the 3-D DSA image as illustrated in Figure 1.4 (b). The vessel branches
to be segmented on the image are selected by the forward projected 3-D centerline
or by a set of manual selected seed points. The algorithm uses bilateral filtering
followed by local contrast enhancement to eliminate intensity inhomogeneity that
is caused by unequal contrast agent distributions within the vessels. The segmen-
tation algorithm is extensively evaluated on 45 different DSA images and exhibits
a mean Hausdorff distance of 22 pixels and sensitivity of 89%.

Part II describes the key contribution of this thesis which denotes the develop-
ment of a 3-D vessel segmentation algorithm which is driven by 2-D vessel infor-
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mation being clinically considered as gold standard regarding vessel diameters or
neck size of aneurysms.

Chapter 4 describes two pre-processing steps for the 3-D vessel segmentation,
i. e. a statistical threshold segmentation method using prior knowledge regarding
the specific intensity composition of 3-D DSA datasets and a graph-based vessel
centerline computation approach. 3-D DSA volumes usually exhibit three inten-
sity categories, i. e. high (vessel structures), medium (artifacts) and low (back-
ground) intensity values. The intensity distribution is modeled within a set of
small boxes using a 3-component Gaussian mixture model (GMM). The boxes are
centered at randomly chosen voxel positions showing the highest intensity values.
The two highest mean values are averaged yielding the final statistical threshold
which is used as pre-segmentation step. The centerline computation approach is
based on the work of [Guel 08] but extended by adaptations to handle intensity
inhomogeneity within vessel branches which appear in 3-D DSA volumes. The
extensions are the skeletonization of the pre-segmented volume together with a
distance map. Both steps are evaluated on ten different patient datasets.

Chapter 5 outlines a novel vessel segmentation approach for 3-D DSA datasets
which seamlessly combines 2-D and 3-D image information. 3-D segmentation
is a crucial step concerning vessel geometry analysis which often lacks a method
to validate the results for the individual patient. This chapter proposes a novel
2-D DSA driven 3-D vessel segmentation and validation framework. An ellip-
soid vessel model is applied to deliver the initial 3-D segmentation. To assess the
accuracy of 3-D vessel segmentation, its forward projections are iteratively over-
laid with the corresponding 2-D DSA projections. Local vessel discrepancies are
back-projected to adjust the 3-D vessel segmentation. Our framework has been
evaluated on phantom data as well as on ten patient datasets.

Part III of this thesis details the influence of varying mesh sizes and mesh el-
ement types on the simulation result. Moreover, small vessel geometry changes
caused by different segmentation approaches have been evaluated w. r. t. hemo-
dynamic simulations.

Chapter 6 describes on computation parameters such as volume element type,
mesh size and mesh composition to gain a better understanding of the validity re-
garding computational fluid dynamic (CFD) simulations. CFD results for the two
most common aneurysm types (saccular and terminal) are compared for polyhe-
dral vs. tetrahedral-based meshes and discussed regarding future clinical appli-
cations. For this purpose, a set of models were constructed for each aneurysm
with spatially varying surface and volume mesh configurations (mesh size range:
5,119-258,481 volume elements). Wall shear stress (WSS) distribution on the model
wall and point-based velocity measurements were compared for each configura-
tion model. Our results indicate a benefit of polyhedral meshes in respect to con-
vergence speed and more homogeneous WSS patterns. Computational variations
of WSS values and blood velocities are between 0.84% and 6.3% from the simplest
mesh and the most advanced mesh design investigated.

A hemodynamic evaluation study has been performed in Chapter 7 to inves-
tigate different vessel geometries that originate from the same patient dataset and
its impact on the simulation result. The vessel geometries are computed by three



1.6 Outline 13

different segmentation approaches which can be distinguished as intensity and
model-based techniques. The geometries show two major dissimilarities: (1) ves-
sel bifurcation angle variance and (2) discrepancies regarding vessel diameters. In
total, five patient datasets are taken in this study which were also used in Chap-
ter 5. The hemodynamic results revealed that small geometric changes at neuralgic
points may have a major impact on the flow pattern and WSS distribution.

Chapter 8 summarizes the key contribution of this thesis and concludes this
thesis by a discussion on the technological and methodological aspects of this
work. Moreover, an outlook is given for future research directions within the pro-
posed simulation workflow.
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Within a modern neuro interventional lab, there are generally two types of 2-D
DSA images available, i. e. 2-D DSA series showing the blood flow through the
vessels and 2-D DSA images which are used for 3-D reconstruction. The proposed
methodology within this chapter focuses on the first DSA type and denotes a
mandatory pre-processing step for the 2-D vessel segmentation which is described
within the next chapter 3.

Before 2-D vessel segmentation can be performed on 2-D DSA series, the vessel
information which is distributed over the series has to be collected and presented
within one DSA image. Here, a fully automatic method is introduced summa-
rizing a DSA series such that all major and medium vessel branches are depicted
within one final image. This summation is done by classification which catego-
rizes the DSA series into three distinct phases. Three strong features are proposed
to perform this classification which is based on Rosenblatt’s perceptron, support
vector machine etc. [Duda 01]. Eight DSA series are taken to do the training of the
classifier and the entire algorithm is evaluated using 14 different patient datasets.
Compared to the naive approach (summation over the whole DSA series), our final
image shows an increased signal-to-noise ratio (SNR) of up to 182%. The results of
this chapter have been published in [Schu 11a] and patented [Spie 10].

2.1 Motivation

2-D DSA represents the state-of-the-art imaging modality for cerebrovascular dis-
eases (aneurysms or stenosis) in terms of vessel analysis in diagnosis, interven-
tional treatment planning and to assess the success of an intervention [Brod 82].
2-D DSA series are of particular interest during diagnosis and follow up examina-
tions because they deliver a very good impression about the blood flow together

17
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with the highest spatial resolution available with modern C-Arm systems. This
flow information denotes one of the key features in order to judge the degree of
stenosis or the sealing of a coil embolization. Figure 2.1 gives an impression how
such DSA series typically look like.

Due to its high image quality and spatial resolution, 2-D DSA series have be-
come more and more important concerning post-processing applications as the lit-
erature shows, e.g. vessel segmentation [Sang 07, Boua 07, Fran 08, Fran 09], vessel
type classification [Kang 09], registration of patient images acquired at different
times [Meij 99b] and catheter tracking [Baer 03, Spie 09]. Not only segmentation
or registration tasks have been addressed, also the flow information itself has at-
tracted the development of algorithms to detect bolus propagation and tracking in
real-time [Wu 98, Cheo 03, Lu 06].

The aforementioned flow is the reason for the distribution of the vessel infor-
mation over the DSA series leading to three different image phases within a DSA
series, i.e. mask, arterial and parenchymal phase. While the contrast agent injection
starts, the image acquisition is already running. Images of the mask phase contain
no information about the vessel tree since the contrast agent has not reached the
region of interest. The arterial phase images usually depict the most important in-
formation to analyze aneurysms or stenosis because the contrast medium flows
through the major vessel branches. This phase reveals information about vessel
diameters, dome size of aneurysms and degree of stenosis which is of particu-
lar interest for post-processing algorithms like vessel segmentation, registration
or comparison between DSA acquired hemodynamic information and CFD blood
flow results. Unfortunately, this information is often split up in several images
because of its dynamic nature. This makes it difficult for post-processing applica-
tions to handle vessel segmentation or registration. Thus, the complexity of such
kind of methods rapidly increases while computing satisfying results. Finally, the
parenchymal phase consists of images showing capillary or the beginning of venous
blood flow. Consequently, the borders between vessels and background are rather
blurred out. One final image covering all major vessel branches without parenchy-
mal filling would make segmentation and registration tasks easier to perform. This
can be done by either manual selection of the arterial phase images or by simple
summation over all images of the DSA series. However, the summation over all
series images will lead to a final image that is blurred by the parenchymal phase
images and contains more noise. We propose a novel DSA image summation algo-
rithm which is based on a classification method to compute one final image given a
DSA series. This final image only consists of images belonging to the arterial phase
and it is computed either by the sum or by taking the minimum intensity of all
these images. Hence, the borders of the aforementioned phases are automatically
detected. Our approach is experimentally evaluated on 14 real data image series
from six different patients.

2.2 Methods

The algorithm starts with a DSA seriesK as input and computes a final imageKfinal

which contains all major vessels. Our approach is divided into two main steps:
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K6

Figure 2.1: Phase classification results for DSA series K6. The color of the image
number shows the phase association computed by the classification-based separa-
tion method, i.e. green, red and blue denote mask, arterial and parenchymal phase
respectively.

1) automatic separation of the series K into the three predefined phases (mask,
arterial and parenchymal) and 2) combination of all DSA images corresponding to
the arterial phase by summation or minimum intensity. The mask/arterial phase
border is determined by a classifier based on three features (see Figure 2.2 (a) and
Figure 2.4) and the arterial/parenchymal phase border is found by a threshold-
based method working on the change images (see Figure 2.5).

The method section is organized as follows: Subsection 2.2.1 describes the main
idea of our method followed by subsection 2.2.2 that introduces the applied fea-
tures for the phase separation in detail. The remaining sections 2.2.3 and 2.2.4
delineate the classification methods applied to detect the mask/arterial and arte-
rial/parenchymal phase border.



20 Classification-based Summation of 2-D DSA Series

mean

sk
ew

n
es

s

mean

meanskewness

V
es

se
ln

es
s

m
ea

su
re

skewness

V
es

se
ln

es
s

m
ea

su
re

V
es

se
ln

es
s

m
ea

su
re

Figure 2.2: Illustration of the feature space of the training data in 2-D and 3-D. The
2-D images (top row) depict orthogonal projections of the 3-D feature space on the
three planes.

2.2.1 Basic Idea

A DSA series comprises a set of DSA frames Ki =
〈
si,j

〉N−1

j=0
where N denotes the

total number of frames within the ith series. Given series Ki, one final image Ki,final

denotes the combination of all images of Ki belonging to the arterial phase, i.e. it
depicts all major vessel structures. The combination of this arterial phase can be
performed by either taking the pixelwise sum of these images

Ki,F,SUM =
U

∑
j=L

Ki,j (2.1)

or by computing the minimum intensity of all arterial phase images:

Ki,F,MIN = vMIN(Ki, u) = min
j∈[L...U]

v(Ki,j,u) (2.2)

Ki,F,SUM and Ki,F,MIN are the sum and the minimum image of the arterial phase.
The elements of the sum belong to a fixed interval which is a subsequence of the
acquired seriesKi. L and U denote the frame indices of the lower and upper bound
of the sum respectively which mark mask/arterial and arterial/parenchymal phase
border. v(j, u) is the pixel intensity on the jth image at position u ∈ R

2. The
bounds, L and U, can usually be found by two approaches: 1) manual selection
and summation or 2) L and U are simply set to zero and N − 1 respectively such
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Figure 2.3: It shows a schematic illustration of the automatic phase separation to-
gether with the computation of the change images. Bottom row depicts the skew-
ness of change images. The border between arterial and parenchymal phase is
detected by a switch of the skewness from negative to positive range.

that the sum covers all images within the series. This naive summation can be
written in terms of phases as follows:

Ki,NaSum =
L−1

∑
j=0

Ki,j

︸ ︷︷ ︸
Mask

+
U

∑
j=L

Ki,j

︸ ︷︷ ︸
Arterial

+
N−1

∑
j=U+1

Ki,j

︸ ︷︷ ︸
Parenchymal

(2.3)

where NaSum denotes naive summation. Now, the feature-based classification of
these two borders is addressed such that Ki can be automatically divided into the
three aforementioned phases.

2.2.2 Feature Selection

The features are computed on two regions of interest (ROI) as illustrated in Fig-
ure 2.4 (upper left corner). The ROIs can be defined due to the prior knowledge
about the position of the patient on the table of the C-Arm system, i.e. the inflow
of the contrast agent (intra-arterial injected) on the image is from the bottom to the
top. The border L is computed on region ΩL covering the lower 20% of a DSA
frame. ΩL is indicated by the red and green boxes in Figure 2.4 (upper left).
The first frame of the arterial phase Ki,L is characterized by the very first appear-
ance of contrast agent inflow on the image. The following three features are chosen
to quantify this observation:

1. the mean of intensities µ

2. the skewness γ of the intensity histogram

3. the vesselness measure ψ



22 Classification-based Summation of 2-D DSA Series

K7

sk
ew

n
es

s

frame number frame number

frame number

m
ea

n

(a)

(c)(b)

v
es

se
ln

es
s 

m
ea

su
re

Figure 2.4: Behavior of the selected features over an entire DSA series with 16
frames. The border between mask and arterial images is clearly indicated by the
mean µ (a), skewness γ (b) and the vesselness measure ψ (c) at frame 3. These
features are computed within the box ΩL which is illustrated in the upper left.

Figure 2.2 gives an overview about the feature space. To perform the feature ex-
traction, the intensities of a DSA series are normalized in two ways resulting in
two different DSA series, i.e. K f s,i and Kss,i. The intensities of K f s,i are normal-
ized to [0, 1] per frame. Within series Kss,i the entire intensity range of the series
is considered for normalization of the intensities between zero and one. K f s,i is
used to amplify the shift of the intensity mean between images of the mask and
arterial phase. This shift can be visualized by comparing the black intensities of
mask and arterial images. The black intensities of arterial images are much lower
than those within images of the mask phase due to the inflowing contrast agent.
Consequently, the background intensities covering 90% of the image are shifted to
higher intensities inducing an entire shift of the intensity mean. The skewness γ
and the vesselness measure ψ are computed on Kss,i. ψ is based on the Hessian
matrix and the corresponding eigenvalues λ0 and λ1 [Fran 98]. ψ is defined as

ψ = ∑
u∈ΩL

|λu,1 − λu,0| , (2.4)

where u ∈ R
2 denotes a pixel of region ΩL. The behavior of the three features

concerning a DSA series is depicted in Figure 2.4. The inflowing contrast agent
leads to a rapid change of the values of the features. The intensity mean regarding
ROI ΩL computed on K f s,i is shifted in positive direction (see Figure 2.4 (a)). As
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(a) DSA frame (b) DSA frame (c) Change image
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Figure 2.5: This shows an example for the computation of a change image. Only
the upper 80% of the images are shown. Within region ΩA of DSA frame 5 there
is additional vessel information which is not present in DSA frame 4 and in region
ΩB vice versa.

illustrated in Figure 2.4 (b), the skewness becomes highly negative and the vessel-
ness measure value ψ is rapidly increasing. These features are concatenated to the
feature vector wL:

wL =




m
γ
ψ


 . (2.5)

The upper border U (arterial/parenchymal phase) is determined using the so called
change image. A change image denotes the subtraction of two subsequent images
within the series Kss,i:

Ki,j,change = Kss,i,j+1 −Kss,i,j j = L, ..., N − 2. (2.6)

Here, the upper 80% of Ki,j,change denotes the region ΩU that is used to detect the
upper border U. Ki,j,change is normalized to [0, 1]. Vessels which are not present
within Kss,i but within Kss,i,j+1 will appear darker in Ki,j,change than those that
have been already depicted in Kss,i. An example of a change image is shown in
Figure 2.5. The region A of DSA frame 5 contains vessel information that is not
present in DSA frame 4 and appears darker in the corresponding change image. Re-
gion B shows the opposite. The transition between the arterial and parenchymal
phase is characterized by the absence of major additional vessels meaning that the
change image becomes more and more brighter. Again, this behavior can be simply
observed by the skewness γ of region ΩU. Negative skewness means darker struc-
ture on brighter background and positive skewness vice versa. Thus, the border
between arterial and parenchymal phase is distinguished by one single feature.

2.2.3 Learning-based Classification of the Lower Border

Let us consider the classification of the lower border L as a two class problem,
i.e. the separation of images into mask and arterial phase. A supervised training
of our classifier is performed by manual selection of M frames of the mask and
arterial phase of different DSA series. The set Λ contains the feature vectors, wL,i,
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of the training data together with a class label ωi , i.e. zero equals mask phase and
one denotes arterial phase:

Λ = {(wL,i, ωi)}
M−1
i=0 . (2.7)

The feature vectors are normalized w.r.t. zero empirical mean. The goal now is
to set up a linear discriminant function g(wL) , i.e. a plane E which separates the
features of the mask phase from those of the arterial phase. H is defined as:

H : g(wL) = nTwL − d, (2.8)

where n ∈ R
3 is the normal vector and d ∈ R the perpendicular distance to the

origin. The principal component analysis (PCA) without dimension reduction per-
formed on the 3-D feature space yields three eigenvectors {ej}j=0,1,2 ∈ R

3 with
three eigenvalues λ0, λ1 and λ2 (λ0 ≤ λ1 ≤ λ2) that are used as an initial esti-
mation of H. e0 and e1 span the initial plane H with its normal vector e2, i.e. n
is initialized with e2. The perceptron algorithm [Duda 01] is applied to iteratively
optimize the position and orientation of H such that the misclassification becomes
minimal. The perceptron criterion function is the sum of distances of misclassified
features:

Dp(n, d) = − ∑
wL,i∈Υ

ωig(n
TwL − d) (2.9)

where Υ is the set of misclassified feature vectors and ωi is defined as:

ωi =

{
1 ; class 1 i.e. mask images

−1 ; class 2 i.e. arterial images
(2.10)

The response function δL of the classifier which separates the DSA frames of the
mask phase and the arterial phase is now defined as

δL(wL) =

{
0 ; if g(wL) < 0

1 ; if g(wL) ≥ 0,
(2.11)

where δL = 0 and δL = 1 means that the DSA frame belongs to the mask and
arterial phase, respectively. The pseudo code of this classification algorithm is
illustrated in Program 2.1.

2.2.4 Threshold-based Classification of the Upper Border

As illustrated in Figure 2.3, the upper border U is determined by the skewness
of the change image Ki,U,change. When the arterial phase fades to the parenchymal
phase the skewness of the change image switches from negative values to positive
ones. This change of sign is considered as the feature indicating the beginning of
the parenchymal phase.
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Program 2.1: Classification-based summation of DSA series

Input: KTrain,KWork

Output: KF,SUM, KF,MIN

begin
// Training phase for mask/arterial phase border

Λ←− ∅

foreach KTrain do
feature computation for each frame i in K

wL,i ←− (µ, γ, ψ)T)
Λ←− Λ + (wL,i, ωi)

end
train chosen classifier, e. g. Perceptron, SVM etc.
// Working phase

MP, AP←− ∅ // MP: mask phase, AP: arterial phase

// Mask/arterial phase border detection

foreach KWork do
feature computation for each frame i in K

wL,i ←− (µ, γ, ψ)T

if δL,i(wL) < 0 then
MP←− MP + i

else
AP←− AP + i

end

end
// Create final DSA image

KF,SUM←− ∑ AP // Pixelwise summation

KF,MIN←− min AP // Pixelwise minimum

end
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2.3 Evaluation and Results

Our automatic summation method is evaluated on 14 different 2-D DSA series
with a length varying from 12 to 32 frames. The series were acquired during en-
dovascular interventions at the Department of Neuroradiology (University Hospi-
tal Erlangen, Germany) using Siemens C-Arm System (AXIOM Artis dBA, Siemens
AG Healthcare Sector, Forchheim, Germany). The x/y dimension of the series
ranges between 512×512 and 1440×1440. The pixel spacing in x/y direction is
0.154/0.154 mm for all series. The injection protocol exhibits 5 ml of contrast agent
(concentration 300) with a flow rate of 2-3 ml/sec. The frame rate is two images
per second during the arterial phase and is lowered to 0.5 frames per second dur-
ing parenchymal phase. The training of the classifier was done with eight DSA
series which were not part of the evaluation set.

2.3.1 Methods of Evaluation

Automatic Phase Selection

In order to evaluate the automatic phase selection a gold standard was built by
a medical expert who manually partitioned each series of the evaluation set into
the three phases. The labeling of the training set was approved by Dr. T. Struffert
(Department of Neuroradiology, University Hospital Erlangen). The main focus
was on categorizing those images into the arterial phase which depict major ves-
sel branches concerning endovascular intervention planning, i.e. coil embolization
of aneurysms or stent placement. The partitioning results of our automatic sum-
mation method are compared to this gold standard evaluation set.

Final Image

This evaluation exhibits three final images. The first one is created by summing up
the entire DSA series. The second denotes the sum of all arterial phase images,
KF,SUM, and the third one represents the minimum intensity image of all arterial
phase images KF,MIN. Furthermore, a mask image is established defining two
regions. For the first region all major vessel branches within the vicinity of the
pathology were manually segmented by a medical expert in order to evaluate the
quality of the final image with respect to foreground. For the second region areas in
the background were manually segmented by a medical expert in order to evaluate
the quality of the final image with respect to background. These background areas
do not show any vessel structures within the final images. The signal-to-noise-ratio
(SNR) on background regions and the sum of gradient magnitudes on foreground
regions are used for quantitative comparison. Unlike multimedia communication,
the original input signal of the final image is not known. For quality assessment,
however, we consider the signal to be the intensity mean and noise as the intensity
standard deviation concerning selected background regions. We would ideally
expect a high mean and a rather low standard deviation because of image sum-
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mation and the absence of structural changes within these regions. The SNR is
accordingly determined as

SNRB =
µB
σB

(2.12)

where µB and σB are the intensity mean and the standard deviation of the back-
ground region B, respectively. The shapes of the background regions were chosen
arbitrarily because it is difficult to define a box region that is big enough and con-
tains no vessel structure within all final images (see Figure 2.6 yellow boxes com-
pared to the green regions).

Considering a perfect 2-D DSA acquisition, the contrast agent will be uniformly
distributed within the vessels. Thus, the gradient magnitudes within the vessel
branches should be very small in an ideal case. The sum of gradient magnitudes
ζsum is used to analyze the image quality within the manual segmented vessel
branches (Figure 2.6 red regions) defined as

ζsum =
1

M

M−1

∑
i=0

‖∇u‖2 (2.13)

where M denotes the number of pixels of the image.

2.3.2 Experimental Results

All experiments were conducted on an AMD Athlon 7750 Dual-Core, 1.38 GHz
with 3 GB of main memory. Our approach is implemented in C++. The computa-
tion time of this method is on average one second. The first column of Figure 2.6
shows the result of the third final image where only the minimum intensities of
all arterial phase images are taken. The second column illustrates the second fi-
nal image after summing up the arterial phase images and the third column after
summing over the entire DSA series. In the last column, the mask image is de-
picted. The red regions correspond to foreground areas and the green regions to
background areas.

Table 2.1 and 2.2 give a quantitative insight on all experimental results. Accord-
ing to table 2.2, the detection result of the lower and upper border of the arterial
phase yields a correspondence of 93% and 50% comparing to the expert-based
border selection. The maximum shift between the expert-based and our automatic
phase separation method is one image. Considering the feature space for the sepa-
ration of the mask and arterial phase, however, there might be other classification
methods suitable like support vector machine (SVM) etc. delivering similar re-
sults. The WEKA machine learning software [Hall 09] has been applied to explore
different kinds of classifier working on the entire feature space and evaluated in a
30-fold cross-validation. Table 2.3 summerizes the classification results.
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MIN Summation

Arterial Phase All Phases Mask Image

K3

K6

K7

Figure 2.6: This set of images shows the final image concerning the DSA series
s3, s6, and s7: first and second left column automatic method covering only arte-
rial phase images (minimum intensity/summation); third left column summation
over all phases. The right column illustrates the two different regions used to
quantitatively evaluate the final sum images regarding SNR and ζsum. Green and
red colors denote the selected background (SNR) and foreground (ζsum) regions
respectively.
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Table 2.1: Summary of the evaluation results. AP appreviates Arterial Phase. SUM and MIN denotes summation and minimum
intensity respectively.

Vessel Region - ζsum Background Region - SNR
Study
(#Frames)

KF,MIN KF,SUM All Phases KF,MINvs. All /
KF,SUMvs. All [%]

KF,MIN KF,SUM All Phases KF,MINvs. All /
KF,SUMvs. All [%]

K1 (32) 0.0208 0.0199 0.0210 -0.9/-5.5 73.3431 57.9115 14.8013 395.5/291.26
K2 (15) 0.0221 0.0202 0.0239 -7.3/-15.5 36.0246 27.6717 21.1786 70.1/30.66
K3 (13) 0.0155 0.0126 0.0192 -19.1/-34.6 37.7886 27.0608 22.1141 70.9/22.37
K4 (13) 0.0144 0.0165 0.0186 -22.3/-10.9 42.5421 35.7652 12.1529 250.1/194.29
K5 (13) 0.0202 0.0182 0.0229 -11.4/-20.6 34.1857 41.6519 12.2046 180.1/241.28
K6 (12) 0.0222 0.0223 0.0230 -3.5/-3.2 49.9320 37.7822 17.0831 192.3/121.17
K7 (17) 0.0235 0.0226 0.0293 -19.6/-22.9 67.9300 57.0660 17.1421 296.3/232.90
K8 (14) 0.0162 0.0146 0.0188 -13.7/-22.4 70.8132 80.5706 35.6433 98.7/126.05
K9 (19) 0.0194 0.0152 0.0236 -17.5/-35.6 75.7862 79.4825 25.3266 199.2/213.83
K10 (26) 0.0184 0.0175 0.0239 -22.8/-27.0 47,3056 59.9722 15.7078 201.2/281.80
K11 (25) 0.0145 0.0113 0.0131 11.1/-13.6 91.0556 108.3851 47.1789 93.0/129.73
K12 (16) 0.0194 0.0198 0.0208 -6.7/-5.2 70.4309 60.6687 23.5206 199.4/157.94
K13 (16) 0.0164 0.0157 0.0213 -22.5/-26.2 63.7816 46.3237 19.2673 231.0/140.43
K14 (18) 0.0193 0.0207 0.0216 -10.7/-4.3 58.5047 50.7174 33.2975 75.7/52.32

Mean 0.0187 0.0176 0.0215 -11.9/-17.7 58.5303 55.0735 22.6156 182.4/159.72

σ 0.0029 0.0035 0.0037 9.8/11.0 17.4718 22.5975 9.9849 91.7/87.39
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The SNR of the background regions is increased concerning both final images
(see table 2.1), i. e. the summation and the minimum intensity image concerning
all arterial phase images show an average increase of 160% (87 standard deviation)
and 182% (92 standard deviation) respectively. Within both final images, the vessel
regions appear much smoother and homogeneous which could be quantitatively
shown by the results of the ζsum, e.g. its value could be reduced on average by
-18% (11 standard deviation) for the arterial summation image and by -12% (10
standard deviation) for the minimum intensity image. The improvement of the
image quality can be clearly seen by Figure 2.6. The final images, covering only
arterial phase images, appear clearer with less moving artifacts. Moreover, all ma-
jor vessel branches within the vicinity of the aneurysms (indicated by the orange
arrows in Figure 2.6) are evidently illustrated allowing the physician to perform
diagnosis and treatment planning.

2.4 Discussion

The proposed method provides an efficient way to perform phase separation on
2-D X-ray DSA image series. To the best of our knowledge, there is no comparable
method out in the field handling phase separation on DSA series. The major con-
tribution of this work states a classification-based DSA image summation method
which separates the DSA series into three phases and finally provides one final im-
age summarizing all arterial phase images. The experimental results are promising
for clinical application. The lower border of the arterial phase was detected with a
classification rate of 93%. The upper border yields a detection result of 50%. This
is because of the smooth transition between the arterial and parenchymal phase as
illustrated in Figure 2.1 (K3: images 8,9; K6: images 6,7; K7: images 6,7). Hence,
the position of the upper border would be differently determined. Figure 2.7 il-
lustrates two examples where the lower and upper bound of the arterial phase are
not properly detected. The upper bound of K1 may even be handled differently
by a medical expert (compare image 8 with image 9). The lower bound of K14

was not correctly recognized due to the fact that only a small area shows an inflow
of contrast agent as highlighted with the yellow circles. A test on inter observer
variability, however, was not performed during this initial evaluation because the
impact on the final image is low. If one parenchymal image was spuriously added as
arterial phase image the quality of the final image would not be significantly influ-
enced.

In this work, we used a classification technique that is based on PCA and
Rosenblatt perceptron because it is easy to be implemented and worked well in
our case. A comparison against other classification methods (see Table 2.3) has
shown that they achieved similar results as Rosenblatt’s perceptron. Our classifi-
cation method is robust regarding motion from the patient or the vessels. In fact,
the internal carotid artery shows some motion during the acquisition when com-
paring successive images. The impact on the final image, however, is negligible
because our features are independent from motion.

Overall, the automatic summation of arterial phase images leads to a final image
which exhibits less noise and moving artifacts, i.e. the SNR could be increased on
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Table 2.2: Summary of the evaluation results. L and U denote lower and upper
border of the arterial phase respectively. Regarding column 4, one indicates a per-
fect match for the border detection between our classifier and the medical expert.

Arterial Phase Classification
Study (#Frames) Expert Automatic Borders(L/U)
K1 (32) 5-9 5-8 1/0
K2 (15) 6-10 6-9 1/0
K3 (13) 5-9 5-8 1/0
K4 (13) 5-7 5-6 1/0
K5 (13) 5-7 5-6 1/0
K6 (12) 4-6 4-6 1/1
K7 (17) 3-6 3-6 1/1
K8 (14) 4-5 4-6 1/0
K9 (19) 5-8 5-8 1/1
K10 (26) 5-7 5-7 1/1
K11 (25) 4-12 4-12 1/1
K12 (16) 4-8 4-8 1/1
K13 (16) 4-7 4-8 1/0
K14 (18) 4-5 3-5 0/1

Mean 93%/50%

average up to 182%. When comparing the final images based on the arterial phase,
it turns out that the minimum intensity image shows slightly superior results re-
garding the visibility of small vessel branches. This is highlighted with red circles
in Figure 2.6. Concerning medium and large vessels both final images reveal sim-
ilar results.
Such final images deliver various advantages during the diagnosis, treatment plan-
ning and image post-processing. It may supersede browsing through image se-
ries to get an overview about the vessel tree. The complexity of post-processing
algorithms like vessel segmentation or registration is decreased since all informa-
tion is given at once and not distributed over several images. This can be consid-
ered as an initialization step for the vessel segmentation approaches described in
[Sang 07, Fran 08].

Table 2.3: Separation of the mask and arterial phase using different classifiers.

Classifier Mask/Arterial Phase Separation Result [%]
Naive Bayes 93.2

SVM 93.2
AdaBoost 90.9

KStar 95.1
Multilayer perceptron 95.4

Voted perceptron 93.9
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K1

K14

Figure 2.7: Examples of misclassifications regarding the lower and upper bound
of the arterial phase. The upper row shows the smooth transition between arterial
(image 8) and parenchymal (image 9) phase where even medical experts may decide
differently. The lower row depicts an example of misclassification concerning the
mask and arterial phase which is due to the small areas showing the contrast agent
inflow (yellow circles).

2.5 Conclusion

The contribution of this chapter represents the smart extraction of major vessel in-
formation which is distributed over several images within a 2-D DSA series. The
extraction is performed by splitting the DSA series into three phases using three
strong features, i. e. mean intensity, skewness of the histogram and vesselness
indicator. Based on a training set, a perceptron based classifier is trained to au-
tomatically split DSA series and to combine the arterial phase images to one final
sum DSA image using minimum intensity projection. This final sum DSA image
delivers the input for the next chapter where the vessel structure is segmented in
a local adaptive manner.
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This chapter describes a vessel segmentation approach for 2-D DSA images
that is able to operate either as a stand-alone version in a semiautomatic way or
as a fully automatic segmentation algorithm in cooperation with the 3-D vessel
segmentation approach (Chapter 5). In case of stand-alone application, manual
seed points have to be placed to select the vessel branches for segmentation. In
fully automatic mode, the vessel branches are chosen by the forward projection
of the 3-D vessel centerline. The input of this algorithm is either the final image
from Chapter 1 or calibrated 2-D DSA images which are acquired during a 3-D
DSA run. Due to inhomogeneous contrast agent distribution leading to sometimes
smooth transitions between vessel contours and background, the 2-D DSA images
are preprocessed by local contrast enhancement. The entire methodology is eval-
uated on 45 different DSA images of both input types showing a mean sensitivity
of 88% and Hausdorff distance of 22 pixels. Parts of this chapter are published in
[Schu 11b].

3.1 Motivation

2-D DSA images play a major role in diagnosis, treatment planning and assess-
ment of cerebrovascular diseases, i. e. aneurysms, arteriovenous malformations
and intracranial stenosis. Although 3-D DSA volumes are widely used within
modern neuro interventional labs, 2-D DSA is still considered as gold standard
image modality [Brin 09] especially concerning diagnosis and treatment planning,
e. g. stent selection and placement. Hence, 2-D vessel segmentation will provide
an important support for analyzing complex vessels, i. e. measuring vessel dia-
meter, length or aneurysm neck and dome size. In the literature, there are various
kinds of vessel detection and segmentation methods [Kirb 04, Lesa 09] available.

33
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(a) Original image (b) Subregion Z

(c) Subregions (d) Subregion D

Z

A

C

B

D

E

F

D0

D1

D2

Figure 3.1: This set of images shows the inhomogeneous contrast distribution and
its variation concerning different region sizes. Subfigure (a) depicts a final sum im-
age and (b) illustrates the vessel region Z (white mask). This region is subsequently
subdivided into smaller regions as shown in (c) and (d).

However, 2-D vessel segmentation techniques applied on 2-D DSA images are
rarely described [Sang 07].

At first glance, the segmentation of such kind of vessels seems to be straightfor-
ward, however, there are factors of influcence making it a challenging task: Differ-
ent vessel regions exhibit different statistical information due to inhomogeneous
mixture of the contrast agent flowing through the arteries. This leads to heavily
varying intensity values within the vessel regions as illustrated in Figure 3.1. In
Figure 3.1 (a), a final image from Chapter 2 is shown which is partitioned into seve-
ral mask regions (Figure 3.1 (b), (c) and (d)). The regions depicted in Figure 3.1
(c) and (d) are subregions of (b) and (c) respectively. For each region, the intensity
mean and standard deviation are computed as statistical properties to mathemat-
ical describe the region dependent contrast agent concentration. Table 3.1 sum-
merizes this statistical information and reveals that larger vessel regions exhibit
larger deviations concerning mean and standard deviation than its corresponding
smaller subregions. This varying contrast within the vessel regions may lead to
wider edge ramps between vessel contour and background.
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Table 3.1: Statistical overview about the individual vessel regions which are illus-
trated in Figure 3.1 (b), (c) and (d).

Level Regions (Intensity mean±σ)
1 Z

0.53±
0.013

2 A B C D E F
0.62±
0.0004

0.61±
0.0001

0.63±
0.0001

0.54±
0.0012

0.22±
0.01

0.35±
0.005

3 D0 D1 D2
0.53±
0.0006

0.56±
0.0007

0.54±
0.0008

Patient movement is another influence factor which often occurs during 2-D
DSA acquisitions. This may lead to striking artifacts within vessel regions. Hence,
global threshold segmentation will fail because it will not handle the heteroge-
neous intensity distribution within the vessel regions.

This chapter introduces a semi-automatic 2-D vessel segmentation technique
based on local adaptive contrast enhancement. Hereby, the statistical stability
within small vessel regions is utilized such that the intensity inhomogeneity can
be equalized over the entire image. The algorithm is extensively evaluated using
a database of 45 different DSA images.

3.2 Methods

The core idea of this segmentation approach is to place small boxes along the se-
lected vessel branches and perform an intensity mapping of the pixel intensities
within each box. Figure 3.2 schematically illustrates this approach. This is done be-
cause it is assumed that the local statistical properties within a box do not change
significantly. The methodology part is composed as follows: first, a rudimental
centerline computation approach is proposed that can handle cases where no 3-D
centerline is available to be overlaid with the 2-D image. Second, the parameters
are described to properly align the boxes along the centerline. The third part de-
lineates the final segmentation step using the fast marching algorithm [Seth 99].

3.2.1 Centerline Generation for Semi-Automatic Application

If there is no centerline provided from a 3-D vessel segmentation method, manu-
ally selected seed points are placed along the vessel branches that should be seg-
mented. Figure 3.2 (a) shows an example. These seed points are then connected by
using a minimum-cost path approach where the 2-D DSA image is considered as
a graph. Each pixel position denotes a node within this graph which is connected
to its eight neighbors. Each node is associated with costs defined by the inten-
sity value of the pixel position, i. e. pixels associated with darker intensities ex-
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ci

e0

e1l1

l0

(b) Box alignment is done at the centerline
point c utilizing the Hessian-based

eigenvectors and . l  and l  denote

the box length

i

0 1 0 1e e
(a) Manually selected seed

points illustrated in red.

Figure 3.2: (a) shows a set of manual placed seed points in order to compute the
vessel centerline using a minimum cost path approach. (b) schematically illus-
trates the alignment of the boxes along the centerline together with its parameters.

hibit lower costs than brighter ones. Since all seed points are located within vessel
branches, the minimum-cost path between two neighboring seed points proceeds
within the vessel structure. Dijkstra’s algorithm [Dijk 59] is used to compute this
minimum-cost path resulting in a set of points C which is defined as follows:

C = {ci}
N−1
i=0 (3.1)

where ci ∈ R
2 denotes a point on the centerline path. This set forms the center-

lines of the selected vessel branches. After centerline computation the noise within
the 2-D DSA image is reduced in an edge-preserving manner. For that purpose,
bilateral filtering [Toma 98] is applied.

3.2.2 Parameter Estimation for Local Box Alignment

For each centerline point ci, the following parameters have to be estimated such
that the boxes can be placed in a perpendicular manner along the centerline:

• box orientation {(e0,i, e1,i)}
N−1
i=0

• box length {(l0,i, l1,i)}
1
i=0

where e0,i and e1,i denote the eigenvectors of the Hessian matrix. The first eigen-
vector e0,i corresponding to the larger eigenvalue points across the vessel branch.
The second eigenvector e1,i is aligned in the direction of the centerline e0,i⊥e1,i.
Figure 3.2 (b) illustrates the box related parameters together with the centerline.
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Figure 3.3: Vessel diameter estimation: top left shows a typical final sum image with
1-D intensity profiles (right column) measured at different vessel branches. The
green line depicts the mean intensity value of the profile. The bottom left image
schematically depicts a vessel centerline (blue) together with the vessel diameter
estimation approach using the eigenvector e0.

Cross-sectional intensity profiles along e0,i are used to determine the vessel
diameter ξ and the box length l1,i as depicted in Figure 3.3. For each point ci

on the centerline, an intensity profile is computed in the direction of e0,i using
Bresenhams algorithm [Bres 65] to estimate the vessel diameter. Typical shapes
of such intensity profiles are shown on the right of Figure 3.3 where the valley
denotes the vessel and the two outer parts represent the image background. The
mean intensity value of a profile (see Figure 3.3 green lines) defines the left and
right border of the vessel branch, i. e. bl and br. The vessel diameter ξ is now given
as follows:

ξ =

{
2(br − xmin) , if xmin − bl < br − xmin

2(xmin − bl) , otherwise
(3.2)

where xmin denotes the lowest intensity value of the profile illustrated as blue dot
in Figure 3.3. Hence, the box length l1,i across the vessel is the vessel diameter plus
a certain offset such that the box certainly covers the underlying vessel branch. The
box length l0,i in vessel direction is kept constant.
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Figure 3.4: Each box coordinate system is aligned with the image coordinate sys-
tem by an efficient coordinate transformation such that the pixel position belong-
ing to the boxes can be easily computed.

3.2.3 Local Adaptive Contrast Enhancement

Since all box parameters are estimated properly, each box can now be associated
with one sigmoid function S that is applied to perform the contrast enhancement
by intensity mapping. S is defined as follows:

S(v(u), α, β) =
1

1 + e
−
(

v(u)−β
α

) α, β ∈ R, (3.3)

α and β denote the slope and translation of the sigmoid function, respectively. In
our case, α is kept constant and β is controlled by the intensity mean of each box,
i. e. a higher mean results in vessel segmentation showing thicker vessel diame-
ters.

Since the boxes are perpendicularly aligned along the centerline, a coordinate
transformation is applied to all boxes (see Figure 3.4) such that the box coordi-
nate system becomes parallel to the image coordinate system. This coordinate
transformation can be performed with matrix multiplications using homogeneous
coordinates [Fole 97]. The origin of the box coordinate system oB ∈ R

2 has to be
translated into the origin of the image coordinate system oI ∈ R

2 followed by a
rotation such that both coordinate systems are aligned. The entire transformation
can be expressed in matrix notation:




uI,1

uI,2

1


 ∼=




cos η − sin η 0
sin η cos η 0

0 0 1


 ·




1 0 oI,1 − oB,1

0 1 oI,2 − oB,2

0 0 1


 ·




uB,1

uB,2

1


 (3.4)

where η denotes the rotation angle between the base vectors of the coordinate
systems. This simplifies and accelerates the computation of the sigmoid function
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(a) Enhanced vessel tree (b) Top: original zoomed regions
Bottom: local adaptive enhancement

Figure 3.5: Examples of local contrast enhancement.

because the check whether a pixel position is inside a certain box can be described
as:

box(uOI
) =

{
1 , if uoI ,1 ≤ l1 ∧ uoI ,2 ≤ l2

0 , otherwise
(3.5)

3.2.4 Segmentation and Postprocessing

The local adaptive contrast enhancement has compensated almost the majority of
all inhomogenity originating from the unequal mixture of the contrast agent as
illustrated in Figure 3.5. However, there might still be a few areas where the local
contrast enhancement led to inadequate results (see the circle in Figure 3.5 (a)).
Therefore, the final segmentation result is computed by combining the contrast
enhanced image with the bilateral filtered image using the minimum operator, i. e.

vseg(u) =

{
0 , if min(vcontrast(u), vbilateral(u)) < 0.5

1 , otherwise
(3.6)

where vseg(u), vcontrast(u) and vbilateral(u) denote the intensity value at position u
of the segmentation, contrast enhanced and bilateral filtered image respectively.
Since our contrast enhancement is based on boxes, small isolated artifacts appear
in the vicinity of the vessels. To remove these artifacts the binary image is skele-
tonized. Each skeleton part has to exhibit a minimum number of points. Otherwise
they are removed. The entire algorithm (Program 3.1) is presented in pseudo code
below.

3.3 Evaluation and Results

This semi-automatic 2-D vessel segmentation approach is extensively evaluated
using a database of 45 studies ({Ki}

45
i=1). This database splits up into two subsets,
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Program 3.1: 2-D vessel segmentation algorithm

Input: KF,SUM, KF,MINor KRE

Output: Binary vessel segmentation image
begin

IBF ←− perform bilateral filtering
// Initialization

if 3-D centerline available then
perform forward projection

else
place manual seed points along the vessels to be segmented
seed point are connected to centerline using Dijkstra’s algorithm

end
// Box parameter estimation for each centerline point

P←− ∅ // holds all box parameters

while C 6= ∅ do
take centerline point ci and remove it from C
compute Hessian matrix at position ci and estimate vessel diameter

pi ←− (eT
0,i, eT

1,i, l0,i, l1,i)

align box according to e0,i and e1,i)
P←− P + pi

end
// Local adaptive contrast enhancement

foreach pi ∈ P do
β←−mean intensity of box pi

α←− constant value
setup sigmoid function S(v(u), α, β)
contrast enhancement within box pi by applying sigmoid function S

end
ILE ←− store local contrast enhanced image
// Segmentation

IFinal ←− min(ILE, IBF)
apply fast marching algorithm on IFinal

end
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PGold
PSeg

TN

FPTPFN

Figure 3.6: Illustration of TP, TN, FP and FN; green set: goldstandard vessel
pixels, red set: vessel pixels of the 2-D DSA segmentation result.

i. e. 18 DSA images were generated using the classification-based DSA summa-
tion method introduced in Chapter 2 and 27 DSA images originate from three sets
of DSA projections which are used for 3-D DSA reconstruction called KRE. Per
set, nine 2-D DSA images were extracted. The entire database was acquired at the
Department of Neuroradiology (University Hospital Erlangen, Germany) using
a Siemens C-arm system (AXIOM Artis dBA, Siemens Healthcare Sector, Forch-
heim, Germany). The x/y dimension of the images varied between 512×512 and
1440×1440. The pixel spacing in x/y was 0.154/0.154 mm concerning the studies
K1 to K18 and 0.308/0.308 mm for K19 to K45. Gold standard vessel segmenta-
tions were performed for each study by manual outlining of the selected vessel
branches. These gold standard segmentations were approved by a neuroradiolo-
gist.

3.3.1 Methods of Evaluation

Two measurements are used to quantitatively evaluate the proposed 2-D vessel
segmentation algorithm, i. e. the Hausdorff distance and the sensitivity.

There are two sets of binary images during the evaluation, i. e. the gold stan-
dard PGold and the computed segmentation result PSeg. The Hausdorff distance
between two sets is defined as:

dH(PGold, PSeg) = max(h(PGold, PSeg), h(PSeg, PGold)) (3.7)

where h(PGold, PSeg) = max
u∈PGold

min
u∈PSeg

∥∥∥uPGold
− uPSeg

∥∥∥
2

(3.8)

where h(PGold, PSeg) represents the directed Hausdorff distance. The Hausdorff
distance is a good indicator in terms of whether there are outliers within the seg-
mentation result. Comparing two sets of pixels, it takes the furthest point of a set
which one can be to the closest of the other set. The lower the Hausdorff distance
gets, the better the segmentation result will be.

The sensitivity denotes the second evaluation measurement which is catego-
rized as a statistical measure of a binary classification test. It requires to count
the following numbers given the vessel segmentation result and the gold standard
segmentation:

• True positive (TP): vessel pixels being correctly classified as vessels
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• True negative (TN): background pixels being correctly classified as back-
ground

• False positive (FP): background pixels being falsely classified as vessels

• False negative (FN): vessel pixels being falsely classified as background

The relationship of these number are schematically illustrated in Figure 3.6. The
sensitivity is defined as:

dSE =
#TP

#TP + #FN
(3.9)

This measurement gives a good impression about the overall fit of the computed
segmentation result with the gold standard segmentation set. The sensitivity be-
comes maximum, i. e. dSE = 1 if all actual vessel pixels are correctly segmented
within the segmentation result.

3.3.2 Experimental Results

This section describes the segmentation results concerning two different types of
DSA images, i. e. 2-D DSA series showing the blood flow through the arteries
which were preprocessed leading to a final image in Chapter 2 and 2-D DSA images
taken for 3-D vessel reconstruction purposes. All experiments were conducted
on an AMD Athlon 7750 Dual-Core, 1.38 GHz with 3 GB of main memory. Our
approach is implemented in C++. On average, the segmentation takes 5 seconds.
The number of manual selected seed points varied from 10 to 30 depending on the
number, length and shape of the vessel branches in case there was no 3-D projected
centerline given.

Table 3.2 gives a quantitative insight of the segmentation results concerning
both types of 2-D DSA images. A mean Hausdorff distance and sensitivity of 22
pixels ±5.6 and 0.89±0.02 could be respectively achieved regarding the final sum
images (see Table 3.2 left columns). The segmentation results for the DSA images
taken from the reconstruction set revealed an average Hausdorff distance of 22
pixels ±6.4 and sensitivity of 0.90±0.05. The sensitivity values indicate promising
segmentation results.

Figures 3.7, 3.8 and 3.9 illustrate qualitative segmentation results. Figure 3.7
shows the segmentation results for the final sum images and Figure 3.8 depicts the
results concerning DSA images acquired for reconstruction. In both Figures, the
difference images reveal that this segmentation approach slightly underestimates
the vessel diameters. In Figure 3.9, centerlines are shown in red on 2-D DSA im-
ages which were forward projected from a corresponding 3-D segmentation. This
centerline forward projection automatically selects the vessel branches to be seg-
mented and initializes the entire segmentation approach.

3.4 Discussion

Our local adaptive contrast enhanced vessel segmentation algorithm has shown to
properly handle the intensity variation within vessel regions to perform a smooth
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Table 3.2: The left three columns depict the results regarding the final sum im-
ages and the three right columns show the results of the segmentation algorithm
concerning DSA images taken from the set of projections KRE used for 3-D DSA
reconstruction.

Final Sum Images DSA Images from Recon. Set
KF,SUM[index] dH [pixels] dSE KRE [index] dH [pixels] dSE

1 12.0 0.892 0 - 0 21.9 0.823
2 24.0 0.873 0 - 1 22.0 0.839
3 32.2 0.868 0 - 2 18.7 0.868
4 23.6 0.874 0 - 70 15.8 0.867
5 20.0 0.891 0 - 71 20.1 0.885
6 22.3 0.917 0 - 72 17.3 0.798
7 20.2 0.872 0 - 130 43.6 0.882
8 18.0 0.899 0 - 131 16.3 0.901
9 15.8 0.880 0 - 132 19.0 0.897
10 26.1 0.916 1 - 0 32.7 0.797
11 22.8 0.860 1 - 1 19.0 0.798
12 20.1 0.919 1 - 2 13.5 0.865
13 32.2 0.900 1 - 70 17.3 0.910
14 23.2 0.910 1 - 71 22.0 0.919
15 18.0 0.875 1 - 72 18.4 0.919
16 32.6 0.837 1 - 130 19.0 0.947
17 22.2 0.908 1 - 131 18.8 0.964
18 18.6 0.898 1 - 132 32.0 0.980

2 - 0 17.0 0.937
2 - 1 23.4 0.957
2 - 2 25.5 0.962
2 - 42 21.0 0.913
2 - 43 22.0 0.912
2 - 44 17.0 0.910
2 - 98 23.0 0.892
2 - 99 29.2 0.967
2 - 100 22.8 0.907

Mean 22.5 0.888 21.8 0.897
σ 5.6 0.022 6.4 0.053
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Final Sum DSA

Overlay
Segmentation (white) vs.

Gold Standard (red)
Overlay Difference

KF, SUM-3

KF, SUM-4

KF, SUM-8

KF, SUM-11

Figure 3.7: Qualitative evaluation results concerning final sum DSA images. Left
column represents the input image and the middle column depicts the overlay
between segmentation (white) and gold standard (red). The right column shows
the difference between segmentation and gold standard.
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DSA Image for
Reconstruction

Overlay
Segmentation (white)

vs. Gold Standard
Overlay Difference

KRE 1-71

KRE 1-72

KRE 1-130

KRE 1-131

Figure 3.8: Qualitative evaluation results concerning DSA images acquired for re-
construction. Left column represents the input image and the middle column de-
picts the overlay between segmentation (white) and gold standard (red). The right
column shows the difference between segmentation and gold standard.
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DSA Overlay

KF, SUM-7

KF, SUM-9

KF, SUM-20

Figure 3.9: Segmentation results for study number 7, 9 and 20. Left column de-
picts the original 2-D DSA images. Right column shows the corresponding gold
standard segmentations (red) and our segmentation results (gray) as overlay. The
red line represents the centerline defining the vessels of interest.
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(a) Profile line (b) Intensity profile
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Figure 3.10: Comparison of segmentation result and goldstandard segmentation;
(a) region of interest of a smoothed DSA image, red line: profile, blue crosses:
goldstandard segmentation border, green crosses: segmentation result border; (b)
profile of the red line in (a); borders of the segmentations are denoted by the lines
(same color mapping as in (a)).

segmentation using threshold image filtering. The extensive evaluation demon-
strates that our approach is clinical applicable and able to come up with quantita-
tive measurements during diagnosis and treatment planning.

When taking a closer look at the qualitative segmentation results (see Figure 3.7
and 3.8), there are two drawbacks concerning this segmentation methodology
which are discussed below: 1) vessel diameter underestimation and 2) segmen-
tation of the beginning of vessel branches.
The reason why this approach underestimates the vessel diameter can be easily
explained using Figure 3.10 which shows a zoomed vessel region of KF,SUM-8 (see
yellow box in Figure 3.7). An intensity profile (see Figure 3.10 (b)) is taken along
the red line in Figure 3.10 (a) which is perpendicular to the vessel. The blue points
denote the border of the gold standard segmentation and the green points indi-
cate the segmentation boundary computed by our segmentation approach. The
discrepancy originates from the gradient of the intensity values near the edge be-
tween vessel structure and background. This is illustrated by the blue and green
bars in Figure 3.10 (b). The vessel boundary detection is heavily influenced by the
mean intensity value of the current box as depicted in Figure 3.3 which controls
the sigmoid function mapping the intensities to bright and dark pixels respec-
tively. Two approaches might be possible to handle this issue: The first would
be to adaptivly enlarge the box size l0 and l1 such that more brighter background
pixels are covered and the mean intensity of the box is increased. This makes a
right shift to the corresponding box sigmoid function mapping more intensities
to darker pixel values. The second approach would be to simply take the mean
intensity plus a certain offset. Both approaches will lead to a final segmentation
result showing the vessels being segmented in thicker way.

The mean Hausdorff distance concerning both DSA image types revealed 22
pixels. This number indicates that the segmentation results exhibit a few outliers.
The reason of these outliers is the box-based contrast enhancement along the ves-
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sel centerline. At locations where small vessels are branching, these boxes cover
the area of bifurcation. Hence, the beginning of these small vessels are contrast
enhanced as well such that they are segmented in the end. The yellow boxes in
Figure 3.10 highlights this phenomenon. To remove these outliers, one possible
approach would be to perform a skeletonization of the segmentation result and
compare it with the 2-D centerlines. Branches which are not part of the centerlines
will be deleted.

3.5 Conclusion

This chapter has presented a 2-D vessel segmentation approach which overcomes
the challenge of inhomogenous contrast agent distribution. The major contribu-
tion of this work denotes the local adaptive contrast enhancement performed by
a set of individual boxes along a given centerline. The clinical applicability of
this segmentation approach is ensured by the evaluation of 45 different 2-D DSA
patient datasets. Within the next two chapters, we will see how this 2-D vessel
information is incorporated into the 3-D vessel segmentation methodology based
on 3-D DSA volumes. The 2-D segmentation results will serve as gold standard to
validate and adapt initial 3-D vessel segmentation results.
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This chapter introduces two pre-processing steps which are necessary for the
subsequent 3-D vessel segmentation method introduced in Chapter 5. The first
step proposes a local adaptive statistical threshold segmentation approach utiliz-
ing the prior knowledge about the intensity composition of cerebral and cardiac
3-D rotational angiography data (3-DRA), i. e. three intensity classes: background
(low intensities), artifacts (middle to high intensities) and vessel structures (high-
est intensities). Voxel positions associated with the highest intensity values are
randomly drawn to locally model the intensity distribution within small boxes us-
ing GMMs. The mean value of all box histogram estimations is taken as statistical
threshold value which results in a thresholded volume exhibiting medium and
large vessels.

The second step denotes the computation of vessel centerlines which is a chal-
lenging task due to various imaging artifacts like inhomogeneous contrast agent
distribution, beam hardening and vessel movement. This partially leads to an un-
certainty about the actual centerline path. The centerline method, introduced in
this Chapter, is mainly based on graph related multi-scale medialness measure
(MM) costs [Guel 08] combined with an extension which regularizes the centerline
path within uncertain vessel regions. The extension is an additional cost term com-
puted from the distance map of the skeletonized thresholded volume. The center-
line algorithm has shown to be powerful within a clinical setup and is extensively
evaluated on 15 cerebral and 13 coronary 3-DRA datasets. The quantitative eval-
uation shows a mean distance of 0.42 mm against a pure MM driven centerline
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approach. The qualitative assessment performed by medical experts reveals that
our centerline paths better fit the actual vessel center-axis.

4.1 Motivation

Vessel quantification represents a key step in an interventional angio suite within
neuroradiology and cardiology to perform diagnosis and treatment planning. The
extraction of vessel centerlines delivers a major support for endovascular inter-
ventions [Subr 04] by enabling clinicians to browse through vessel branches with
a plane which is perpendiculary aligned to the centerline axis. Quantitative vessel
measurements like diameters, stenosis degree or aneurysm neck sizes may be fade
in on this plane to provide instant information for the therapy planning, e. g. stent
placement or coil embolization.

Since motion-compensated interventional cardiac reconstruction [Rohk 10a],
[Rohk 10b] delivers 3-D volumes exhibiting vessel branches of high quality, vessel
related post-processing algorithms come into a feasible range for cardiac applica-
tions. Nevertheless, accurate centerline modeling still denotes a challenging task
due to inhomogeneous distribution of contrast agent, kissing vessels, vessel mo-
tion, interrupted and multi-scale vessel branches and the presence of pathologies
like stenosis or aneurysms. This chapter proposes an integrated clinical method to
compute vessel centerlines of 3-DRA concerning cerebral and coronary vessels ob-
tained from motion compensated cardiac reconstructions as shown in Figure 4.1
(left column). GMMs are applied to locally model the a priori known intensity
classes (background, artifacts and vessel structure) of 3-DRA yielding a thresh-
olded 3-D volume (Figure 4.1, middle column). This volume is skeletonized to
compute a distance map which extends the MM-based cost function [Tyrr 07],
[Guel 08] such that the minimum-cost driven centerline algorithm becomes more
robust against imaging artifacts and motion corrupted elliptical-shaped vessel struc-
tures. The evaluation of our centerline algorithm comprises a quantitative com-
parison against the pure MM approach from [Guel 08]. The qualitative assessment
reveals that our approach matches better the actual vessel center-axis especially
for large vessel branches with heterogeneous contrast agent distributions or mo-
tion influence. The clinical applicability is ensured by an evaluation database of
28 different 3-DRA datasets, i.e. 15 cerebral vessel and 13 coronary datasets.

4.2 Related Work

During the last decade, various approaches have been developed to extract the
vessel centerline. In [Lesa 09], the centerline techniques are divided into three ma-
jor methodology categories, i. e. (1) direct centerline tracking, (2) model-based
optimization and (3) minimal path techniques. Almost all approaches have in
common that they work as semi-automatic algorithms requiring one or two seed
points in between the vessel centerline will be computed.

Direct centerline tracking methods often make use of estimating the vessel di-
rection using a Hessian-based optimization to get local geometric features [Aylw 02].
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Figure 4.1: Reconstructed 3-D images (left) are segmented using statistical thresh-
olding (middle) and skeletonized (right).

Kalman filtering has been applied by [Gong 03, Woer 07] to predict the pass of ves-
sel branches. Another direct tracking approach uses sphere-based geometric re-
centering techniques combined with local thresholding [Hern 06]. Also 2-D cross-
sectional planes have been computed to predict the centerline direction and path
[Tek 01].

Model-based centerline optimization denotes a small category within the cen-
terline literature. In [Fran 99, Wong 06], B-spline and cardinal spline deformable
models have been applied to balance between data and model-related energy op-
timization.

Minimum-path related techniques represent the most popular centerline com-
putation technology because of its computational efficiency. The image is con-
sidered as a graph which allows to associate costs to each pixel or voxel. Path
optimizations w.r.t. different norms (L1, L2 or L∞) have been developed. Dijk-
stra related path findings denotes one example for L1 path optimization [Olab 03,
Guel 08]. The centerline computation regarding L2 is associated with slightly higher
computational efforts using fast marching algorithms [Law 00, Desc 01]. The fuzzy
connectness technique [Udup 02] and region growing methods [Yim 03] are used
to optimize the vessel centerline according to the L∞ norm. L∞ means that the
total costs of a path corresponds to its worst edge, i. e. lowest degree of connec-
tivity. Complete vessel tree extraction with one seed point, however, has not been
extensively evaluated yet. A proper choice is the usage of termination criterions
[Guel 08] which are controlled by heuristical thresholds such that first the entire
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vessel tree is explored and second multiple paths are backtraced towards one root
seed point.

4.3 Methods

4.3.1 Statistical Thresholding using Prior Knowledge

3-D rotational angiography is based on the direct intra-arterial injection of contrast
agent. Due to the high contrastation, it can be assumed a priori that the vessels
appear in the highest intensity bins of the histogram. Thus, 3-DRA datasets consist
of three different types of intensity classes ωi , i.e. foreground (vessels), artifacts
and background which are locally modeled by GMMs [Huan 08]. The concept of
locality is obtained by taking a set of voxel positions B = (b0, b1, ..., bN−1) ∈ R

3×N

associated with the highest intensity values, i.e. the probability is very high to
be at or nearby the vessels of interest. Each box is defined as set of neighboring

voxels being defined as : V(bj) =
{

x ∈ R
3 :
∥∥x− bj

∥∥
∞
< s
}

where s denotes the

box size. M < N positions bj are randomly drawn which are used as centers
for local vessel histogram boxes. The intensities f (x) at voxel positions x within
jth box are characterized by the probability density function p( f (x)|Θj) being a
convex combination of K Gaussians:

p( f (x)|Θj) =
K−1

∑
i=0

p( f (x), µi, σ2
i )P(ωi) (4.1)

where P(ωi) > 0 denotes the class prior probability with the constraint

∑
K−1
i=0 P(ωi) = 1. Θj ∈ R

3×K represents the box related parameter vector holding
P(ωi), µi and σi. All box parameters are concatenated within a matrix
Θ = (Θ0, Θ1, ..., ΘM−1) ∈ R

3×K×M. The intensities are assumed to be independent
and the joint density becomes maximum if the product of the probabilities of find-
ing an intensity at each observed voxel position x is maximum. The optimization
covering all box estimations is given by

Θ̂j = arg max
Θj

∑
x∈V(bj)

ln p( f (x)|Θj) + λ

(
K−1

∑
i=0

P(ωi) = 1

)

∀Θj : j = {0, 1, ..., M− 1}

Θmean =
1

M

M−1

∑
j=0

Θ̂j

(4.2)

Θmean represents the mean parameter vector for all boxes. The parameter esti-
mation is performed by the Expectation-Maximization-Algorithm [Demp 77]. K
is set to three because of the three different intensity classes. We set the final sta-
tistical threshold to the average of the two largest mean values because we want
to remove the background and preserve the medium and major vessel structures.
Figure 4.1 (middle and right column) depicts the thresholded results and the sub-
sequently performed skeletonization [Lee 94].
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(a) Medialness measure (MM)
principal

(b) Elliptical-shaped vessel

(c) Different circles fit to an elliptical-
shaped vessel delivering similar MM
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Figure 4.2: (a) shows the principal of the medialness measure (MM). (b), (c) and
(d) illustrate the behavior of the MM filter response for elliptical-shaped vessels.

4.3.2 Medialness Measure

This part gives a short overview about the medialness measure (MM) introduced
by [Guel 08] describing a well established filtering technique to judge about the
circularity of the underlying structure. For the remainder of the paper, the intensi-
ties of the 3-DRA datasets are normalized between zero and one. As illustrated in
Figure 4.2 (a), it works with rotating rays and 1-D intensity profiles to determine
the vessel boundary w.r.t different radii. The total MM function is defined as

M(x) = max
r∈{rmin,...,rmax}

1

Q

Q−1

∑
i=0

E(x + r · z(2πi/Q)) (4.3)

where Q denotes the number of rays and r limits the elongation of the ray. z(α) =
cos α · z1 + sin α · z2 describes the normalized direction vector of the ray. As fol-
lows, we discuss this concept for a single ray Ir,α = I(x + r · z(α)) which returns
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the intensity value Ir,α at all positions r along the ray. The concept of a ray is uti-
lized to compute a vessel boundary measure along a ray given by

A(t) = max

{∣∣∣∣
∂

∂r
(gσ ⋆ Ir,α)

∣∣∣∣
}

r=t

· sign

(
∂

∂r
(gσ ⋆ Ir,α)

)
(4.4)

where σ denotes the standard deviation of the Gaussian convolution. The sign
function becomes negative if the current gradient indicates a falling edge, i.e. from
high intensity values to low intensity values and vice versa. The entire edge re-
sponse for a certain ray Ir,α(x) is now computed by

E(x + r · z(α)) = max [−A(r)− ASR, ǫ] (4.5)

where ASR describes the strongest rising edge observed along the ray. ǫ denotes
a constant which is almost zero to avoid the singularity effect in voxel-based cost
function e. g. 4.6. The MM function Eq. 4.3 becomes maximum if the position
x is at the center of a vessel and r is chosen such that it exactly hits the vessel
boundary position, i.e. ASR reveals a small value since only one falling edge has
been observed along the rays. The MM value represents one part of the voxel-
based cost function. Section 4.3.3 introduces the second part of the cost function
regularizing the MM function.

4.3.3 Distance Map as Regularizer

Although the medialness filtering is a robust technique to effectively compute the
circularity of objects, there are several factors like unequal contrast agent distribu-
tion particularly within thick vessel branches or elliptical shaped vessel structures
limiting the filter response of the MM. Especially elliptical shaped vessels lead to a
MM response which exhibits a wide plateau due to the fact that the edge response
from Eq. 4.5 delivers similar results regarding different vessel radii as illustrated
in Figure 4.2 (b), (c) and (d). Based on pure MM costs, Dijkstra’s shortest path al-
gorithm [Dijk 59] may not pass through the actual vessel center axis. We propose
to regularize the MM cost function with the incorporation of the distance map
computed from the statistical thresholding result (section 4.3.1) to overcome these
limitations. Our cost function per voxel is now defined as follows:

Γ(x) =
1

(M(x))2
+ α · dist(x) (4.6)

where dist(x) denotes the skeleton-based Euclidian distance function and α a weight-
ing factor. A polynomial cost function is used because the range of values are
within a certain bandwidth and the computation time is reduced w.r.t. interven-
tional applicability. Figure 4.3 shows an example of a distance map and the differ-
ences between the pure MM and distance map regularized costs. The lowest costs
are clearly concentrated within the center of the vessels (Figure 4.3 compare yellow
circles) where the pure MM reveals a blurred cost distribution. Hence, our pro-
posed regularization attracts the minimum-cost path algorithm towards the actual
vessel center axis. The impact of the distance function, however, has to be limited
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Figure 4.3: (a) shows the internal carotid artery of a cerebral 3-DRA dataset and the
corresponding skeleton-based distance map (b) limited up to the maximum vessel
radius. (c) and (d) compares the pure MM based cost function with our proposed
distance map regularized MM cost function.

because it would otherwise corrupt the cost function behavior for vessel branches
which are not present within the statistical threshold result. Therefore, the dis-
tance function is limited to a maximum value, i.e. dist(x) = min(dist(x), distmax).
distmax denotes the maximum vessel radius observed within the thresholded vol-
ume (section 4.3.1).

4.3.4 Centerline Extraction using Minimum-cost Path

Each voxel is now associated with its dedicated costs Γ(x) which is used to com-
pute the vessel centerline via minimum-cost path approach. The entire vessel
tree is extracted with one seed point s0 which is placed at the root location of
the vessel tree. Dijkstra’s algorithm processes the entire volume on the fly where
only those voxel positions are considered whose MM response is above a certain



58 Statistical Thresholding for Centerline Computation using Prio r Knowledge

threshold value tMM . When the MM value is below tMM, the current voxel po-
sition is excluded from Dijkstra processing and added to the boundary set y =
(y0, y1, ..., yN−1) ∈ R

5×N . Each vector yj = (x, lc, rmean) ∈ R
5 consists of the po-

sition, its centerline length lc and average radius rmean. Each yj represents one
possible centerline path connected to the root seed point due to Dijkstra’s shortest
path algorithm computation. The centerline computation stops automatically once
there is no voxel position delivering MM values above tMM. The actual centerline
extraction approach is depicted below in an algorithmic manner. tval denotes a

Program 4.1: Centerline extraction

Input: y, tval

Output: PF set of final centerline paths.
begin

PF ←− ∅

tval ←− 2.0
y sort all centerline paths according to its length w.r.t costs (longest first)
while y 6= ∅ do

take boundary position y0 and remove it from y
ptmp ←− trace back y0 until root seed point s0

mark each node passed while performing back tracing
if back tracing hits an existing path then

recompute lc and rmean of y0 for the corresponding path until hit
ytmp ←− update centerline path

end

if lc
rmean

> tval then

PF ←− PF + ytmp

end

end

end

validity centerline threshold, i. e. every centerline path should be tval times longer
than its mean radius. Figure 4.4 illustrates the mechanism of the algorithm. First,
the algorithm starts with the back tracing process taking y0 and ends up with the
centerline path 1. Second, it takes y1 from the boundary set y and traces back to
s0 while it hits the existing path 1 at A. Now, the extraction stops and the length
and average radius of the path from y1 to A is re-computed. If the ratio between
length and average radius for the path y1 to A is above tval, this path will be added
to the set of final centerline paths. Otherwise it is removed. B-splines are used to
approximate and smooth each centerline path.

Once all centerline paths are determined, the semantic centerline tree is con-
structed. Semantic means that the tree has one root centerline and the relationship
between the centerline paths are considered to order the paths in a hierarchical
father-son manner. Depending on whether cerebral or coronary arteries are ac-
quired, the position of the patient on the table of the C-arm system is a priori
known. Hence, for coronary reconstructions, the root centerline path is located in
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Table 4.1: Evaluation results concerning 3-D DSA and coronary vessel centerlines. All quantitative measurements are given in
mm. A and E denote automatic and expert.

3-D DSA - Quantitative comparison
Data D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 Mean

dmean [mm] 0.13 0.14 0.14 0.10 0.13 0.19 0.13 0.14 0.13 0.13 0.21 0.18 0.10 0.12 0.13 0.14

dH [mm] 0.68 0.69 1.61 1.00 0.73 1.90 1.23 1.92 1.60 1.74 2.21 2.19 1.13 1.49 1.53 1.44

3-D cardiac - Quantitative comparison
Data D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

dmean [mm] 0.23 0.42 0.43 0.37 0.40 0.49 0.40 0.52 0.34 0.65 0.35 0.38 0.44 0.42

dH [mm] 4.37 6.63 3.55 1.66 5.16 4.69 4.80 5.49 1.59 2.98 3.04 11.29 2.98 4.48

Qualitative coronary vessel segment assessment

#Seg. (A/E) 9/9
LCA

8/10
LCA

9/9
LCA

9/9
LCA

10/11
LCA

9/9
LCA

9/10
LCA

3/3
RCA

2/2
RCA

4/4
RCA

6/7
LCA

8/9
LCA

4/4
RCA

95%
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s0

Path 1Path 2

Boundary set y

A
y1

y0

Figure 4.4: Illustration of the centerline extraction scheme. Paths 1 and 2 represent
the longest paths with their vessel branches. All red paths are eliminated because
the ratio between path length and mean radius is too small.

the upper part of the volume whereas for cerebral reconstructions, the root center-
line denotes the largest vessel entering the volume from the bottom.

4.4 Evaluation and Results

4.4.1 Methods of Evaluation

Our proposed centerline method has been evaluated in a quantitative and qualita-
tive manner with respect to different vessels, e. g. cerebral and coronary. The mean
dmean and the Hausdorff distance dH have been applied to compare the pure MM
driven centerline with our new distance map regularized MM centerline method.
The qualitative assessment for the coronary vessels was performed by a medical
expert. The coronary vessel tree detection result was assessed according to the
coronary vessel tree model [Aust 75]. The model divides the coronary vessels into
15 segments, i.e. 4 RCA, 11 LCA (1 main LCA, 5 LAD and 5 LCx). A medical
expert counted the number of coronary segments visible within the dataset and
compared it with the centerline detection result based on our newly proposed cost
function.

4.4.2 Experimental Results

In total, 15 3-D DSA and 13 motion-compensated coronary datasets were used to
show the clinical flexibility and robustness of our centerline method. The image di-
mensions covering all datasets range between 1923 and 5123 voxels. The isotropic
voxel spacing is 0.1 mm for 3-D DSA and 0.75 mm for cardiac volumes. The maxi-
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mum radius rmax is set to 35 and 12 pixels for cerebral and coronary, respectively.
The α is 0.1. The box size s is between 323 and 643 pixels for the coronary and cere-
bral data. The validity centerline threshold tval is set to 0.2 and 0.12 for cerebral and
coronary vessels, respectively. Table 4.1 gives an overview about the evaluation re-
sults. The mean distance shows that both centerlines are rather close to each other.
The Hausdorff distance, however, reveals that there are centerline parts which
heavily deviate between both approaches. The red circles in Figure 4.5 (top row)
illustrate the major differences mostly appearing in medium and large vessel sec-
tions where the MM driven centerline suffers from inhomogeneous contrast agent
distribution. Our regularized centerline approach models vessel bifurcations in a
strict manner, i.e. the bifurcation is not cut short as depicted in Figure 4.5 (middle
row). Moreover, Figure 4.5 (bottom row) depicts that our newly proposed center-
line approach computes straight paths within small coronaries and better handles
elliptical-shaped vessels with fewer path fluctuations. The qualitative coronary
evaluation shows that our method robustly detects 95% of all segments observed
by the medical expert.

4.5 Discussion

The results have shown that the newly introduced distance map regularized MM
centerline approach delivers more accurate centerline paths concerning 3-DRA
datasets especially for large or elliptical-shaped vessels. This allows coming up
with more accurate vessel measurements like diameter or aneurysm neck size for
stent placement or coiling embolization in interventional angio suites. The aver-
age distance indicates an almost identical match between both approaches. How-
ever, the Hausdorff distance reveals that there are centerline paths which heavily
deviate. This deviation can be most often observed within major vessel branches.
Especially for small coronary vessel branches, our approach delivers straight paths
with fewer fluctuations.

No ground truth centerlines have been used to evaluate the accuracy of the
centerline paths because the creation of such ground truth centerlines is rather dif-
ficult. Vessel motion, heterogeneous contrast agent distribution, beam hardening
as well as reconstruction kernels leading to vessel boundary edge ramps make the
manual outlining of centerlines a difficult task. This has to be evaluated within a
different study investigating the inter observer variability.

The entire algorithm is integrated within a clinical approach allowing to man-
ually remove centerlines which are actually false alarms to prepare subsequent
post-processing steps like 2-D and 3-D vessel segmentation. As described in Chap-
ter 3, the 3-D vessel centerline tree can be utilized to initialize the semi-automatic
2-D vessel segmentation approach by performing a forward projection onto corre-
sponding 2-D angiography images. This forward projection opens up the possibil-
ity to acquire vessel measurements like diameter in 2-D because the quantification
of vessels within 3-DRA datasets is affected with uncertainty due to motion or
improper contrast agent distribution. Furthermore, the next Chapter 5 requires a
pre-computed vessel centerline such that interleaved 3-D ellipsoids can be placed
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Figure 4.5: Centerline results for cerebral and coronary vessels. Yellow center-
lines denote the distance map regularized paths and turquoise colored centerlines
represent the purely MM driven paths. Red labels depict the major deviations
between both approaches.
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along the centerlines to approximate and segment the vessel branches in a smooth
manner.

4.6 Conclusion

This chapter has presented a centerline extraction methodology which is mainly
based on a multi-scale MM filtering and a graph-related minimum-cost path ap-
proach. The main contribution of our work denotes an extension of the voxel-
based cost function which especially regularizes centerline paths within vessel
regions showing inhomogenous contrast agent or elliptical-shaped vessels. The
regularizer comprises a novel local adaptive statistical thresholding which makes
use of the a priori known intensity distribution of 3-DRA datasets, a subsequent
skeletonization and distance map computation. An evaluation performed on two
types of vessels, cerebral and coronary, demonstrates the robustness of our ap-
proach and delivers better results as the pure MM driven centerline technique.

The next chapter uses the centerline tree as initialization for the ellipsoid-based
3-D vessel segmentation.
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A 2-D driven 3-D vessel segmentation algorithm is presented within this chap-
ter which takes the results from Chapter 3 and 4 into account. The 3-D vessel
segmentation approach is an interleaved ellipsoid-based method which allows to
locally adapting to 3-D vessel branches. Chapter 4 provides the required vessel
centerline tree which is utilized as initialization to arrange the ellipsoids along the
centerlines. The results of Chapter 3 deliver corresponding 2-D vessel segmenta-
tions such that the 3-D segmentation can be adjusted towards the edge informa-
tion from the 2-D images. The adaptation of the 3-D segmentation towards the 2-D
information is performed by a novel method making use of the 2-D/3-D registra-
tion principle. The combination of 2-D and 3-D vessel information opens up the
opportunity to perform a validation of different 3-D vessel segmentation method-
ologies based on 3-D DSA volumes. Our segmentation framework is evaluated
using one phantom and ten patient datasets. The 2-D adapted 3-D segmentation
results show an average increase in precision of 6% against methods driven purely
on 3-D information. The algorithm has been conditionally accepted in [Spie 11b]
and patented [Spie 11a].

5.1 Motivation

As already mentioned within the introduction part of this thesis, 3-D DSA is a well
established and helpful technique in modern neuroradiology to visualize complex
cerebral vascular pathology and to guide interventional procedures. More and
more 3-D DSA data are also used for further quantitative analysis to support treat-
ment planning and therapeutic procedures in patients with cerebrovascular dis-

65
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eases, e.g. aneurysms or stenosis [Hera 06a]. This analysis requires reliable 3-D
vessel segmentation methods that delineate the boundary of the vessel as accu-
rate as possible to come up with exact vessel measurements, e.g. vessel diameter,
bifurcation angle of vessel branches, aneurysm dome sizes etc. Since latest in-
vestigational techniques like hemodynamic simulations based on CFD have be-
come more and more popular within the research community of neuroradiology
[Cebr 05a, Cast 06, Ford 08, Jou 08, Spie 11c], the segmentation result and its corre-
sponding mesh representation are the base for even more reliable analysis. Small
changes within the segmentation result may induce completely different flow pat-
terns or wall shear stress distributions ([Venu 06] and see Chapter 7). Hence, vessel
segmentation results get more important for post-processing applications within
the clinical environment. Accurate vessel segmentation based on 3-D DSA is chal-
lenging as it depends on the quality of the 3-D DSA image that might vary for
the individual patient. In clinical practice, there are a lot of factors that contribute
to optimal and reproducible image quality. This includes the amount of injected
contrast agent, the timing of injection, hemodynamic mixture of contrast agent
and factors like blood flow cardiac output. Also reconstruction parameters may
be different between patients [Zell 05, Stro 09]. Figure 5.1 gives examples about
the influence of the different acquisition parameters on the final 3-D DSA recon-
structed images. The edge ramp between background and vessel intensities dif-
fers dependent on the applied reconstruction kernel (see Figure 5.1 upper part),
e.g. some kernels yield an edge ramp whose slope is much higher than those
generated by another kernel [Kak 88, Buzu 08]. These profiles open a space for
different segmentation methods to differently interpret these edge ramps which
may lead to varying vessel boundary positions. The ramp itself is also an indica-
tor how the contrast agent is distributed at this position. In case of sub-optimal
injection timing, the contrast agent may leach out which leads to locally blurred
vessel boundaries. Even if all acquisition parameters would be exactly the same,
the final 3-D DSA image volume will slightly differ because of the heterogeneous
hemodynamic mixture of the contrast agent with the blood. Due to this, the vali-
dation of 3-D DSA vessel segmentation results turns out to be rather difficult and
thus 2-D DSA imaging is still considered as gold standard in quantitative evalua-
tion and measurements [Peke 09] being available during and after interventional
evaluations. This is a challenge to validate any kind of segmentation methods so
far that is especially true for the individual patient while phantom models can be
used for general validation tests.

To overcome these challenges, a novel 3-D vessel segmentation method is pro-
posed in this thesis that is driven by 2-D vessel information. 2-D DSA acquisi-
tions are used as validation base for 3-D segmentations as well as a driving force
to adapt an initial 3-D segmentation. Each 3-D DSA dataset comes automati-
cally with 133 2-D DSA projections showing the patient from various viewing an-
gles. Moreover, these projections are registered and calibrated with the 3-D DSA
dataset. Selected 2-D DSA images exhibit the advantage that the vessel bound-
aries are clearly visible and not blurred as it often happens in 3-D DSA images.
The 3-D vessel segmentation approach denotes a 3-D parametric vessel segmenta-
tion technique based on ellipsoids. The novelty of our approach now comprises an
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Figure 5.1: Influence parameters during the generation of a 3-D DSA image: The
upper part of the image shows the result using five different reconstruction kernels
according with the intensity profiles. The lower part illustrates how beam hard-
ening and the distribution of contrast agent affect the reconstruction result (see
red circles). Also an improper timing of contrast agent injection is depicted on the
lower right corner where the venous phase is already visible (see yellow circles).

automatic segmentation algorithm that smoothly combines 2-D vessel information
with a given 3-D vessel segmentation. Given a certain number of 2-D DSA acqui-
sitions, a forward projection of the current 3-D segmentation is computed to be
overlaid with the 2-D acquisitions. The match between forward projection and 2-
D DSA vessel information is used to drive and adapt the 3-D vessel segmentation
towards the 2-D information. Figure 5.2 illustrates the entire algorithm.

5.2 Related Work

Within the last ten years, a large variety of vessel detection, extraction and seg-
mentation algorithms have been introduced for all kinds of imaging modalities
(CT, MRI, 3-D DSA) and applications. An extensive overview of this field is given
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by Lesage et al. [Lesa 09] as well as by Kirbas and Quek [Kirb 04]. The focus in this
section lies on vessel segmentation approaches using 3-D DSA image data.

The 3-D vessel segmentation approach used in this work is related to tubular-
preserving vessel models. Yim et al. [Yim 01] employs a tubular deformable model
in order to reconstruct vessel surfaces from 3-D angiographic images. Another
idea, proposed by Tyrrell et al. [Tyrr 07], models complex vessel trees by cylindri-
cal super ellipsoids together with a joint estimation of vessel boundary and cen-
terlines. This approach does not take explicit edge information into account for
vessel boundary detection. Wong and Chung [Wong 07] introduced a probabilistic
vessel axis tracing method for 3-D angiograms to delineate the vessel boundary
on cross sections. In a second step, the 3-D vessel surface is defined by the min-
imum cost path on a weighted acyclic graph. Chang et al. [Chan 09] applied a
region-growing segmentation approach on 3-D DSA image data with a 3-D exten-
sion for deformable contour based on charged fluid model. 4-D minimal paths are
used by Li et al. [Li 07] to exploit and reconstruct 3-D tubular structures on MR an-
giography and CT images. A non-parametric deformable model with high-order
multiscale features is proposed by Hernandez et al. [Hern 07] to segment vascular
structures in 3-D DSA and CT data. Gan et al. [Gan 05] applied a statistical vessel
segmentation approach for 3-D DSA images using expectation-maximization (EM)
algorithm to estimate the intensity distribution of vessels based on maximum in-
tensity projection (MIP) images. Kang et al. [Kang 09] introduces a complementary
geodesic distance field in order to smoothly register a given centerline onto the
vessel lumen and to adapt an active tube model.

Another common approach is to apply multiscale filtering methods for deter-
mining vessel boundaries and to subsequently extract the vessel geometry from
the image volume. Law and Chung [Law 07] introduced a combination of trans-
lated and rotate first derivative Gaussian filters to detect the intensity drop along
vessels and aneurysms. The detection response is used to guide a level set seg-
mentation framework. Tek et al. [Tek 05] described an algorithm for multiscale
vessel detection and segmentation by using mean-shift analysis.
The literature shows some works which combine 2-D DSA images with different
3-D imaging modalities, e.g. 3-D DSA, CT or MR [Hipw 03, Chan 04]. Groher et
al. [Groh 07] proposed a 2D-3D registration approach of abdominal angiographic
data to register a catheter. Hentschke and Toennies [Hent 09, Hent 10] registered
2-D DSA images with 3-D DRA datasets to compare and validate flow simulation
with the flow information encoded in 2-D DSA images.

Although there are already ambitions to incorporate 2-D information into 3-D
image datasets for various purposes, so far there is no 2-D driven 3-D vessel seg-
mentation framework which adapts 3-D vessel morphology by using 2-D DSA
information.

5.3 Methods

This section describes the proposed 2-D driven 3-D vessel segmentation approach.
First, a short overview is given about the applied ellipsoid-based 3-D vessel seg-
mentation which is enhanced by a local foreground/background intensity estima-
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Figure 5.2: Overview about the proposed 2-D driven 3-D vessel segmentation sys-
tem. The orange box indicates the 3-D vessel segmentation approach and the red
box illustrates the components of the 2-D/3-D adaptation method.

tion using GMMs (Chapter 4). Our ellipsoid-based vessel segmentation is similar
to the approach from [Tyrr 07]. The methodology combining 2-D and 3-D vessel
information represents the core part of this work and will be discussed in detail.
Figure 5.2 depicts the individual modules of the algorithms as a flow chart.

5.3.1 3-D Vessel Segmentation Approach

The main purpose of the 3-D segmentation approach is to detect and segment
medium and large vessels within 3-D DSA datasets delivering the input for the
subsequent adaptation with 2-D information.

Initialization and Centerline

The centerline technique described in Chapter 4 requires at least one seed point
for initialization and to start the centerline computation. Within Chapter 4, this
seed point was manually provided by the user. Since the position of the patient on
the table of the C-arm system remains always the same, the major vessel like ICA
enters the reconstructed image volume from the bottom. Hence, the flow direction
of the contrast agent is from bottom to top. This prior knowledge is now used to
automatically provide this seed point by finding the position of the largest vessel
entering the volume. Therefore, the Hough-Transformation [Jaeh 11] for circles is
applied on the most bottom slice of a 3-D DSA image to localize entering vessels
of a certain diameter. The position associated with the largest diameter is taken as
seed point for the centerline computation method. Figure 4.5 (upper part) gives
an example of the vessel centerline tree.
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tint 1 tint 2 tint 3

tint 4 tint 5 tint 6

Figure 5.3: Different intensity windowing thresholds are applied to patient dataset
9. tint denotes intensity threshold value which is increasing from tint 1 to tint 6,
i.e. tint 1 represents a very low threshold and tint 6 depicts the windowing result
using a very high intensity threshold. The yellow boxes are used to estimate local
intensity thresholds which are described in detail within Chapter 4.3.1.

Ellipsoid-based Vessel Segmentation

Superellipsoids, ellipsoids or spheres are geometric primitives that are well suited
for describing local vessel segments because such primitives being interleaved are
able to approximate the tubular vessel structures in a smooth manner as men-
tioned in [Tyrr 07]. A unit sphere located within the coordinate center is implicitly
defined as follows:

F(x) = x2
0 + x2

1 + x2
2 = 1 (5.1)

where x = (x0, x1, x2)
T ∈ R

3 denotes a point on the surface of the sphere. To
approximate localized vessel segments, a coordinate transformation has to be ap-
plied to allow arbitrary rotation, scale and translation, i.e. nine transformation
parameters have to be estimated (three rotation, three scaling, three translation).
The entire transformation function is expressed by

T(φ, x) = R(r)S(s)x + t. (5.2)

R represents the 3×3 rotation matrix with the argument r ∈ R
3 as rotation param-

eters. The scaling parameters s ∈ R
3 are encoded within the 3×3 diagonal matrix

S(s) and t ∈ R
3 denotes the translation vector. All transformation parameters are
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summarized within the vector φ = (r, s, t) ∈ R
9. Thus, the implicit shape model

can be rewritten as

FT(φ, x) := F(T(φ, x)) = F(R(r)S(s)x + t) (5.3)

which separates the space into three different regions:

FT(φ, x) ∈





< 1, if x ∈ I(φ)

1, if x ∈ S(φ)

> 1, if x ∈ O\(I(φ) ∪ S(φ)),

(5.4)

where S(φ) and I(φ) denote the surface and the interior of an ellipsoid respec-
tively. O describes the image domain. This distinction will be later used as ex-
ternal energy term within the global objective function to estimate the parameters
properly. The previously computed centerlines (see Chapter 4) are used to initial-
ize the parameters, i.e. the center of the ellipsoids is placed on the centerlines.
They are rotated such that the tangent vector of the centerline coincides with the
local z-axis of the ellipsoid. The curvature of the centerline is utilized to deter-
mine the number of ellipsoids that are required to approximate the vessel branch.
In centerline sections with high curvature, the number of ellipsoids is increased
while the ellipsoid scale in z-direction is concurrently decreased. Areas of low cur-
vature are treated vice versa. The ellipsoid scales pointing perpendicular to the
vessel direction are initialized by cross-sectional radius intensity profiling. The
parameter vector Φ = (φ0, φ1, ..., φM−1) ∈ R

9×M holds all ellipsoid parameter of
the entire model and M denotes the total number of ellipsoids used. For each el-
lipsoid, a specific local intensity threshold is estimated using GMM dividing the
local image domain into foreground and background intensities. This is done to
properly cover the heterogeneous intensity distribution within and around vessels
as illustrated in Figure 5.3 (yellow boxes). The boxes are used as environment to
estimate the local intensity threshold for each ellipsoid. The threshold values are
stored within the vector h = (h0, h1, ..., hM−1)

T ∈ R
M. This estimate is further de-

scribed later within this text when it comes to the definition of the external energy
functional.

The initialized ellipsoid tube model is now optimized such that the model
evolves towards the boundary of the vessels according to a predefined energy.
The total energy functional, Gtot(Φ, h), is composed of two terms:

Gtot(Φ, h) : R
9×M ×R

M → R

arg min
Φ,h

Gtot(Φ, h) = αGext(Φ, h) + (1− α)Gint(Φ) (5.5)

where Gext(Φ, h) and Gint(Φ) denote the external and internal energy term respec-
tively. α defines the weighting factor.

The internal energy term is associated to the inherent characteristics of the tube
model, i.e. the pose parameters between two subsequent ellipsoids have to be
modeled in a smooth way. For that purpose, the internal energy term consists of
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three cubic B-splines ({Bi}
2
i=0) to ensure smoothness in terms of rotation, scaling

and translation between neighboring ellipsoids:

Gint(Φ) =
2

∑
i=0

∫

Ri

∣∣∣Bi(k, Φ)
′
∣∣∣ dk +

∫

Ri

∣∣∣Bi(k, Φ)
′′
∣∣∣ dk (5.6)

where Bi(k, Φ)
′

and Bi(k, Φ)
′′

represent the first and second derivative of the B-
spline Bi. Ri is the total length of the B-spline and k the position on the spline.
The first B-spline, B0(k, Φ), is a B-spline in 2-D and it describes the change of ori-
entation between two ellipsoids. Its sample points qr = (k, δ) ∈ R

2 are defined
by k and δ denoting the length position of the ellipsoid center on the B-spline and
the change of the orientation angle between two ellipsoids respectively. B1(k, Φ)
is a B-spline in 3-D covering the change of scales between subsequent ellipsoids.
The sample points are defined as qs = (k, s0, s1) ∈ R

3 where s0 and s1 represent
the scaling in x-y direction of the ellipsoid. The last B-spline, B2(k, Φ), represents
the centerline in 3-D which is now defined by the center points of the ellipsoids
qt = (c0, c1, c2) ∈ R

3.
The external energy term is responsible to drive the model towards the sur-

rounding vessel structures. A 3-D DSA image consists of foreground and back-
ground voxel intensities as already described in Chapter 4.3.1. Given this prior
knowledge, our ellipsoid vessel shape model tries to separate the image domain
into these two regions as good as possible. This is evaluated by counting the num-
ber of foreground and background voxel intensities within the sets S(Φi) and
I(Φi). Depending on the local intensity threshold hi and the ellipsoid parame-
ters Φi, F (Φi, hi) ⊂ (S(Φi) ∪ I(Φi)) defines the set of foreground voxels. Conse-
quently, B(Φi, hi) ⊂ (O\F (Φi, hi)) describes the set of background voxels which
is constrained by the ellipsoid bounding box. The external energy is described as

Gext(Φ, h) =
1

M

M−1

∑
i=0

(
|F (Φi, hi)| − |B(Φi, hi)|

|F (Φi, hi) ∪ B(Φi, hi)|

)−1

(5.7)

In Chapter 4.3.1, a global threshold was computed for image data preprocess-
ing. Here however, the GMM modeling is used to estimate the local intensity
threshold within a box which is centered at the current ellipsoid center and its
size s ranges between 323 and 643 depending on the vessel scales. This local fore-
ground/background estimation ensures that the external energy adapts to vessel
structures exhibiting even high intensity variation throughout the entire dataset.
The external energy term becomes minimal if the parameters Φ are estimated such
that the number of foreground voxels |F (Φi, hi)| is maximum given a certain
threshold hi.

The optimal ellipsoid parameters are found by minimizing the total energy
functional Gtot(Φ, h) together with the local intensity thresholds. Since the model
is initialized by a pre-computed centerline and cross-sectional radius profile esti-
mation, the initial parameter set is located near the global optimum. Hence, gra-
dient descent is applied to optimize our energy functional using finite differences.
There are other optimization schemes, however, which will lead to similar results.
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5.3.2 2-D driven 3-D Adaptation

The methods described in section 5.3.1 deliver a parametric 3-D vessel segmenta-
tion result that is purely driven by 3-D image data. As already mentioned within
the introduction part, the appearance of the 3-D DSA volume data depends on four
factors of influence, i.e. amount of contrast agent, time of injection, hemodynamic
mixture of the contrast agent and the applied reconstruction kernel. Therefore, a
comparison of the 3-D segmentation result with 2-D DSA segmentation is neces-
sary. 2-D DSA projections are manually selected to validate the 3-D segmentation
result via overlay matching. The mapping of the volumetric data onto the 2-D
DSA images is known by calibration [Hopp 07]. This comparison is performed by
forward projection of the 3-D vessel segmentation using ray casting [Sher 90]. The
basic idea of our novel 2-D driven 3-D segmentation method comes from 2-D /
3-D registration methods [Penn 98] where interventional 2-D DSA images are reg-
istered with previously acquired volumetric data to the intervention. Thus, the
2-D/3-D registration principle here is used as external force to drive the initial 3-D
parametric segmentation result to perfectly match with the 2-D DSA projections.
The novel external 2-D/3-D energy functional Gext2D/3D(Φ) is now defined as fol-
lows:

Gext2D/3D(Φ) =
Q−1

∑
i=0

∑
u

(v(i, u)− v(i, u, Φ))2 (5.8)

where Q indicates the number of projection images used to adapt the 3-D seg-
mentation result and v(i, u) denotes the intensity value of the 2-D ground truth
segmentation of the i-th projection image at position u. The intensity value of the
forward projection v(i, u, Φ) is either one or zero because the 3-D segmentation is
a binary volume such that the ray casting based forward projection generates a
binary projection image. The novel 2-D/3-D external energy functional leads to a
new total energy that is defined as follows:

Gtot2D/3D(Φ) : R
9×M → R

arg min
Φ

Gtot2D/3D(Φ) = αGext2D/3D(Φ) + (1− α)Gint(Φ) (5.9)

The external energy term in Eq. 5.5 is replaced by the new 2-D driven 3-D external
force Gext2D/3D(Φ) while the internal energy is kept. The internal energy func-
tional denotes an important regularization term during 2-D/3-D adaptation be-
cause the 3-D information is lost while performing the forward projection. Thus,
the internal energy ensures that the 3-D ellipsoid model does not deform towards
unrealistic vessel approximations or twisting.

As illustrated in Eq. 5.8, the sum of squared differences (SSD) between the 2-D
ground truth and the forward projection is applied as similarity measure. Con-
sidering the 2-D/3-D medical image registration literature, however, there might
be other similarity measures [Penn 98] like normalized cross correlation etc. which
might lead to similar results.



74 2-D Driven 3-D Vessel Segmentation

Program 5.1: 2-D driven 3-D ellipsoid vessel segmentation

Input: Φ // ellipsoid parameter vector initialized using

centerline and radius profiling

h // local intensity thresholds

tκ // 2-D/3-D similarity measure threshold

N // number of 2-D projections used

Output: Φ // parametric 3-D vessel segmentation optimized

according 2-D information

begin
// Pure 3-D driven ellipsoid-based vessel segmentation for i← 0
to M− 1 do

hi ← threshold estimation using GMM’s
Φi ← optimize Φi such that local ellipsoid energy Gtot(Φi, hi)→ min

end
// 2-D driven 3-D ellipsoid-based vessel segmentation for i← 0
to M− 1 do

// Initialize cost function

κold ← 0
for j← 0 to N − 1 do

Perform forward projection according jth projection matrix
κtmp← compute κ, e.g. SSD between 2-D segmentation and
forward projection
κold ← κold+ tmp

end
loop← true
while loop do

optimize Φi such that global energy Gtot2D/3D → min
κnew ← 0
for j← 0 to N − 1 do

Perform forward projection according jth projection matrix
κtmp← compute κ, e.g. SSD between 2-D segmentation and
forward projection
κnew ← κnew + κtmp

end
if |κnew − κold| < tκ then

loop← false
κold ← κnew

end

end

end

end
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5.4 Evaluation and Results

The 2-D driven 3-D vessel segmentation method was evaluated on one phantom
image and ten patient datasets with different cerebrovascular disease. The datasets
were again acquired at the Department of Neuroradiology (University Hospital
Erlangen, Germany), during endovascular interventions using a flat-panel equipped
C-Arm System (AXIOM Artis dBA, Siemens AG Healthcare Sector, Forchheim,
Germany). The volume dimensions range between 512×512×390 and 512×512×511
with an isotropic voxel spacing of 0.1mm. A 3-D DSA image volume is commonly
reconstructed given 133 2-D DSA projections that were acquired while the C-Arm
rotates around the patient’s head. Three out of the 133 projections were selected
showing the volume from different viewing angles to perform the 2-D/3-D match.
The viewing angle difference of the selected projections varies from 10 to 170 de-
gree which ensures an adaptation of the 3-D segmentation according to sufficiently
different 2-D projections. The novel idea of using 2-D DSA projection in order to
refine the given 3-D ellipsoid-based segmentation result is compared to the clinical
established threshold-based region growing segmentation. Hence, three different
3-D vessel segmentations were computed, i.e. region-growing, 3-D ellipsoid and
2-D driven 3-D ellipsoid segmentation. The marching cubes algorithm [Lore 87]
was applied to visualize the 3-D segmentation results as meshes.

5.4.1 Methods of Evaluation

Since the setup of 3-D gold standard segmentations given 3-D DSA data is rather
difficult due to the dependency of many parameters (hemodynamic mixture of
the contrast agent, applied reconstruction kernel, start and time of acquisition),
the focus is on pure 2-D related evaluation measures. The 3-D segmentation result
is being forward projected into 2-D defining the vessels of interest within the used
2-D DSA projections for adaptation (see Figure 5.4 left column (DSA) with the red
boxes). These vessels were manually outlined and approved by a neuroradiologist
to be used as gold standard segmentation in 2-D. The overlap between the forward
projection of a 3-D segmentation result and the 2-D gold standard was evaluated
using two measurements: Dice coefficient and precision. The Dice coefficient is
defined by

dDICE =
2
∣∣PGold ∩ PSeg

∣∣
|PGold|+

∣∣PSeg

∣∣ (5.10)

The precision (P) is expressed by the following formula:

dPR =
#TP

#TP + #FP
(5.11)
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Table 5.1: Summary of the 2-D/2-D evaluation results. The numbers are mean values measuring the overlap (Dice, precision)
between the forward projection of a 3-D segmentation method and the corresponding ground truth vessel segmentation of the
selected 2-D DSA projection images. Here, the result against the incorporated 2-D DSA projections is shown.

Method Mean 2-D/2-D measurements - part of the optimization set.
Dataset P D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Mean σ

dDICE

Region Growing 86.1 91.4 91.4 89.7 90.1 90.4 88.6 85.8 88.6 85.8 89.2 89.1 2.0
3-D Ellipsoid 91.4 89.8 92.9 90.4 89.7 91.8 87.0 86.0 89.8 88.5 88.4 89.4 2.1

2-D driven 3-D 98.1 96.7 96.1 95.0 96.2 95.6 93.4 93.2 96.9 93.9 95.0 95.2 1.3

dPR

Region Growing 76.3 87.1 86.2 84.9 86.1 84.7 82.4 77.9 83.3 78.0 81.4 83.2 3.3
3-D Ellipsoid 85.8 91.9 91.1 85.0 85.1 90.5 84.2 83.9 88.4 85.4 84.6 87.0 3.1

2-D driven 3-D 97.2 96.0 95.9 94.7 95.8 95.8 90.4 90.0 96.1 93.4 94.3 94.2 2.3

Table 5.2: Summary of the 2-D/2-D evaluation results. The numbers are mean values measuring the overlap (Dice, precision)
between the forward projection of a 3-D segmentation method and the corresponding ground truth vessel segmentation of the
selected 2-D DSA projection images. Here, three other 2-D DSA projections were selected that are not part of the optimization
set in order to measure the overall match of our 2-D driven 3-D method.

Method Mean 2-D/2-D measurements - not part of the optimization set.
Dataset P D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Mean σ

dDICE

Region Growing 86.7 92.0 91.0 90.2 92.7 91.9 91.1 85.4 91.2 85.9 88.5 90.0 2.6
3-D Ellipsoid 90.8 91.3 92.0 89.1 92.6 93.4 91.2 85.5 93.6 88.8 91.8 90.9 2.5

2-D driven 3-D 95.0 93.4 92.0 91.0 92.8 92.4 91.9 89.6 89.8 92.6 90.2 91.6 1.3

dPR

Region Growing 77.5 88.5 84.0 84.6 87.9 86.2 84.4 77.6 84.1 76.9 80.1 83.5 4.0
3-D Ellipsoid 85.6 89.6 88.0 81.5 87.1 92.1 85.9 83.2 90.2 84.2 86.3 86.8 3.3

2-D driven 3-D 93.1 92.9 89.2 87.1 91.5 92.2 87.9 85.9 87.1 89.8 87.9 89.2 2.4
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FP is the number of pixels that have been falsely classified as vessel structure.
The Hausdorff distance is applied to measure and visualize the deformations be-
fore and after 2-D driven 3-D optimization.

The evaluation regarding 2-D measurements is four-sided:

1. A simple intensity region growing segmentation is applied which is initial-
ized by a manual seed point. The intensity range was chosen by a neurora-
diologist based on his working experience with 3-D DSA data. The forward
projections are compared to the 2-D gold standard segmentations.

2. The pure 3-D driven ellipsoid-based segmentation result (see section 5.3.1) is
being forward projected to measure the overlap with the 2-D gold standard
segmentation.

3. The forward projections of the novel 2-D driven 3-D segmentation approach
are compared to 2-D gold standard segmentations. This allows judging the
overlap match before and after 2-D/3-D adaptation.

4. Three additional 2-D DSA projections are selected that were not part of the
2-D/3-D adaptation process. These three 2-D DSA projections were again
manually outlined. Than the 2-D driven 3-D segmentation result is forward
projected against these three 2-D projections and the overlap is measured.
This measurement allows to come up with a statement about the overall fit
of the 2-D adapted 3-D segmentation result w.r.t. other 2-D projections.

5.4.2 Experimental Results

This section describes the segmentation results concerning the three different seg-
mentation approaches. All experiments were performed on an Intel Core2 CPU
with 2 GHz, 4GB of main memory and NVIDIA Quadro FX 2500M graphics card.
The algorithms were completely implemented in C++ whereas the computation
of the forward projection was done using OpenGL. The overall intension of incor-
porating 2-D information into the 3-D segmentation process is to be able to come
up with quantitative measurements in 3-D that are taken on a valid base. There-
fore, our experimental setup is split in two categories, i.e. phantom-based and
patient-specific experiments.

Phantom Experiment

The vessel phantom (see Figure 5.6) is made up of a plastic tube exhibiting an inner
diameter of 3.6mm and a wall thickness of 1.3mm. The phantom experiment was
conducted in order to setup an ideal acquisition environment. This environment
eliminates some disturbing factors in contrast to a real patient acquisition, i.e. there
is no patient movement, the plastic tube was completely filled with contrast agent
such that it is homogenously distributed without air blebs and the vessel diameter
is known a priori. The phantom results are really promising. The quantitative
results are illustrated within the Tables 5.1 and 5.2 (column P). Looking at Table 5.1
summarizing the results concerning the optimization projections: the 2-D driven
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DSA
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vs Gold
3-D Ellipsoid

vs Gold
2-D driven 3-D

vs Gold

Hausdorff Distance
3-D Ellipsoid

vs. 2-D driven 3-D

D1

D3

D9

D8

Both gold standard and forward projection Only forward projection Only gold standard

0.846 mm
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0.840 mm
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1.110 mm
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0.0 mm

Figure 5.4: This set of images shows evaluation results concerning four datasets. On the left column one of the three projection
images is illustrated that was used to adapt the 3-D ellipsoid segmentation. The three middle columns depict a 2-D comparison
of the forward projections originating from three different vessel segmentation methods, i.e. region growing, 3-D ellipsoid and
2-D driven 3-D segmentation. The most right column gives a 3-D impression of the deviations. The meaning of the circles is
described within the result section.
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Figure 5.5: This set of images shows qualitative evaluation results concerning four datasets. The projections were not part of the
optimization set in order to measure the overall fit of the 2-D driven 3-D segmentation approach. The three columns on the right
depict a 2-D comparison of the forward projections originating from three different vessel segmentation methods, i.e. region
growing, 3-D ellipsoid and 2-D driven 3-D segmentation.
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Phantom
Region Growing

vs Gold
3-D Ellipsoid

vs Gold
2-D driven 3-D

vs Gold

Both gold standard and forward projection Only forward projection Only gold standard

Figure 5.6: Qualitative results of the phantom-related experiments. The projec-
tions shown in this figure were part of the optimization set. The red box denotes
the area of reconstruction. The yellow boxes represent the zoomed region for il-
lustration purposes.

3-D approach shows an improvement of about 7% points against the 3-D ellipsoid-
based segmentation and almost 13% over the result computed by region growing.
Also the results for those projections which were not used for optimization show
a clear outperformance of our 2-D driven 3-D method over the other two methods
(see Table 5.2).

Patient-Specifc Experiments

This section describes the experiments that were conducted with patient-specific
data. An overview about the segmentation results is given in Table 5.1. Figure 5.4
illustrates the qualitative results. Considering the quantitative results given in
Table 5.1, it turns out that the 2-D driven 3-D vessel segmentation approach out-
performs the other two segmentation methods.

Regarding the evaluation measurements within the optimization set (Table 5.1),
the region growing approach achieves an overall fit of 89.1% (Dice) and 83.2% (Pre-
cision). The 3-D ellipsoid segmentation shows a slightly better result, i.e. 89.4%
(Dice) and 87.0% (Precision). A major improvement, however, could be achieved
by the 2-D driven 3-D segmentation approach, i.e. 95.2% (Dice) and 94.2% (Preci-
sion).

Moreover, the Table 5.2 shows that this novel 2-D/3-D segmentation method
delivers better results as the other two techniques even for projections that have
not been part of the optimization set. There, the average Dice coefficient and pre-
cision reveal 91.6% and 89.2% respectively. The region growing and 3-D ellipsoid-
based segmentation end up on average with 90.0% and 90.9% for Dice - 83.5% and
86.8% for precision respectively.

Comparing the qualitative segmentation results of the region growing approach
with the 3-D ellipsoid method, the vessel diameters appear slightly thicker within
the region growing results (see Figure 5.4 blue circles). The 2-D/3-D adapted ellip-
soid segmentation result is shown within the fourth column of Figure 5.4. The new
algorithm deforms smoothly towards the boundary of the given 2-D gold standard
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segmentation. The deformations are depicted using the Hausdorff distance before
and after 2-D/3-D optimization. The orange and yellow circles within Figure 5.4
illustrate exemplarily the differences between the three segmentation results. The
2-D driven 3-D approach is able to fit to the gold standard segmentations in al-
most all regions. Those remaining regions that are not covered by the 2-D/3-D
model originate due to external influence factors, e.g. vessel movement due to the
beating heart or patient movement.

5.5 Discussion

When it comes to measurements of vessel diameters during treatment planning,
2-D DSA projections denote the gold standard image modality to perform these
measurements. Therefore, this 2-D driven 3-D vessel segmentation method can
be considered as a general approach to validate 3-D vessel segmentations based
on 3-D DSA image data. Independent from the applied segmentation algorithm,
it is possible to judge the 3-D segmentation result by means of forward projec-
tion and comparison with corresponding 2-D DSA projections. The new external
energy force introduced in section 5.3.2 can be applied as regularizer for various
3-D vessel segmentation methods based on different mathematical principles, e.g.
other parametric segmentation algorithms, level sets or graph-cuts. We applied
the SSD as cost function due to the fact that we dealt only with segmentations
in 2-D as well as in 3-D. Within the evaluation, three 2-D DSA projections were
used to adapt the 3-D segmentation but this approach is open to incorporate as
many projections as the user wants to be used. Another approach would be not
to manually segment the vessel of interest within the 2-D DSA projections but to
incorporate the projections as is. This would imply to use different cost functions
for the 2-D/3-D external force, e.g. normalized cross correlation, pattern intensity,
gradient difference etc. One might argue that the original 2-D edge information
can be already integrated within the reconstruction process by manual outlining
of all 133 2-D DSA projections used for reconstruction - and finally reconstruct a
binary image volume. This, however, is not feasible within clinical routine because
this manual outlining will take several hours. Our 2-D driven 3-D approach has
been developed with respect to clinical workflows and aspects, i.e. during stent
or coil planning physicians choose selected 2-D DSA projections to measure the
vessel diameter or aneurysm neck size to decide which stent or coil type has to
been used to get an optimal therapeutic outcome. Within the integrated 2-D/3-
D segmentation framework, the adaptation of the 3-D vessel segmentation to the
chosen 2-D projection can be easily done.

Moreover, this segmentation approach helps to reduce the influence of acquisi-
tion and reconstruction related factors as described during the introduction. Dif-
ferent reconstruction kernels [Kak 88, Buzu 08] exhibit inherently different edge
enhancement leading to varying edge ramps (see Figure 5.1), i.e. the original edge
information which is present within the 2-D DSA projections (being used for re-
construction) has not been used so far to drive the segmentation algorithm to-
wards the real vessel edge. With the incorporation of the 2-D projections, however,
this information is now used a second time (first for reconstruction and second for
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vessel segmentation) within the new 2-D driven 3-D ellipsoid segmentation ap-
proach to ensure that the vessel edges of the 3-D fits to the edges given in 2-D.

A 3-D ellipsoid-based segmentation is used to approximate the vessel struc-
tures with a strong tubular regularizer. The advantages of this segmentation algo-
rithm denotes the ability to adapt to local vessel branches and its deviations by in-
terleaving ellipsoids as already mentioned in [Tyrr 07]. It reveals slightly better re-
sults (see Table 5.4 most right column) than the region growing approach because
the 3-D ellipsoid segmentation is based on local adaptive threshold estimations
using GMM’s and not using one global threshold value. Due to this, it is possible
to approximate the local intensity variations within the vessels (see Figure 5.3) in
a better way. While performing a forward projection onto the three selected 2-D
projections, the 3-D information is lost. The deformations computed within 2-D
may cause changes within the 3-D segmentation that may lead towards unrealistic
vessel appearance. Now, the advantage of the parametric 3-D vessel segmentation
comes into play because those deviations can be easily avoided by the internal en-
ergy force introduced in section 5.3.1. This internal force watches the parameter
changes of the interleaved ellipsoids concerning rotation, scaling and translation
and penalizes those changes featuring highly non-tubular vessel structures.

The overall 2-D driven 3-D segmentation results look promising even if there
are still some remaining areas where our 2-D/3-D adaptation could not properly
deform towards the 2-D vessel boundaries as depicted within Figure 5.3 red circles.
There are three reasons which might cause this behavior:

1. Patient movement between the different 2-D DSA projections may cause an
area of conflict showing an inconsistent vessel situation.

2. The 2-D DSA projections were arbitrarily selected with the only condition
that the vessels are depicted from different viewing angles. This may im-
ply vessel movement between the projections due to different phases of the
cardiac cycle.

3. The internal force keeps the model from deformation towards these areas
because the gain of cost reduction concerning the external force is too less
compared to the increase of the costs induced by the internal term.

5.6 Conclusion

The major contribution of this chapter denotes the incorporation of 2-D projec-
tion information into a 3-D vessel segmentation method for 3-D DSA data. The
results indicate that the match between the forward projection of 3-D segmenta-
tion volume with manual outlined 2-D DSA vessel segmentations is not identical
as it is supposed to be for an ideal calibrated case. This occurs because of the
influcence factors that appear during a 3-D DSA acquisition. The 2-D driven 3-
D method opens up the possibility to drive the 3-D vessel segmentation results
towards previously selected 2-D information. This step enables to perform quan-
titative vessel measurements in 3-D on a more valid base. This approach serves
as a key module towards an automatic 2-D/3-D vessel segmentation framework.
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The 2-D segmentation module introduced in Chapter 3 delivers the corresponding
2-D segmentation. The combination of the methods outlined in part one and two
of this thesis will boost the feasibility of this 2-D driven 3-D approach within a
clinical environment.

The next part of this thesis takes the 3-D segmentation results obtained within
the previous chapters and investigates the impact of different mesh configurations
and resolutions on the simulation results. Furthermore, this 2-D driven 3-D seg-
mentation approach delivers two vessel segmentations per dataset which provides
the opportunity to evaluate the geometry related effects on the hemodynamic sim-
ulation result.
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As outlined within the introduction part of this thesis (see Chapter 1.4), the
hemodynamic simulation workflow consists of four major steps. This chapter will
shed light on the second step of this workflow and its impact on the simulation
result. Two different vessel geometries, exhibiting a side wall and a basilar tip
aneurysm, were taken to evaluate different mesh size resolutions and compare
tetrahedral versus polyhedral mesh type elements. A set of mesh configurations
was constructed showing spatially varying surface and volume mesh models with
and without boundary layers. The main goal of this chapter is to find a good trade-
off between spatial accuracy, convergence stability and computation time w. r. t.
future clinical simulation applications. This chapter is explicitly not on numeri-
cal convergence or solver related issues. The evaluation is performed comparing
WSS distributions on the model wall and point-based velocity measurements. The
results indicate that polyhedral meshes are more stable in terms of computational
convergence with less computation time. Major parts of this chapter have been
already published in [Spie 11c].

6.1 Motivation

More and more cerebral aneurysms are incidentally detected as already stated
within the introduction part of this thesis due to advances in the field of medi-
cal imaging techniques such as 64 slice CT or MRI at 3T. So far, the reason for
growth or rupture of an aneurysm is not entirely understood but it is assumed
that the hemodynamic within an aneurysm plays an important role [Jou 08]. Geo-
metric factors, e. g. lesion size and aspect ratio [Ujii 01, Nade 04, Ragh 05] are also
considered to determine the risk of rupture. However, even hemodynamic infor-
mation together with geometric aspects have so far proven insufficient for the cal-
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(a) Internal carotid side wall aneurysm (b) Basilar tip aneurysm

Figure 6.1: 3-D mesh representations of the evaluated aneurysms: (a) Case 1 de-
picts an internal carotid aneurysm. (b) Case 2 illustrates a basilar tip aneurysm.
The red spheres show the positions of the velocity measurement points distributed
in the vicinity of the aneurysms, i. e. at the inlet, within the aneurysm and at the
outlet.

culations of a reliable patient-specific risk index for a particular aneurysm. Other
biological mechanisms and systemic conditions may also contribute to aneurysm
rupture. To assess intra-aneurysmal hemodynamic, CFD simulations have been
employed with patient-specific geometries derived from clinical image data in
[Stei 03, Karm 04, Shoj 04, Hoi 04, Cebr 05a, Cebr 05c, Venu 07]. Other kinds of sim-
ulation techniques are imaginable to perform blood flow simulations like Lattice-
Boltzmann methods [Goet 06]. A reliable patient-specific CFD-based blood flow
simulation will be strongly influenced by two factors:

1. Geometric accuracy of the patient-specific vascular model dependent on the
used segmentation method.

2. Boundary conditions and simulation parameters such as inflow blood speed,
blood density/viscosity and rigid walls.

Patient-specific boundary conditions can either be obtained through invasive mea-
surements during treatment (i. e. pressure catheder) or, as demonstrated recently,
by 2D phase-contrast magnetic resonance imaging (2D pcMRI) providing the time-
varying blood flow profile at the inlet of the computational model as shown in
[Karm 08].
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(a) Tetrahedral
no BL

(b) Tetrahedral
with BL

(c) Polyhedral
no BL

(d) Polyhedral
with BL

Figure 6.2: Meshing example regarding case 2. (a) and (c) show tetrahedral and
polyhedral meshes. (b) and (d) depict tetrahedral and polyhedral-based meshes
with a boundary layer.

The sensitivity of other computational parameters on the simulation results, in
particular mesh size and mesh design, have not been evaluated in detail for this
particular vascular pathology. The hemodynamic situation in cerebral aneurysms
is favorable to be simulated using CFD: blood flow in cerebral vessels is always
antegrade as compared to the blood flow in the aorta with modest pulsatility.
Unless downstream vascular disease is present such as a stenotic lesion distal to
the aneurysm, vascular resistance is low. Reynolds numbers are low (≤ 100) and
therefore no turbulence flow can be expected. Due to these favorable conditions,
most studies so far have successfully employed simple meshes such as tetrahedral
meshes with no adaptation or boundary layer. Still, the assessment of the mesh
quality is considered as a very important task because inaccurate meshing includ-
ing high skewness of cells or coarse spatial resolution may lead to non-valid CFD
results and thus leading to potentially inaccurate local velocities or WSS patterns.

In particular for a future clinical CFD-based diagnostic and treatment tool, the
performed simulations have to be fast and stable. The mesh size has to be as
small as possible but concerning accuracy as fine as necessary to avoid numer-
ical prediction errors (velocity and WSS). Two different approaches are known
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(a) PC-MRI measured inlet waveform
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(b) Idealized inlet waveform

Figure 6.3: Inlet velocity waveforms applied for pulsatile simulations. Left: Phase
constrast MRI measured blood flow waveform used for case 1. Right: Idealized
waveform used for case 2. This waveform is inspired by [Grod 01].

to experimentally verify the mesh suitability for CFD simulation introduced by
[Prak 01]:

1. Comparison of CFD results with experimental measured data.

2. Mesh independence analysis

Within this chapter, the second approach is applied to evaluate the impact of vary-
ing surface and volume mesh resolutions as well as different meshing techniques
represented by polyhedral [Oaks 00] and tetrahedral meshes. In particular, the
question which mesh granularity can be considered as accurate enough to get reli-
able blood flow simulation results is investigated with time-restraints existing for
future clinical applications.

Two cerebral vessel geometries were investigated, i. e. a sidewall aneurysm
of the internal carotid artery and a basilar bifurcation aneurysm as depicted in
Figure 6.1. Blood flow velocity and WSS distributions according to varying spa-
tial mesh resolutions and configurations (polyhedral vs. tetrahedral elements)
are evaluated. Effects of boundary layer regarding WSS are studied by means
of comparing boundary layer-based meshes with those exhibiting no boundary
layer. Pulsatile simulations are performed with varying time-step to determine
the largest step delivering still valid simulation results.

6.2 Methods

3-D DSA image data [Hera 06b] of the two cerebral aneurysms (see Figure 6.1)
were acquired during endovascular interventions using Siemens C-Arm System
(AXIOM Artis dBA, Siemens AG Healthcare Sector) in Erlangen (Germany) and
Houston (USA). 3-D image reconstructions of both aneurysms led to an image
volume for Case 1 of 138.24×138.24×57.72mm with a voxel spacing of 0.27×0.27
×0.13mm and for Case 2 97.28×97.26×66.43mm (voxel spacing 0.19×0.19×0.1mm)
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respectively. The non-isotropic voxel spacing comes from image downsampling in
x/y direction due to segmentation and memory issues. For mesh generation and
smoothing, the Marching Cubes [Lore 87] and a Laplacian-based smoothing algo-
rithm (VTK Kitware Inc.) were applied as an additional step. The image data was
stored as a STL file providing the input data for the meshing software GAMBIT
(ANSYS Inc.). The mesh corresponding to case one exhibits a volume of 537mm3

and the mesh of the second case of 282mm3. The maximal diameters of the inlet
and outlets are as follows:

• Case one: inlet 5.2mm, outlet1 2.0mm, outlet2 2.3 mm and outlet3 2.6mm.

• Case two: inlet 3.3mm, outlet1 2.5mm, outlet2 1.5mm, outlet3 1.5mm and
outlet4 2.4mm.

Different surface mesh resolutions were generated by using the GAMBIT curva-
ture size function [Coop 07]. This function constraints the angle between outward-
pointing normals for any two adjacent surface triangles. That leads to a denser
mesh resolution in areas exhibiting high curvature like the aneurysm and coarser
resolution in more flat regions. Four parameters define the curvature size func-
tion, i. e. angle, growth, max. and min. triangle size. Table 6.1 contains a detailed
overview of the applied curvature size function parameters as well as the set of
meshes. The final number of triangles representing the surface mesh is automati-
cally determined by the meshing algorithm according to the chosen parameter val-
ues and the geometry. The resolution of the surface mesh rules the final number of
tetrahedral control volume elements - the larger the number of surface triangles,
the larger is the number of tetrahedral control volume elements.

To study the effects of boundary layer usage, almost all meshes (see Table 6.1)
were generated without and with boundary layers [Loeh 00, Gari 00]. Since a
boundary layer approximates the boundary of the vessel tubes with prisms as
shown in Figure 6.2, this automatically results in a higher number of tetrahedral
control elements as compared to meshes without a boundary layer. The bound-
ary layers were created through GAMBIT’s boundary layer algorithm featuring
two levels. The height of the first level was chosen to be 0.04 mm and the sec-
ond one 20% larger, i. e. 0.048 mm. The mesh quality in terms of aspect ratio and
surface/mesh skewness is summarized in Table 6.2.
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Table 6.1: Set of Meshes - Case 1 and Case 2. Tet. and Poly. abbreviate tetrahedral and polyhedral respectively. BL denotes
boundary layer.

#Tet. Cells (BL) Diff.
No-BL
to BL

for Tet.
Cells
in %

#Poly. Cells (BL) Diff.
No-BL
to BL

for
Poly.
Cells
in %

Diff.
Poly.

vs. Tet.
in %

Diff.
Poly.

vs. Tet.
BL in %

Diff.
Poly.

BL vs.
Tet.

non-BL
in %

Max./Min.
Triangle

Growth Angle

Case 1 13841 (-) - 5,119 (-) - - - - 6 / 0.001 1.2 25
26,702 (40,699) 52.4 7,283 (24,206) 232.4 -72.7 -40.5 -9.3 3.6/0.001 1.2 14
52,374 (77,252) 47.5 12,467 (31,548) 153.1 -76.2 -59.2 -39.8 1.8/0.001 1.1 14
76,493 (109,638) 43.3 17,695 (38,564) 117.9 -76.9 -64.8 -49.6 1.2/0.001 1.2 6
86,621 (107,336) 23.9 18,681 (32,012) 71.4 -78.4 -70.2 -63.0 0.4/0.001 1.1 12
106,010 (124,041) 17.0 22,297 (35,866) 60.9 -79.0 -71.1 -66.2 0.36/0.001 1.1 12
115,014 (160,771) 39.8 25,540 (48,687) 90.6 -77.8 -69.7 -57.7 0.3/0.001 1.1 10
189,625 (202,565) 6.8 37,495 (53,794) 43.5 -80.2 -73.4 -71.6 0.28/0.001 1.1 10
197,098 (228,097) 15.7 38,991 (58,879) 51.0 -80.2 -74.2 -70.1 0.27/0.001 1.1 10
231,354 (258,481) 11.7 45,158 (65,707) 45.5 -80.5 -74.6 -71.6 0.26/0.001 1.1 10

Case 2 31,696 (47,311) 49.3 8,814 (26014) 195.1 -72.2 -45.0 -17.9 0.42/0.001 1.2 17
43,063 (59,914) 39.1 10,843 (21,153) 95.1 -74.8 -64.7 -50.9 0.37/0.001 1.17 17
56,176 (75,447) 34.3 13,280 (24,978) 88.1 -76.4 -66.9 -55.5 0.34/0.001 1.12 15
75,469 (100,587) 33.3 16,795 (30,435) 81.2 -77.7 -69.7 -59.7 0.32/0.001 1.10 13
98,399 (129,516) 31.6 21,108 (37,221) 76.3 -78.6 -71.3 -62.2 0.3/0.001 1.10 10
114,227 (142,336) 24.6 23,846 (39,833) 67.0 -79.1 -72.0 -65.1 0.28/0.001 1.10 10
148,625 (159,797) 7.5 30,167 (44,652) 48.0 -79.7 -72.1 -70.0 0.25/0.001 1.09 8
184,226 (219,922) 19.4 36,845 (65,398) 77.5 -80.0 -70.3 -64.5 0.24/0.001 1.10 6

Mean 29.2 93.8 -77.7 -66.5 -55.6



6.2 Methods 93

The tetrahedral meshes were imported into the simulation software Fluent
(ANSYS Inc.). A conversion algorithm, part of the Fluent CFD solver, was used to
generate for each tetrahedral mesh a corresponding polyhedral mesh. The surface
of the vessel models was assumed to be rigid-walls and no slip as shear condition.
Blood was modeled as an incompressible Newtonian fluid with a density of 1050
kg/m3 and a viscosity of 0.004 N/m2 [Hass 04].

The boundary conditions for all conducted simulations were as follows: the
inlet was considered as velocity inlet and all outlets were modeled as pressure
outlet zero. A constant inflow rate of 0.3 m/s and 0.5 m/s was applied in the
steady simulations for the first and second case respectively. In pulsatile simula-
tions two different inflow waveforms were used (Figure 6.3): for the first case a
MRI measured waveform and for the second case, we applied a waveform taken
from a former publication [Grod 01] which was measured with ultrasound since
there was no patient-specific blood flow profile measured with MRI or ultrasound.
Similar blood flow velocity profiles concerning the basilar artery were also mea-
sured in [Kato 02]. Steady-state simulations were considered as converged if the
relative residuals fall under 0.001 (i. e. the absolute values of the residuals were
reduced by three orders of magnitude). In addition, the mass flow was measured
to prove convergence by subtracting outflow from inflow. All converged solutions
exhibit a mass flow difference between inflow and outflow of ±5e−5 g/s.

Seven points were defined to measure the simulated blood flow velocity occur-
ring in the environment of the aneurysm. In the first case, two points were placed
in the inlet region of the aneurysm, three inside the aneurysm dome and two in the
outlet region of the aneurysm. In second case, one point was located within the
inlet vessel part, another one inside the aneurysm dome and the remaining points
were distributed near the aneurysm neck and within the outlets respectively. The
different point distributions between the first and second case are reflected in the
different vessel geometries, i. e. side wall vs. tip aneurysm. Figure 6.1 gives a good
overview about distributions of the measurement points for both cases. In reality,
the points are located inside the geometry. The simulation experiments performed
in this chapter can be separated into three types:

1. Starting with the given number of tetrahedral cells we compare this number
with the corresponding number of polyhedral cells and also without and
with boundary layer.

2. A series of steady state simulations is performed to compare tetrahedral vs.
polyhedral meshes in terms of velocity and WSS. This series is supposed
to shed light on the question what spatial resolution is required to avoid
inaccurate CFD results caused by unsuitable CFD meshes. The results were
analyzed in terms of

• Computational convergence (number of iterations)

• Velocity convergence

• Wall shear stress convergence
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Table 6.2: Overview mesh quality, i. e. aspect ratio (AR) and skewness (SN) for
surface and mesh.

# Tet. Cells (BL) # Poly. Cells (BL) Surface Mesh
AR SN AR SN

Case 1 26,702 (40,699) 7,283 (24,206) 1-1.76 0-0.43 1-4 0-0.75
52,374 (77,252) 2,467 (31,548) 1-1.52 0-0.40 1-3.19 0-0.77
76,493 (109,638) 17,695 (38,564) 1-1.60 0-0.48 1-3.34 0-0.80
86,621 (107,336) 18,681 (32,012) 1-1.74 0-0.51 1-3.52 0-0.77
106,010 (124,041) 22,297 (35,866) 1-1.63 0-0.46 1-3.28 0-0.78
115,014 (160,771) 25,540 (48,687) 1-1.53 0-0.45 1-3.34 0-0.74
189,625 (202,565) 37,495 (53,794) 1-1.62 0-0.49 1-3.31 0-0.77
197,098 (228,097) 38,991 (58,879) 1-1.55 0-0.46 1-3.28 0-0.77
231,354 (258,481) 45,158 (65,707) 1-1.44 0-0.40 1-3.43 0-0.75

Case 2 31,696 (47,311) 8,814 (26014) 1-1.62 0-0.49 1-3.10 0-0.76
43,063 (59,914) 10,843 (21,153) 1-1.62 0-0.49 1-3.22 0-0.76
56,176 (75,447) 13,280 (24,978) 1-1.41 0-0.38 1-3.10 0-0.78
75,469 (100,587) 16,795 (30,435) 1-1.42 0-0.38 1-3.31 0-0.76
98,399 (129,516) 21,108 (37,221) 1-1.63 0-0.50 1-3.19 0-0.77
114,227 (142,336) 23,846 (39,833) 1-1.38 0-0.36 1-3.25 0-0.76
148,625 (159,797) 30,167 (44,652) 1-1.58 0-0.47 1-3.34 0-0.75
184,226 (219,922) 36,845 (65,398) 1-1.56 0-0.46 1-3.31 0-0.77

Also these steady state simulations were repeated with boundary layer-based
meshes to evaluate both the effects on the WSS distribution and the increased
complexity concerning the mesh generation process.

3. A series of pulsatile simulations is conducted according to varying time steps,
i. e. 1ms, 5ms and 10ms. The pulsatile simulations for both cases were
only performed with the highest resolved boundary layer-based polyhedral
meshes (see Table 6.1 row 9 and 17). A total of 3 cardiac cycles were com-
puted and only the results of the 2nd and 3rd cardiac cycle are stored to avoid
transient effects as much as possible.

The Area-Weighted-Average WSS distribution WSSAW was used to express and
compare WSS distributions between meshes in terms of numbers. It is defined as
follows:

WSSAW =
1

A

n

∑
i=1

φi |Ai| (6.1)

where A denotes the total area being considered and φi describes the wall shear
stress associated with the facet area Ai. For the analysis the complete aneurysmal
surface was included but without considering the surrounding vessel segments.

Since tetrahedral based meshes are considered as state-of-the-art within the
CFD simulation community [Luon 09], they are taken as the golden base. Thus, the
differences in Tables 6.1, 6.3 and 6.4 between polyhedral and tetrahedral meshes,
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i. e. the number of volume elements, WSS and iterations are computed by the
following formula:

diffi =
xi · 100

yi
− 100 (6.2)

with i ∈ { #iter, Area-Weighted-Average WSS } (6.3)

where xi and yi denote values given from polyhedral and tetrahedral mesh respec-
tively.

6.3 Results

6.3.1 Cell Numbers

Considering Table 6.1 last row, a boundary layer increased the number of volume
elements (NVE) for tetrahedrals about 29% (column 3) and for polyhedrals about
93% (column 5) on average. Polyhedrals reduced the NVE compared to tetrahe-
drals about 77% (column 6) on average. Polyhedral meshes with boundary layer
needed 66% (column 7) less NVE compared to the corresponding boundary layer
based tetrahedrals meshes. Even polyhedral meshes with boundary layer exhib-
ited less than 55% NVE than tetrahedral meshes without a boundary layer.

6.3.2 Convergence

Computational Convergence

Polyhedral meshes exhibited a far better convergence as tetrahedral ones as can be
easily seen in Table 6.3 and 6.4 (column 3 and 4). Polyhedral meshes needed ca.
60% (see Table 6.3 and 6.4, -63.7%, -54.8%, -66.6% and -60.7%) less iterations than
the corresponding tetrahedral ones.

Velocity Convergence

The blood flow velocity generally converged with increasing mesh size. Figure 6.4
illustrates the point-based measurement results regarding the first and second
case. For both cases, there were no significant differences between the simulated
velocities of polyhedral and tetrahedral meshes. The velocity fluctuations rapidly
decreased for mesh sizes larger than 125,000 tetrahedral and 22,000 polyhedral el-
ements in case 1 and 60,000 tetrahedral and 16,000 polyhedral elements for case
2 respectively (see Figure 6.4 red bars). From this point on, these mesh sizes are
considered as convergence criterion and only the results of meshes larger than that
are taken into account for the following velocity and WSS analysis.
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Table 6.3: Summary of the results. Tet. and Poly. abbreviate tetrahedral and polyhedral respectively. Diff and Iter denote
difference and iterations. WSS is measured in Pascal.

No Boundary Layer

#Tet. (Poly.) Cells #Iter. Tet. (Poly.) Difference
#Iter Tet.
vs. Poly.

[%]

WSS Tet. WSS Poly. Difference WSS Tet. vs. Poly [%]

Case 1 13,841 (5,119) 129 (58) -55.0 4.60 4.66 1.3
26,702 (7,283) 169 (72) -57.4 5.39 5.31 1.5
52,374 (12,467) 238 (98) -58.8 5.98 5.73 -4.2
76,493 (17,695) 225 (102) -54.7 6.33 5.94 -6.2
86,621 (18,681) 384 (134) -65.1 6.39 6.03 -5.6
106,010 (22,297) 377 (151) -60.0 6.51 6.07 -6.8
115,014 (25,540) 297 (131) -55.9 6.33 6.08 -4.0
189,625 (37,495) 987 (213) -78.4 6.82 6.59 -3.4
197,098 (38,991) 815 (214) -73.7 6.89 6.59 -4.4
231,354 (45,158) 1142 (248) -78.3 7.01 6.69 -4.6

Mean -63.7 6.76 6.49

σ 0.22 0.20

Uncertainty 3.20% 3.14%

Case 2 31,696 (8,814) 242 (111) -54.1 5.91 5.26 12.4
43,063 (10,843) 378 (176) -53.7 7.18 6.20 -13.7
56,176 (13,280) 365 (185) -49.3 7.06 6.51 -7.8
75,469 (16,795) 437 (202) -53.8 7.33 6.84 7.3
98,399 (21,108) 462 (211) -54.3 7.43 7.15 -3.7
114,227 (23,846) 496 (230) -53.6 7.47 7.23 -3.2
148,625 (30,167) 714 (269) -62.3 7.62 7.45 -2.1
184,226 (36,845) 934 (399) -57.3 7.70 7.66 1.2

Mean -54.8 7.51 7.27

σ 0.12 0.23

Uncertainty 1.6% 3.18%
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Table 6.4: Summary of the results. Tet. and Poly. abbreviate tetrahedral and polyhedral respectively. Diff and Iter denote
difference and iterations. WSS is measured in Pascal.

With Boundary Layer

#Tet. (Poly.) Cells #Iter. Tet. (Poly.) Difference
#Iter Tet.
vs. Poly.

[%]

WSS Tet. WSS Poly. Difference WSS Tet. vs. Poly [%]

Case 1 40,699 (24,206) 170 (77) -54.7 5.48 5.45 -0.5
77,252 (31,548) 252 (109) -56.8 5.93 5.82 -1.9
109,638 (38,564) 255 (115) -54.9 6.20 6.00 -3.2
107,336 (32,012) 346 (139) -59.8 6.02 6.04 0.33
124,041 (35,866) 443 (154) -62.2 6.38 6.14 -3.8
160,771 (48,687) 331 (147) -55.6 6.38 6.13 -3.9
202,565 (53,794) 891 (209) -76.5 6.63 6.42 -3.2
228,097 (58,879) 2404 (241) -90.0 6.68 6.49 -2.8
258,481 (65,707) 1804 (258) -85.7 6.78 6.56 -3.2

Mean -66.6 6.62 6.40

σ 0.12 0.14

Uncertainty 1.79% 2.11%

Case 2 47,311 (26,014) 256 (123) -51.9 5.98 5.19 -13.2%
59,914 (21,153) 324 (180) -44.4 6.84 6.03 -11.9%
75,447 (24,978) 353 (182) -48.4 9.06 6.44 -28.9%
100,587 (30,435) 450 (214) -52.4 7.11 6.53 -8.1
129,516 (37,221) 563 (236) -58.1 7.19 6.80 -5.4
142,336 (39,833) 1705 (266) -84.4 7.22 6.93 -4.4
159,797 (44,652) 684 (253) -63.0 7.29 7.02 -3.6
219,922 (65,398) 1902 (320) -83.1 7.31 7.12 -2.6

Mean -60.7 7.22 6.88

σ 0.06 0.17

Uncertainty 0.84% 2.50%
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Considering the data meeting the convergence criterion given above, the mean
uncertainty of the simulated velocities over all points is as follows:

• Case 1 Tetrahedral/Polyhedral - 6.3%/4.4%

• Case 2 Tetrahedral/Polyhedral - 1.8%/1.9%

Wall Shear Stress Convergence

This section describes the WSS distribution between polyhedral and tetrahedral
meshes with and without boundary layer usage. First, the results and findings
of non-boundary layer meshes are presented and later in this section the results of
boundary layer-based meshes are shown and compared to those without a bound-
ary layer.

The WSS results obtained without using boundary layer are presented in Fig-
ure 6.5 and 6.6 left hand side. The WSS pattern of polyhedral meshes appeared
more homogeneous than the tetrahedral ones. This is illustrated by the yellow cir-
cles in Figure 6.5 on the left. Moreover, it turned out that polyhedral meshes were
able to resolve significant WSS pattern with far less elements than the correspond-
ing tetrahedral ones (see Figure 6.5 red circles).

Table 6.3 (column 5/6) shows a detailed comparison regarding WSS between
tetrahedral and polyhedral meshes without boundary layer. Convergence behav-
ior can be seen for the mesh size variations for both cases. All values highlighted
in gray meet the convergence criterion and thus, being considered for the statistics,
i. e. mean, σ and uncertainty. In case 1, the mean WSS is 6.76Pa±0.22 Pa (tetrahe-
dral) compared to 6.49Pa±0.20 (polyhedral). In case 2, we have 7.51Pa±0.12 (tetra-
hedral) against 7.27Pa±0.23 (polyhedral). The results for meshes with boundary
layer are shown in Table 6.4. Again, convergence behavior can be seen for mesh
size variations with boundary layer for both cases. In case 1, the mean WSS is
6.62Pa (tetrahedral) compared to 6.40Pa (polyhedral). In case 2, 7.22Pa (tetrahe-
dral) against 6.88Pa (polyhedral).

No boundary layer could be generated regarding the polyhedral mesh with the
fewest number of volume elements (see Table 6.1 second row) because its approx-
imation of the original vessel geometry is too coarse. Thus, there is no compar-
ison to the corresponding tetrahedral mesh. The WSS patterns, obtained with a
boundary layer-based mesh, are depicted in Figure 6.5 and 6.6 (right side). The
observations are as follows:

1. Generally, WSS pattern appeared smoother and better developed than those
having no boundary layer.

2. The differences, however, became more and more negligible with increasing
mesh size especially when comparing the highest resolved meshes as illus-
trated in the bottom row of Figure 6.5 and 6.6.

The primary WSS pattern was also visible and recognizable without a boundary
layer except for the meshes shown in the top row of Figure 6.5 and 6.6. Here,
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(c) Case 2 - velocity tetrahedral meshes

(a) Case 1 - velocity tetrahedral meshes
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(d) Case 2 - velocity polyhedral meshes
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Figure 6.4: Velocity measurements for different mesh sizes. Top row depicts the
velocity results for the first case. Bottom row illustrates the velocity values for
the second case. The simulated velocities converge with increasing meshes. An
increase of the mesh resolution leads to a convergence of the simulated velocity
values for all point measurements. The red bar shows the border for convergence.
In our study, all meshes left of the red bar are considered as non-converged veloc-
ities.

the WSS patterns considerably differ to the ones with boundary layer. But this is
also due to the fact that a boundary layer-based mesh automatically exhibits more
tetrahedral/polyhedral elements.

6.3.3 Pulsatile Simulation Effects of Varying Time Step Size

The WSS distributions between the pulsatile simulations with different time step
sizes were negligible considering the results at the moment of systole. This is
shown in Figure 6.7 and 6.8. Table 6.5 summarizes the differences in the Area-
Weighted-Average WSS distribution between the different pulsatile simulations
averaged over the second and third cardiac cycle. The computation time signifi-
cantly decreased as indicated in Table 6.5 column 2. However, while increasing the
computational time step size for the Fluent CFD solver there are some important
issues coming up: a) the transition from one cardiac cycle to the next cardiac cycle
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Case 1
No BL With BL

Tetrahedral TetrahedralPolyhedral Polyhedral

26702 7283 40699 24206

86621 18681 107336 32012

197089 38991 228097 58879

0.0 Pascal > 35 Pascal

Figure 6.5: WSS distribution for polyhedral and tetrahedral meshes in comparison.
Polyhedral meshes were also able to represent significant WSS pattern with fewer
cells than tetrahedral ones as marked by the red circles. The numbers below the
individual figures denote the number of cells of the mesh.
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Case 2

31696

With BL

Tetrahedral Polyhedral Tetrahedral Polyhedral

8814 47311 26014

75469 16795 100587 30435

148625 30167 159797 44652

0.0 Pascal >45 Pascal

No BL

Figure 6.6: WSS distribution for polyhedral and tetrahedral meshes in compari-
son to boundary layer-based meshes. The numbers below the individual figures
denote the number of cells of the mesh.
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Table 6.5: Pulsatile WSS simulation results - Case 1 and Case 2. CT and TS abbre-
viate computation time and time step.

Wall Shear Stress
CT [h] (TS [sec.]) Mean σ

Case 1 12 (0.001) 3.3832 1.4395
4.5 (0.005) 3.2885 1.6721

2 (0.01) 3.2893 1.6874

Case 2 7 (0.001) 5.9294 1.1007
4 (0.005) 5.9291 1.1019
2.5 (0.01) 5.9089 1.1019

became unstable in a sense of rapidly changing WSS distributions as illustrated in
Figure 6.8 blue circles. b) regarding a time step size of 0.001, the computation of
each time step converged. While increasing the time step size for pulsatile simu-
lation from 0.001 sec. to 0.005 sec. or 0.005 sec. to 0.01 sec., the number of non-
converged time steps was also increasing. Consequently, the number of iterations
per time step had to be increased in order to assure precise numerical simulation
results. This led to increased time requirement for computation. However, the
total time requirement for pulsatile simulations performed with 0.005 sec. or 0.01
sec. significantly decreased compared to the one with 0.001 sec. The detailed time
requirements for each pulsatile simulation are given in Table 6.5.

6.4 Discussion

This study revealed that a certain threshold of mesh resolution was required to
obtain converged blood flow velocities and WSS distributions. With a resolution
lower than this threshold the velocity field and the WSS patterns fluctuated (see
Table 6.3 and 6.4 gray areas and Figure 6.5, 6.6). These results comply with the
work of [Prak 01, Lu 09] and [Domp 02] who stated that different mesh resolu-
tions lead to different flow predictions and only mesh-independent flow solutions
should be taken into account.

Once converged, WSS distributions obtained with either tetrahedral or poly-
hedral meshes were of similar appearance. Polyhedral meshes may therefore be
considered as viable alternative to tetrahedral meshes:

1. Improved computational convergence as previously described by [Peri 04].
This becomes very important considering the clinical applicability of CFD-
based hemodynamic simulations. Future clinical CFD-based diagnostic and
treatment tools have to perform fast and stable. Varying simulation parame-
ters for convergence optimization are not feasible during an intervention.

2. Polyhedral elements resolve significant WSS patterns with far less control el-
ements in a more homogeneous manner than tetrahedral meshes. The reason
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Figure 6.7: WSS distribution regarding pulsatile simulation performed with differ-
ent time steps (TS). The images show results at systole and diastole. Overall, there
are no significant differences between the WSS patterns obtained from simulations
with time step 0.001 sec., 0.005 sec. or 0.01 sec.

for this lies in the way the WSS magnitude is calculated which depends on
two major aspects: Firstly, only those cell elements are considered which ac-
tually share a face with the vessel boundary. Not all tetrahedral elements lo-
cated at the vessel boundary share necessarily an entire face with the bound-
ary - some may touch the boundary with its corner. While all polyhedral
elements located at the wall share an entire face with the boundary itself.
Secondly, the distances of the considered tetrahedral centers are not equal to
the vessel wall leading to a more inhomogeneous WSS appearance.

Polyhedral meshes should be preferred over tetrahedral meshes in future stan-
dardized clinical simulations since they have shown superior CFD properties in
terms of better convergence and less control elements which directly leads to a
shorter computation time.

The usage of boundary layer leads to a more detailed appearance of WSS dis-
tributions. This occurs because the small prism elements approximating the ves-
sel wall in denser and accurate manner. Accurately approximating WSS on the
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aneurysm wall is of particular interest, as previous studies [Cebr 05b, Jou 08] have
demonstrated that aneurysms exhibiting a WSS distribution with a higher portion
of lower values were more prone to expansion and perhaps rupture. While bound-
ary layers lead to more details in the WSS patterns, major features were already
well resolved in meshes without boundary layers.

The drawback of boundary layer meshes consists in their setup resulting in
an increased complexity in user interaction. Correct initialization of a boundary
layer requires high smoothness and spatial resolution of the vessel surface mesh
to avoid highly skewed elements at surface region exhibiting high curvature, e. g.
vessel bifurcations. Extensive smoothing without close inspection by the user may
lead to a deformation of the original vessel surface, i. e. shrinkness of the vessel
diameter and more critical a shrinkness of the aneurysm neck potentially falsifying
flow pattern and, thus, WSS distributions. Future clinical applications requiring
an automated setup, boundary layer meshes may therefore be more difficult.

Another important aspect of our study is that the WSS distribution values vary
even if the mesh size is considered fine enough to match the convergence crite-
rion for our cases (see section 6.3.2). Since the true WSS distribution cannot be
measured in vivo one has to be aware that the WSS distribution simulations have
an intrinsic uncertainty. Within this study, this uncertainty for WSS values and
velocities ranges between 0.84% to 6.3% comparing polyhedral vs. tetrahedral
meshes with and without boundary layers. This uncertainty has to be taken into
account clinically when making a quantitative statement concerning WSS, blood
velocity or blood flow pattern. The key step in performing hemodynamic simu-
lations therefore may be considered to generate a series of spatial varying meshes
and to postulate convergence once variation of WSS falls in the range of 3% to
6%. If that is the case than the mesh maybe considered to be within a conver-
gence area where mesh-independent simulation values can be computed. Given
this evaluation, we propose to omit the usage of boundary layer for future clinical
CFD application at least in the research phase. This will help to keep the mesh
generation process simpler and easier automatable.

Pulsatile simulations according to a patient-specific cardiac cycle may lead to
different WSS distributions as obtained by steady simulations. However, pulsatile
simulations induce a much higher computational demand and thus lead to longer
computation time making a clinical CFD application difficult during an interven-
tion. The computation time can be minimized by either a reduction of the mesh
resolution (which may lead to non-reliable results) or an increase of the compu-
tation time step governing the Fluent CFD solver for solving the Navier-Stokes
equation. Our experiments have shown that an increase of the time step from
0.001 sec. to 0.01 sec. does not lead to any observable changes of the WSS dis-
tribution at systole time but a decrease of the computation time by a factor of six
(case 1) and three (case 2) (see Table 6.5 column 2). An increase of the time step,
however, has to be regarded with suspicion because there will be for sure a point
once the time step is above a certain value which leads to unstable or even dis-
converging numerical solution. Overall, the first cardiac cycle should not be used
for evaluation or diagnosis because of the transient response of the corresponding
Navier-Stokes equations.
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The results obtained during this study may be affected due to several limi-
tation of the analysis. Our assumptions concerning the conducted CFD experi-
ments differ from the in vivo state in terms of rigid vessel walls, Newtonian-based
blood fluid and the determination of the boundary conditions. The outflows of the
patient-specific models are defined as pressure outlet zero which does not have to
match with the real environment. There might be natural resistances at the out-
flows. As with other computational studies, it is assumed that these limitations
have only minor effects on the resulting flow pattern [Cebr 05a]. Future work,
however, has to focus on the reduction of these limitations in the sense of valida-
tion against in vivo measurements, perform this analysis with much more cases
and repeat it for the pulsatile simulation.

6.5 Conclusion

To the knowledge of the author, this chapter has presented the first mesh granular-
ity and mesh independency analysis in the field of cerebral blood flow simulation
of aneurysms. Here, the focus is on the influence of the CFD mesh as aneurysms
represent a complex geometry. The aim was to determine how to reduce the com-
putation time of the CFD simulation.

The results illustrate the importance of a well-founded mesh granularity eval-
uation leading to four major contributions:

1. A certain resolution is needed to obtain valid and stable WSS patterns and
velocity values. However, even the CFD results of sufficient fine resolved
meshes show an uncertainty of 3-6%.

2. Polyhedral meshes are preferred for cerebral aneurysm CFD simulations due
to its advantages concerning better convergence, shorter computation time
and high WSS accuracy.

3. The usage of a boundary layer revealed that it does not significantly change
the accuracy of the WSS distributions especially when using polyhedral cell
elements.

4. The variations of the time step for the pulsatile simulation experiments have
illustrated that this leads to a reduction in time without losing significant
WSS information at systole time.

Concerning the framework of this thesis, this study might serve as a first key step
towards a future clinical CFD application where the mesh generation process has
to be automated. Given the results of this chapter, the next chapter shows the
effects of different patient-specific vessel segmentations on the hemodynamic sim-
ulation.
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Figure 6.8: Area-Weighted-Average WSS distribution values of the pulsatile sim-
ulations plotted for the first three cardiac cycles. Left column shows the first case
and right column the second case. While changing the time step, the transition be-
tween cardiac cycles becomes unstable as marked by the blue circles. The yellow
circle indicates the transient response at the beginning of pulsatile simulations.
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The last chapter of this thesis describes the impact of different patient-specific
vessel geometries and their influence on hemodynamic simulations. Therefore,
different vessel geometries are computed by three segmentation algorithms, i. e.
region growing, pure 3-D driven ellipsoid (Chapter 5.3.1) and the novel 2-D driven
3-D ellipsoid vessel segmentation (Chapter 5.3.2). The knowledge concerning mesh
independency of Chapter 6 is considered for all simulations performed within this
chapter. Five patient datasets have been selected to evaluate the geometric ef-
fects regarding hemodynamic simulation. The results are twofold: (1) small vessel
diameter changes at large vessel branches lead to minor effects in the hemody-
namic simulation. (2) variations at bifurcation angles or small vessels imply major
changes regarding flow pattern and volume as well as WSS distributions.

7.1 Motivation

Patient-specific cerebral vessel segmentation represents the base for performing
hemodynamic simulations based on CFD. As already mentioned within the pre-
vious chapters, 3-D DSA volumes can be considered as the preferred image mod-
ality for CFD simulations due to its high spatial accuracy and contrastation such
that even small vessel morphologies become visible. This accuracy, however, may
be affected by factors like beam hardening, varying reconstruction kernels or the
amount of injected contrast agent such that different vessel segmentation algo-
rithms may come up with diverse vessel geometries. Considering the entire hemo-
dynamic simulation pipeline (see Chapter 1.4) [Cebr 05a], various factors besides
the geometry affect such simulations: starting from mesh element and surface ap-
proximations [Spie 11c] over patient-specific inflow waveforms [Karm 08] or blood
modeling parameters like viscosity or density. If keeping all simulation parame-
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ters fixed, the reproducibility of simulation results highly depends on the vessel
segmentation and its subsequent geometric modeling.

As the literature shows, there have been some contributions which try to eval-
uate the influence of geometry variations. Hoi et al. [Hoi 04, Hoi 06] performed
a study to validate CFD simulations on cerebral aneurysms using particle image
velocimetry. The focus of his study was on the effects of small geometric varia-
tions. All experiments were based on a silicone phantom indicating alternations
of the flow-field caused by geometric variations. Sun et al. [Sun 10a, Sun 10b] in-
vestigated the influence of input parameters together with meshing techniques on
the flow patterns. An elastic cerebral aneurysm phantom model has been used to
prove the reliability of CFD results under well controlled conditions.

Moreover, a reproducibility study has been conducted by Geers et al. [Geer 09,
Geer 11] where patient-specific simulations were computed based on vessel mod-
els that were generated by 3-D DSA and CT-angiography (CTA). The experimental
results revealed that small vessels (< 1 mm diameter) could not be reconstructed
with CTA and the neck size of aneurysms appeared smaller in 3-D DSA than in
CTA datasets. The difference in WSS distribution was large between the model
from CTA and 3-D DSA, the main flow patterns, however, could be reproduced
in both models. Venugopal et al. [Venu 06] used simple threshold segmentation
techniques to extract two patient-specific aneurysms (ACoA and MCA) based on
CTA datasets. The authors applied two intensity thresholds to create two vessel
models per aneurysm and investigated the effects of geometric differences on the
simulation result. The results revealed that the pressure distribution was similar
whereas the WSS were different.

Although there are contributions in the literature concerning the influence of
geometric changes on the hemodynamic simulation, so far the experiments are
either phantom-based or the datasets are mainly generated by CTA. In this chap-
ter, only 3-D DSA datasets are used with focus on the performance of three dif-
ferent vessel segmentation techniques to extract segmentation dependent patient-
specific 3-D vessel geometries without showing vessel pathologies. These geome-
tries are taken to evaluate the effects of geometry variations on the simulation
results.

7.2 Methods

A subset of the evaluation patient datasets of Chapter 5.4 is taken in these ex-
periments whose properties are again briefly summarized. The datasets were ac-
quired with a Siemens C-arm system at the Department of Neuroradiology (Uni-
versity Hospital Erlangen, Germany) and contain different vessel types, e. g. ICA,
MCA, ACA or PCoA. The spatial resolution ranges between 512×512×390 and
512×512×511 with an isotropic voxel spacing of 0.1 mm.

Three segmentation approaches are used to extract the vessel geometry from
the datasets, i. e. three models are generated per dataset, to investigate the effects
of different segmentations. These segmentation techniques can be distinguished
in two ways:
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1. 2-D or 3-D driven methods and

2. model-based versus intensity-related approach

The ellipsoid-based segmentation approach, detailed in Chapter 5.3.1, can be cate-
gorized as an entirely 3-D driven vessel segmentation method which makes use of
tubular constraints to approximate the vessel branches. The 2-D driven 3-D tech-
nique (see Chapter 5.3.2) denotes a model-related hybrid segmentation methodol-
ogy taking 2-D DSA information into account to adjust the vessel boundaries of the
initial 3-D segmentation. To compare these automatic methods against a manual
driven segmentation approach, region growing is applied where a medical expert
decided on the selected intensity threshold based on his experience. Figure 7.1
shows an overview of the used vessel geometries and the deviations between the
different segmentation results.

As already outlined in Chapter 6.2, the voxel-based vessel segmentations are
converted into a triangle surface mesh using marching cubes algorithm, smoothed
and saved in stereolithographic file format (STL). The STL file provides the in-
put for the GAMBIT (ANSYS Inc.) 2 meshing toolkit to generate a volumetric
mesh representation based on tetrahedral elements. The curvature size function
of GAMBIT takes care of the triangle density such that areas of high curvature are
approximated with a higher density of small triangles than those areas with less
curvature. Given the evaluation results from Chapter 6.3 regarding polyhedral
mesh elements, the Fluent simulation software (ANSYS Inc.) again is taken to con-
vert the tetrahedral into polyhedral meshes. Table 7.2 summarizes the polyhedral
mesh parameters, i. e. volume and number of cell elements. Due to different ves-
sel segmentations, the volume size and number of cell elements vary in a range of
less than 2%. This variation is small enough such that the effects on the simulation
results can be negligible.

Blood is modeled as an incompressible, Newtonian fluid (density: 1050 kg/m3;
viscosity: 0.004 N/m2 [Hass 04]) and the vessel walls are considered as rigid. Only
steady-state simulations are performed with a constant inflow rate of 0.3 m/s and
zero pressure outlet without using boundary layers as it is proposed in Chap-
ter 6.2. Throughout all simulation experiments, simulation parameters are kept
fixed to make the simulation results comparable regarding the geometric changes
between different vessel models.

2www.ansys.com
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Table 7.1: Quantitative evaluation results concerning mass flow rates and outflow vessel diameter area concerning three different
segmentation methods, i. e. region growing (Re.Gr.), 3-D ellipsoid (3-D E.) and 2-D driven 3-D segmentation (2-D/3-D).

Data Seg. Inflow Out1 Out2 Out3 Out4

Mass flow Area Mass flow Area Mass flow Area Mass flow Area

[g/s] [g/s] [%] [mm2] [%] [g/s] [%] [mm2] [%] [g/s] [%] [mm2] [%] [g/s] [%] [mm2] [%]

D1

Re.Gr. 4.9 1.3 27.3 4.0 45.7 0.4 8.0 0.55 6.3 3.2 64.7 4.2 48.1

3-D E. 3.7 1.1 30.0 3.0 39.3 0.4 10.7 0.56 7.5 2.2 59.3 4.0 53.3

2-D/3-D 4.0 1.1 26.8 2.7 34.8 0.5 12.1 0.63 8.1 2.4 61.1 4.4 57.1

D2

Re.Gr. 4.3 0.7 3.8 3.1 23.2 0.9 19.8 0.56 4.2 2.7 61.5 6.9 50.4 0.6 14.9 3.0 22.3

3-D E. 3.6 0.2 5.9 2.4 16.4 0.5 14.4 0.62 4.2 2.7 74.2 8.8 59.8 0.2 5.4 2.9 19.6

2-D/3-D 2.9 0.2 7.7 2.0 18.6 0.6 20.0 0.56 5.2 1.9 67.0 5.8 54.3 0.1 5.3 2.3 21.8

D3

Re.Gr. 4.0 0.2 4.5 0.5 9.1 3.8 95.5 5.01 90.9

3-D E. 4.1 0.3 8.3 1.1 13.3 3.8 91.7 7.05 86.7

2-D/3-D 3.7 0.4 11.4 1.0 19.6 3.7 88.6 4.15 80.4

D5

Re.Gr. 3.5 0.5 13.3 0.6 9.6 0.6 16.6 1.6 25.6 2.4 70.1 4.1 64.8

3-D E. 2.9 0.6 20.5 1.0 11.3 0.2 6.3 1.8 20.5 2.2 73.3 5.9 68.2

2-D/3-D 3.1 0.6 20.8 1.0 11.2 0.2 5.6 1.7 19.7 2.3 73.7 5.9 69.2

D10

Re.Gr. 5.8 1.3 22.2 1.0 16.8 0.9 15.2 1.5 24.4 3.6 62.5 3.5 58.8

3-D E. 4.7 0.7 15.4 0.5 13.8 0.9 18.7 1.0 26.3 3.1 65.9 2.2 59.9

2-D/3-D 4.3 0.9 20.7 0.6 17.2 0.3 6.7 1.1 30.6 3.1 72.6 1.8 52.2
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Table 7.2: Three different segmentation algorithms delivered three vessel geome-
tries per dataset, i. e. 2-D driven 3-D, 3-D ellipsoid and region growing. This table
gives an overview about the properties of the computed vessel models.

2-D driven 3-D 3-D Ellipsoid Region Growing
Volume
[mm3]

# Cells Volume
[mm3]

# Cells Volume
[mm3]

# Cells

D1 512 79,780 531 82,564 586 98,090
D2 510 78,709 521 80,701 669 85,701
D3 495 75,505 617 83,170 571 88,119
D5 383 89,952 377 88,589 451 84,994
D10 477 85,161 568 87,657 642 88,314

7.3 Results

As illustrated in Figure 7.1, different segmentation approaches lead to different
vessel geometries. Comparing vessel diameters (yellow circle in Figure 7.1), pure
3-D driven segmentation methods like region growing or 3-D ellipsoid show up
with thicker vessel diameters as 2-D driven 3-D segmentation. Vessel diameters
vary up to 0.8 mm which corresponds to eight voxels. Concerning CFD simula-
tions, the most serious difference between these methods appear at vessel bifurca-
tions. The reason for this difference is due to different segmentation algorithms.
Model-based segmentation methods like interleaved 3-D ellipsoid (Chapter 5.3.1)
are characterized by tubular constraints modeling vessel branching points more
perpendicular w. r. t. its mother vessel than pure intensity driven methods. The
red circles in Figure 7.1 demonstrate the difference concerning the vessel bifurca-
tion modeling. All quantitative simulation results are summarized in Table 7.1.

Yellow circles in Figure 7.2 indicate the different modeling aspects regarding
vessel bifurcations resulting in completely different flow patterns encoded as ve-
locity pathlines and WSS distribution. The number of velocity pathlines shown
in Figure 7.2 is related to the mass flow rate, i. e. more pathlines indicate a higher
mass flow rate. Considering the pathlines of datasetD5 in Figure 7.2, the inflow jet
coming from the bottom splits up into two major jets for the region growing vessel
model because of the location and position of the vessel branching to the left. The
3-D ellipsoid and the 2-D driven 3-D model do not show such a split because the
location of the bifurcation point is segmented more parallel to the jet stream which
let the blood flow pass by. This change of the bifurcation angle leads to a mass flow
drop of about 10% concerning Out2 and an increase of the mass flow rate of 7% at
Out1 between region growing and model-based vessel geometries (see Table 7.1
D5 Out1 and Out2).

Not only different bifurcation angles may imply changes to the flow pattern
but also local deviations of vessel diameters. D10 in Figure 7.2 shows differences
regarding vessel diameters and bifurcation angles indicated by red circles. The 2-
D driven 3-D vessel geometry exhibits a smaller vessel diameter as the other two
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geometries because of the additional 2-D vessel information inducing this vessel
diameter reduction especially concerning outflow (Out2). This causes a change
in the mass outflow rate of 12% w. r. t. Out2 (Table 7.1, D10, Out2) comparing
region growing and 3-D ellipsoid segmentation with the 2-D driven 3-D method.
Dependent on the location and degree of geometry changes, the primary WSS
distributions may be similar between different vessel geometries as depicted in
Figure 7.2 (D5). However, if the geometric changes are essential, the WSS and the
flow patterns feature huge differences, e. g. D10 (see orange circles in Figure 7.2).

7.4 Discussion

Overall, it can be stated that vessel segmentation denotes the key for valid patient-
specific CFD-based hemodynamic simulations. As indicated by [Venu 06], differ-
ent vessel segmentations result in varying vessel geometries leading to major dif-
ferences in the simulation result. Hence, vessel segmentation has to be performed
very carefully because small local geometric deviations may induce huge changes
in the local flow pattern. The main focus of this work has been on evaluating
the geometric deviations which originate from different vessel segmentation ap-
proaches.

Model-based segmentation methods like interleaved 3-D ellipsoids are charac-
terized by tubular constraints. This can be considered, on the one hand, as an ad-
vantage within the clinical hemodynamic workflow (refer to Chapter 1.4) because
the segmentation result yields a smooth surface without showing peak artifacts
or highly skewed triangles. This heavily minimizes the efforts and required time
during the mesh generation step. Moreover, smooth surface meshes denote a key
requirement for CFD solvers such that the computation process converges fast. On
the other hand, this 3-D ellipsoid segmentation method may miss small geometric
vessel aspects due to its tubular regularization which may have an impact on the
simulation result.

In particular, the bifurcation plane which defines the vessel branching point
is modeled differently comparing the different vessel geometries. Such kind of
differences may lead to totally different splits of the inflow jet which explain the
increase or decrease concerning the mass flow rates at the corresponding outlets
of the geometries. Also, the WSS distribution is affected by the geometric vari-
ations as shown in Figure 7.2. The 3-D DSA reconstruction overestimates vessel
diameters which has been discussed in Chapter 5 in detail. Hence, the 2-D driven
3-D based vessel geometries locally exhibit smaller vessel diameters compared to
the pure 3-D data driven methods. This implies different WSS distributions and
flow pattern. Especially if considering vessel branches with very small diameters,
a further reduction of the vessel diameter can have a dramatic drop of the mass
flow rate as depicted in Table 7.1 (D5 out2).
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7.5 Conclusion

The impact of different patient-specific vessel geometries on the hemodynamic
simulation result has been investigated within the study of this chapter. Two con-
clusions can be drawn from the experiments:

1. The 3-D ellipsoid-based segmentation algorithm models vessel bifurcations
more different than intensity related segmentations which leads to different
mass flow rates and flow patterns.

2. Variation of vessel diameters also have an impact on the mass flow rate as
well as on the WSS distribution.
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Figure 7.2: Simulation results based on vessel geometries created by three different
segmentation results. The yellow circles indicate the different bifurcation model-
ing resulting in a change of the split of the inflow jet, i. e. more pathlines denote
larger mass flow. The red circles illustrate the effect of local vessel diameter de-
viations and its consequences regarding the flow pattern and mass flow rate. The
orange circles depict the variation of the WSS distribution between different vessel
geometries.
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Outlook

Within this thesis, different components have been developed providing a ma-
jor step to perform 2-D and 3-D vessel segmentation on DSA data together. An al-
gorithmic framework has been presented to combine 2-D vessel information with
3-D segmentation. This enables to automatically perform 3-D vessel segmenta-
tion enhanced and driven by 2-D vessel segmentation. Further scientific work
might improve the efficiency and robustness of the 2-D driven 3-D segmentation
approach. One step improving the computational efficiency of the 2-D/3-D seg-
mentation method denotes the avoidance of computing the forward projection for
each parameter optimization step. Since the forward projection makes use of rays,
the intersection points between these rays and the ellipsoid-based segmentation
can be analytically computed. The computation of the intersection point yields a
quadratic equation which can be efficiently done on the GPU. Hence, the entire
ellipsoid parameter optimization can be transferred onto the GPU such that read
and write operations between the CPU and GPU can be heavily reduced. This
speedup will make the proposed 2-D/3-D segmentation framework more attrac-
tive to be applied in a clinical prototype.

Further evaluation studies may shed light on how many 2-D projections are
required to get optimal results in terms of time and quality. Therefore, a varying
number of projections with different projection angles have to be evaluated to gain
information about the effect on the 3-D vessel segmentation result and the required
computation time. Since the 2-D projection images were chosen w. r. t. different
projection angles, the vessel movement may not be coherent regarding the cardiac
phase. The robustness of the 2-D driven 3-D vessel segmentation may be increased
by incorporating ECG-gated 2-D DSA projections such that the projections chosen
for 3-D adaptation show the vessels at the same cardiac phase. This will limit
the influence of vessel movement during the 2-D/3-D optimization as much as
possible.

Considering the hemodynamic workflow (see Chapter 1.4), this thesis inves-
tigated the first two steps, i. e. vessel segmentation and mesh generation and its
influence on the hemodnamic simulation result. The presented evaluations have
built a base to perform further research w. r. t. the next two steps of the hemody-
namic workflow, i. e. simulation parameters and fluid structure interaction. One
important aspect to utilize blood flow simulation results for diagnostic purposes is
the acquisition of patient-specific simulation parameters in vivo, e. g. blood pres-
sure or velocity. For example, a pressure catheter or Doppler ultrasound device
may be applied at the neck area to gain such information. Or since a catheter has
been used in every endovascular intervention, a much less cost-intensive alter-
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native may be the direct usage of the catheter as pressure sensor like it is done
for a drip. The combination of patient-specific and in-vivo acquired simulation
parameters will make blood flow simulations much more reliable. Furthermore,
the incorporation of additional flow information like high speed DSA acquisitions
(>30 frame/sec.) or MRI velocity fields may enrich CFD-based simulations. High
speed DSA series show the blending of contrast agent with blood and its flow
pattern in a very detailed manner. The temporal resolution of such series is also
very high. Moreover, MRI acquired velocity fields may also be used as validation
base for CFD simulations. Prospective CFD solver may fuse MRI or high speed
DSA-related flow information as supporting points or as validation base to make
hemodynamic simulation results more acceptable for diagnose purposes in the fu-
ture.
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Summary

Within the last decade, more and more cerebrovascular pathologies have been
treated by catheter-guided minimal invasive interventions. In angio suites, this
kind of treatment has become possible because of the availability of modern C-arm
systems providing X-ray based 2-D and 3-D DSA data during an intervention.
Even small cerebral vessels become visible due to its high contrastation and spatial
resolution which emphasizes the high diagnostic value. Thus, 3-D DSA represents
a major step in diagnosis and treatment planning for endovascular interventions in
the field of neuroradiology. The thesis makes use of this data and focuses on vessel
segmentation in 2-D and 3-D. At first glance, this task seems to be straightforward.
Accurate 3-D vessel segmentation, however, is challenging due to the uncertainty
of the exact vessel boundary position in 3-D DSA data. The determination of the
vessel boundary may be corrupted by beam hardening, the hemodynamic mix-
ture of the contrast agent or reconstruction kernels. Particularly with regard to the
performance of patient-specific hemodynamic simulations, small changes within
the vessel segmentation may induce variations on flow, pressure or WSS pattern.
Since 2-D DSA projections clearly show the vessel boundary position, it is of ben-
efit to integrate this information into the 3-D vessel segmentation process. There-
fore, a novel framework seamlessly combining 2-D and 3-D vessel segmentation
algorithms is presented in this thesis to compute vessel geometries of highest ac-
curacy which meet the input requirements of CFD simulation software to perform
hemodynamic simulations.

2-D DSA series are heavily used for diagnosis and treatment planning of cere-
brovascular diseases, e. g. stenosis or aneurysms. Depending on the amount of
injected contrast agent and the duration of injection, these DSA series may not ex-
hibit one single DSA image showing the entire vessel tree. Typically, such a DSA
series can be split up into three phases due to the contrast agent flow, i. e. mask,
arterial and parenchymal phase. The interesting vessel information regarding our
post-processing algorithms (see Chapter 3 and 5) is depicted within the arterial
phase showing medium and large vessels. Therefore, a novel classification-based
summation algorithm is delineated in Chapter 2 which automatically categorizes
the images of the series within the aforementioned phases. All images correspond-
ing to the arterial phase are put together into one final image by either image sum-
mation or taking the minimum intensities. The phase classification is done by a
two-step approach. The mask/arterial phase border is determined by classifica-
tion methods (Perceptron, SVM etc.) being trained from a set of DSA series. The
arterial/parenchymal phase border is specified by a simple but effective threshold-
based method. The evaluation of the proposed method is two-sided: (1) compar-
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ison between automatic and medical expert-based phase selection using different
classifiers and (2) the quality of the final image is measured by gradient magnitudes
inside the vessels and SNR outside. Experimental results, which were performed
on 14 DSA series, show a match between expert and automatic phase separation
of 93% and 50%. The final images exhibit a mean SNR increase of up to 182% com-
pared to summing up the entire series.

The final images and the 2-D DSA projections given from the 3-D reconstruc-
tion denote the input of the 2-D vessel segmentation method which is described in
Chapter 3. Inhomogeneous contrast agent distributions within the vessels, patient
movement as well as smooth intensity ramps at the vessel boundary do not allow
performing straightforward global threshold-based vessel segmentation. Hence,
a new semi-automatic 2-D vessel segmentation method is proposed working with
local adaptive contrast enhancement to eliminate intensity inhomogeneity within
the vessel region. Since this method is designed to work within the 2-D/3-D ves-
sel segmentation framework, there are two initialization modes for this algorithm:
either manually selected seed points or a forward projected 3-D centerline define
the vessel branches to be segmented. If the segmentation algorithm has been ini-
tialized by manual seed points, a 2-D vessel centerline is computed using Dijk-
stra’s algorithm which connects these seed points. The local contrast enhancement
is done within boxes which are aligned perpendicular along the centerline. The
eigenvectors of the Hessian matrix, computed at each centerline point, are utilized
for proper alignment. The intensities are enhanced for each box using the sigmoid
function which is controlled by the local box mean value. The evaluation database
comprises 45 different DSA images where a mean Hausdorff distance of 23 pixels
and a sensitivity of 89% could be achieved.

The 2-D vessel segmentation results can now be incorporated as ground truth
information into the 3-D vessel segmentation approach. The 3-D centerline com-
putation represents the initialization step for the subsequent 3-D vessel segmen-
tation. This 3-D centerline technique has to overcome similar challenges as for
the 2-D vessel segmentation, e. g. inhomogeneous contrast agent distributions,
beam hardening, elliptically shaped vessels occurring due to vessel movement
especially for coronary arteries, multi-scale vessel diameters or touching vessel
structures. This partially leads to an uncertainty about the actual centerline path.
To properly handle all this, a graph-based centerline method has been proposed
in Chapter 4 which is based on a multi-scale MM cost function. The major con-
tribution represents a distance map regularization of the MM cost function such
that the centerline path remains at the actual vessel center axis even for corrupted
vessel regions. Therefore, the distance map is computed by a newly developed
local adaptive statistical thresholding scheme separating the three a priori known
intensity classes (background, artifacts and vessel structure) of a 3-DRA volume.
The centerline algorithm has shown to be powerful within a clinical setup and is
extensively evaluated on 15 cerebral and 13 motion-compensated coronary 3-DRA
datasets. The quantitative evaluation shows a mean distance of 0.42 mm against a
pure MM driven centerline approach.

Re-considering the 2-D/3-D vessel segmentation framework, the 3-D centerline
component provides an initialization for the 2-D as well as for the 3-D ellipsoid-
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based vessel segmentation approach which is outlined in Chapter 5. This chapter
represents the key contribution of this thesis because a novel 2-D driven 3-D vessel
segmentation algorithm is proposed which can also be considered as a validation
technique for other 3-D vessel segmentation methods working on 3-DRA data.
The 2-D DSA images are considered as gold standard regarding quantitative vessel
measurements during diagnosis or therapy planning of cerebrovascular diseases.
The interleaved ellipsoids are aligned and initialized utilizing the centerline. The
parameters of all ellipsoids are optimized by an energy function comprising an
external and internal energy term. The internal energy term takes care about the
smoothness of the entire vessel model and the external energy term guides the pa-
rameters such that the ellipsoids deform towards the local vessel boundary. The
parameter optimization is done by gradient descent. To assess the accuracy of the
converged 3-D vessel segmentation, its forward projections from different viewing
angles are iteratively overlaid with the corresponding 2-D DSA projections. Now,
the local adaptivity of the proposed 3-D segmentation approach pays off because
local vessel discrepancies between the forward projection of the 3-D segmentation
and the 2-D vessel data can be adjusted by back-projection into 3-D and chang-
ing the parameters of the corresponding ellipsoids. This parameter adjustment is
formalized as a global objective function steering the 2-D/3-D optimization. Our
methodology has been evaluated on phantom and ten patient datasets. Three 2-D
DSA projections from varying viewing angles have been used for optimization.
Superior results could be achieved against state-of-the-art segmentations like re-
gion growing, i. e. a mean improvement of 7.2% in precision and 5.8% for the Dice
coefficient.

In respect to the hemodynamic workflow, Chapter 2 to 5 only deal with the
vessel segmentation step. In Chapter 6, the proximate mesh generation step is an-
alyzed w. r. t. the effect of different volume element types, mesh sizes and mesh
compositions on the CFD simulation result (flow velocity and WSS). Therefore,
two vessel geometry models have been selected to perform a mesh independence
analysis by creating a set of varying mesh size configurations based on tetrahedral
and polyhedral volume element types. Throughout this study, only the surface
and volume mesh approximation of the vessel geometry have varied spatially -
not the vessel geometry itself. Three conclusions can be drawn from the simu-
lation results based on Fluent software (ANSYS Inc.): (1) with increasing mesh
size, the flow velocity and the WSS distribution converge towards stable values
with a variation of up to 6.3%. (2) polyhedral mesh types are beneficial concerning
convergence speed and more homogeneous WSS pattern. (3) the comparison of
WSS patterns between meshes with and without boundary layers yields that the
difference has become more and more negligible with increasing mesh size. With-
out considering vessel geometry related issue, it can be stated that different mesh
configurations induce an uncertainty of up to 6% on the hemodynamic simulation
result.

In opposition to the study described in Chapter 6, Chapter 7 concludes this
thesis with a CFD study which investigates the impact of having the same patient
dataset but different vessel segmentation methods applied yielding slightly dif-
ferent vessel geometries. Hence, in this study the vessel geometry does change -
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not the surface or volume mesh approximation. Per patient dataset, three differ-
ent vessel segmentation algorithms have been applied which are: region grow-
ing, pure 3-D ellipsoid-based and the 2-D driven 3-D vessel segmentation ap-
proach. The results regarding mesh generation of Chapter 6 have been considered
throughout this study, i. e. the number of volume elements of the vessel geome-
tries being compared to each other varies less than 2%. Major differences between
the different vessel geometries are found concerning the vessel diameters and the
modeling of branching vessels. Particularly, variations of the bifurcation angle at
the vessel branching point lead to major changes of the mass flow or flow pattern
because of the different split of the inflow jet. The 2-D driven 3-D based vessel
geometries tend to show smaller vessel diameters due to the adaptation towards
2-D vessel information. Local decrease of the vessel diameter may develop a bottle
neck area leading to a significant change in the flow distribution as well.

In conclusion, this thesis proposed a new vessel segmentation framework com-
bining 2-D and 3-D DSA vessel data for validation and adaptation purposes. The
CFD evaluation studies concerning mesh generation and vessel geometry changes
revealed that vessel segmentation and its corresponding mesh approximation de-
note a very crucial part within the hemodynamic workflow. As requested, the
algorithms have been implemented on a clinical prototyping platform to be suc-
cessfully applied within a clinical environment.
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