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ABSTRACT

Congenital heart defect (CHD) is the most common birth defect and a frequent cause of death for children.
Tetralogy of Fallot (ToF) is the most often occurring CHD which affects in particular the pulmonary valve and
trunk. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute
an alternative to open heart surgery. While minimal invasive methods become common practice, imaging and
non-invasive assessment tools become crucial components in the clinical setting. Cardiac computed tomography
(CT) and cardiac magnetic resonance imaging (cMRI) are techniques with complementary properties and ability
to acquire multiple non-invasive and accurate scans required for advance evaluation and therapy planning. In
contrary to CT which covers the full 4D information over the cardiac cycle, cMRI often acquires partial infor-
mation, for example only one 3D scan of the whole heart in the end-diastolic phase and two 2D planes (long and
short axes) over the whole cardiac cycle. The data acquired in this way is called sparse cMRI. In this paper, we
propose a regression-based approach for the reconstruction of the full 4D pulmonary trunk model from sparse
MRI. The reconstruction approach is based on learning a distance function between the sparse MRI which needs
to be completed and the 4D CT data with the full information used as the training set. The distance is based
on the intrinsic Random Forest similarity which is learnt for the corresponding regression problem of predict-
ing coordinates of unseen mesh points. Extensive experiments performed on 80 cardiac CT and MR sequences
demonstrated the average speed of 10 seconds and accuracy of 0.1053mm mean absolute error for the proposed
approach. Using the case retrieval workflow and local nearest neighbour regression with the learnt distance func-
tion appears to be competitive with respect to ”black box” regression with immediate prediction of coordinates,
while providing transparency to the predictions made.
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1. DESCRIPTION OF PURPOSE

Congenital heart defects (CHD) are abnormalities in the heart’s structure which often affect the right side of
the heart and are the major cause of pulmonary trunk dysfunction which encompasses pulmonary vale steno-
sis, artesia and regurgitation. As CHD are common diseases for newborns, multiple interventions are required
as the patient grows. Hence, interventional approach to the management of such complex conditions is be-
coming increasingly recognized as the preferred treatment option.1 Percutaneous pulmonary valve intervention
(PPVI) alternatives to classic cardiac surgery with important benefits: less invasive, reduced risks associated
with cardiopulmonary bypass, bleeding, infections and reduced expenses for postoperative intensive care.2

Cardiac Computer Tomography (CT) or cardiac Magnetic Resonance Imaging (cMRI) are the modalities of
choice for PPVI intervention planning.3 In contrary to CT which covers the full 4D information over the cardiac
cycle, the so called sparse 4D cMRI, encompasses only one 3D end-diastolic (ED) image of the whole heart and
two orthogonal cine projections over the cardiac cycle (2D+t), short axis (SA) and long axis (LA). LA passes
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through the main pulmonary artery and the descending aorta, while SA is aligned with the pulmonary valve,
perpendicular to the LA (Fig. 1).

The main advantage of discriminative distance learning is the opportunity to combine the performance of
stronge learners with the transparency of nearest neighbor (NN) classification and regression, which may be
desirable in particular in decision support.4 A notable example of discriminative distance learning that can
be applied both in classification and regression is the intrinsic random forest (RF) dissimilarity.5 The main
objectives of our study in this paper are to analyse the benefits of RF-based non-metric distance learning in
comparison to using the orthodox Euclidean distance for NN regression, and also to empirically compare the
performance of RF-based NN regression with the plain RF regression, in the context of solving a regression
problem between the CT and the sparse cMRI data for full 4D model reconstruction from sparse cMRI.

Figure 1. 3D MRI scan of the whole heart in the ED phase (a). 2D long axis (LA) plane (b) and short axis (SA) plane
(c) of the pulmonary artery over the cardiac cycle

2. METHODS

The sparse 4D cMRI acquisition protocol provides dynamic information only in the two 2D orthogonal projec-
tions, as opposed to 4D cardiac CT, which provides full dynamics over the cardiac cycle. The reconstruction
task is defined as a regression problem between the full dynamic model of the pulmonary trunk extracted from
4D CT data and the sparse one extracted from the sparse cMRI data:

Y (Modelfull4D) = �̂ (X(Modelsparse4D)) + ε (1)

We learned a non-metric distance function (Sec. 2.2) to solve the regression problem and to infer the incomplete
temporal information characteristic to the sparse cMRI acquisition.

2.1 Physiological Patient-Specific Pulmonary Trunk Modelling

In this section we represent our anatomy driven model of the pulmonary trunk and the RVOT capable to express
a large spectrum of morphological and dynamical variations. Similar to Vitanovski at al.,6 the anatomical
complexity is reduced by employing a coarse to fine parameterization which includes: anatomical landmarks,
pulmonary artery center line and the full surface model of the pulmonary trunk. A set of clinical relevant
anatomical landmarks (Trigone (Lt), RVOT (Lrvot) and Main-Bifucation (Lmb) form the first coarse to fine
layer (Fig. 1(a) ). Constrained by the landmarks and parameterized by 12 points, CL = CL0 . . . CL11, the
centre line CL passes through the center of the pulmonary trunk. The considered physiological compliant
model S, as illustrated in Fig. 1(c), is defined by a structured grid, spanned along two anatomical directions,
u− circumferential and v − longitudinal.

Given the different modalities supported and the characteristic imaging protocols, we differentiate among two
dynamic extensions of the proposed physiological model. The definition of a full 4D model, which can be directly
estimated from 4D cardiac CT data, is rather straightforward and realized by concatenating a time variable t:



Modelfull4D = {Lt, Lrvot, Lmb, CL, S}t (2)

However, given the sparse 4D acquisition, common to MRI exams, the extension to a temporal model includes
two additional representations: LA (Fig. 1(a)) and SA (Fig. 1(b)). Hence, the sparse dynamic model is
parameterized as follows:

Modelsparse4D = {Lt, Lrvot, Lmb, CL, S}ED + {LA, SA}t (3)

2.2 Learning non-metric distance for regression problems

During the last three decades, the importance of the distance function in machine learning has been gradually
acknowledged.7 However, for many years only canonical distance functions or hand-crafted distance functions
were used. Even today in many areas including computer vision the Euclidean distance is one of the most widely
used, though it is well known that its use is justified only when the feature data distribution is Gaussian.

There are several reasons that motivate the studies in the area of learning distance functions and their
use in practise.7 First, it is easy to show that choosing an optimal distance function makes classifier learning
redundant. Next, learning distance functions breaks the learning process into two sequential stages (distance
function learning followed by clustering or classification or regression), fostering the creation of more modular
and thus more flexible systems, supporting component reuse. For example, the same distance functions learning
module can be used with various classification or regression techniques and vice versa. Another important benefit
is the opportunity for inductive transfer between similar tasks. While knowledge sharing at the level of creating
a classifier is often non-trivial, one solution is to learn the same or similar distance function for each task. This
approach is often used in computer vision applications; see e.g.8 Learning a distance function helps to combine
the power of strong learners with the transparency of NN classification or regression, a feature often desirable
in decision support. Moreover, learning a proper distance function was shown to be especially helpful for high-
dimensional data with correlated, weakly relevant and irrelevant features, where most traditional techniques
would fail.

While historically the research on distance function learning has started from supervised learning of distance
functions for k-nearest neighbour classification in the original ”feature vector-object label” representation,9 today
by far the most commonly used representation, especially in computer vision, is the one based on so called
equivalence constraints.10 Interestingly, the distance learnt from labels is almost always metric, while learning
from weak representations such as equivalence constraints usually provides more flexibility for learning arbitrary
functions.11 Usually, equivalence constraints are represented using triplets (x1, x2, y), where x1, x2 are data
points in the original space and y ∈ (+1,−1) is a label indicating whether the two points are similar (from the
same class or cluster) or dissimilar.7 Learning from these triples is also often called learning in the product space
(i.e. with pairs of points as input); see12,13,7 for examples. While learning in the product space is perhaps a
more popular form of learning from equivalence constraints, yet another common alternative is to learn in the
difference space, the space of vector differences; see14,15 for examples. The difference space is normally used with
homogeneous high-dimensional data, such as pixel intensities or their PCA coefficients in imaging. While both
representations demonstrate promising empirical results in different contexts, there is no understanding which
representation is better and when.

Thus, learning from equivalence constraints usually results in a binary distance function, predicting only
whether the two objects are similar or dissimilar. Though often, in order to avoid this limitation, the signed
margin of margin-based classifiers such as SVM and boosting is used as the required distance function There
are two essential reasons that motivate the use of equivalence constraints in learning distance functions; their
availability in some learning contexts and the fact that they are a natural input for optimal distance function
learning.7 It can be shown that the optimal distance function for classification is of the form p(yi �= yj |xi, xj).
Under the i.i.d. assumption the optimal distance measure can be expressed in terms of generative models p(x|y)
for each class as follows:8



p(yi �= yj |xi, xj =
∑
y

p(y|xi)(1 − p(y|xj))) (4)

Because of these characteristics of equivalence constraints, many supervised learning algorithms, which receive
canonical labelled points as input, often turn them into equivalence constraints and operate directly on them.7

The drawbacks of distance learning from equivalence constraints, making it difficult to apply in the context of
our problem, include the fact that it has been studied so far in the context of binary classification only and
no applications to regression are known (although perhaps some existing approaches to distance learning from
equivalence constraints might be extended to work with regression problems, which is an important direction
for future research), and, second, usually the number of equivalence constraints representing a problem is big
making application of sophisticated learning computationally expensive and sometimes even not feasible (for a
typical classification or regression data set with a few thousand instances, the number of equivalence constraints
generated may reach a few millions).

Another notable example of a non-metric distance function that can be employed both in classification and
regression is the intrinsic RF dissimilarity. For a RF learnt for a certain problem, the proportion of the trees
where two instances appear together in the same leaves can be used as a measure of their similarity.5 For a given
forest F the similarity between two instances xi and xj is calculated as follows: the instances are propagated
down all T trees within F and their terminal positions z in each of the trees (z1 = (z11, , z1K) for x1, similarly
zj for xj) are recorded. The similarity between the two instances then equals to (I is the indicator function):

S(xi, xj) =
1

T

T∑
t=1

I(zik = zjk) (5)

When dissimilarity or distance is needed and not a similarity (e.g., for clustering or multi-dimensional scaling)
it is normally calculated as follows as suggested by Breiman:5

D(xi, xj) =
√
1− S(xi, xj) (6)

RF itself is known to possess a number of appealing properties. It was demonstrated to compare favorably
with boosting and SVM in terms of predictive performance and to be often more robust with respect to overfit-
ting noise. It is also known to provide a reliable likelihood estimate for its predictions, better than with boosting.
Moreover, RF models are fast to train and apply, and both the training and application phases may be naturally
parallelized. RF-based similarity (Eq. 5) has been successfully used, for instance, in bioinformatics16 for hier-
archical clustering of tissue microarray data. It is interesting that using this similarity for the most immediate
task, NN classification or regression, is still rather uncommon, comparing to its use for clustering.4

The intrinsic RF dissimilarity (Eq. 6) is known not to be metric,4 as the triangular inequality (Eq. 7) is
often violated:

∀xi, xj , xk : D(xi, xj) ≤ D(xi, xk) +D(xk, xj) (7)

2.3 Estimating Patient-Specific Model Parameters

The abstract patient-specific model parameters proposed in Sec. 2.1 are determined using learning-based algo-
rithms.6 For both cardiac acquisition protocols, CT and cMRI, detectors (DB , DL, DCL and DS) are learned
separately and applied in a four-step approach by first detecting bounding boxes at the RVOT and the Bifurcation
planes, landmarks, followed by center line and full dynamic surface model estimation.

By defining the object localization task as a classification problem, the patient-specific model parameters
are estimated within the Marginal Space Learning (MSL) framework.17 For both modalities, CT and cMRI,
the detectors (DB, DL, DCL and DS) are learned separately using the Probabilistic Boosting Tree (PBT)18 in
combination with 3D Haar-like and Steerable feature from a training dataset annotated by experts.



2.3.1 Bounding Box and Landmark Detection

Each anatomically relevant structure of the pulmonary trunk is defined by one bounding box, parameterized by
an similarity transformation θ = (X,Y, Z, α, β, γ, Sx, Sy, Sz). The RVOT plane is defined with the θrvot centred
at Lrvot and orientated with the tangent of the centre line sampled at CL0. The main bifurcation plane is
included within the parameterization of the second bounding box θmb centred at the Lmb and orientated with
the tangent of the centre line sampled at CLn.

Efficient learning of the high dimensionality of θrvot and θmb is achieved by marginalizing the search space
by means of MSL17 into small subspaces which are gradually increased. Consequently, the training process is
splitted into three steps: position, position-rotation and full similarity transformation learning, where classifiers,
parameterized by the parameters of the current subspace, are sequentially trained.

Each estimated bounding box initialize the landmarks by its position (Lrvot = θxyzrvot, Lmb = θxyzmb ) with
exception of the RVOT landmark which is initialized by the scale of θrvot along the X-axis (Lrvot = θxyzrvot+θαrvot∗
θsxrvot) and constrains the search domain Ωi by its scale. A further accuracy improvement is achieved by learning

a discriminative 2 Level PBT classifier �DL which learns the target distribution

p(�Li|xl, yl, zl, I ) = �Di(xl, yl, zl|I ), (xl, yl, zl) ∈ Ωi, i = 1..3 (8)

in 1mm volume resolution, where p(Li|xl, yl, zl, I) is the probability of the presence of Li at location (xl, yl, zl).

2.3.2 Center Line Detection

In this step we first initialize the centre line as a straight line bounded by the previously detected landmarks
Lrvot and Lmb. A centre line detector DCL is then applied to refine the centre line which goes through the centre
of the pulmonary trunk.

The detector DCL is trained with PBT and 3D Haar-like features. In the learning phase positive and
negatives are automatically computed from manually annotated data sets and used to train the detector DCL.
In the detection stage, an incremental approach is used for searching 3D centre points CLx on a series of parallel
planes. These are bounded by the corresponding landmarks, while their normal is given by the initial centre-line
and updated after each detected centre point. Finally, a least-square approach is applied to fit the centre line
into the set of the detected discrete 3D points.

2.3.3 Boundary Detection

In the first stage of the boundary detection a mean model, averaged over the training data set, is placed into the
patient specific anatomy. Projection of the mean model is achieved by computing a piecewise rigid transformation
between the detected centre line and the mean one. At equally sampled centre line points CLP1...CLPn a
coordinate system is computed by taking the tangent at the sampled point as Z-axis and the RVOT landmarks
as X-axis. Mesh points from the mean model which are close to the coordinate system CLPx are then projected
into the patients coordinates.

Accurate global fitting of the pulmonary trunk model into the patient’s specific anatomy is achieved by
projecting the mean model. However, for precise object delineation further local processing is required. A
boundary detector DS learned with PBT on 3D Haar-like and Steerable features is applied along the surface
normal to test a set of hypothesis and to move the surface toward the true boundary. In case of CT, the detectors
are applied in each time step to obtain the full temporal model {Lt, Lrvot, Lmb, CL, S}t. In case of cMRI, a full
model is estimated only in the end-diastolic frame SED and is used to initialize the contours LA and SA. These
are refined using a trained DS detector. A full dynamic 4D model is then estimated by using a learned regression
model (Eq. 1) to predict the missing temporal information.



Figure 2. Workflow for pulmonary trunk reconstruction from sparse MR images

3. RESULTS

Table 1 summarizes the results for solving the regression problem with plain k-NN and Learned Distance Function
(LDF) with RF. For the RF we used 25 trees, the number of features to be considered at each node was one
third of the total number of features and the minimum number of instances in a leaf was set to 3. In contrary to
the intrinsic RF, for the plain RF regression minimum number of instance in a leaf was one. Table 2 summaries
the results for LDF with RF versus plain RF regression.

The experimental results demonstrate a clear benefit of RF-based distance learning in comparison to the use
of plain Euclidean distance in the NN regression, in our context. Mean absolut error(MAE) for the intrinsic RF
distance is more than 2 times less than the MAE for the Euclidean distance (Table 1).

The experimental results also demonstrate that the performance of the instrinsic RF distance-based NN
regression is comparable to the performance of plain RF regression, with only insignificant differences for the
best parameter settings (Table 2). This is perhaps caused by the fact that the background learning process
is same in the both approaches. However, the key difference is that in RF-based NN regression, a predefined
number of instances (k) only is influencing the final decision, while in the orthodox RF all instances falling into
the tree leaves corresponding to the instance in question will influence the final decision.

number of neighbours 1 3 7 15 31
k-NN 0.2311 0.2312 0.2433 0.2302 0.2241

RF based LDF 0.1155 0.1123 0.1108 0.1105 0.1105
Table 1. k-NN vs RF based LDF



number of trees 1 5 10 25 50 100
simple RF 0.1287 0.1146 0.1106 0.1105 0.1083 0.1074

RF based LDF 0.1284 0.1122 0.1097 0.1081 0.1076 0.1053
Table 2. simple RF regression vs RF based LDF

4. CONCLUSION

In this paper we propose an approach for reconstruction of the pulmonary trunk from sparse MR images by
learning a distance function with intrinsic random forest. We also show how we can use model of the pulmonary
trunk from CT images for solving the reconstruction task. The reconstructed model can be utilized to extract
morphological and functional information of the pulmonary trunk over the cardiac cycle. Extensive experiments
performed on 80 cardiac CT and MR sequences demonstrated the average speed of 10 seconds and accuracy of
0.1053 mm mean absolute error for the proposed approach. Using the case retrieval workflow and local nearest
neighbor regression with the learnt distance function appears to be competitive with respect to ”black box”
regression with immediate prediction of coordinates, while providing transparency to the predictions made.
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