
Real-time Preprocessing for Dense 3-D Range Imaging on the GPU:
Defect Interpolation, Bilateral Temporal Averaging and Guided Filtering

Jakob Wasza1, Sebastian Bauer1, Joachim Hornegger1,2

1Pattern Recognition Lab, Department of Computer Science
2Erlangen Graduate School in Advanced Optical Technologies (SAOT)

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
jakob.wasza@cs.fau.de

Abstract

Recent advances in range imaging (RI) have enabled
dense 3-D scene acquisition in real-time. However, due
to physical limitations and the underlying range sampling
principles, range data are subject to noise and may contain
invalid measurements. Hence, data preprocessing is a pre-
requisite for practical applications but poses a challenge
with respect to real-time constraints. In this paper, we pro-
pose a generic and modality-independent pipeline for effi-
cient RI data preprocessing on the graphics processing unit
(GPU). The contributions of this work are efficient GPU im-
plementations of normalized convolution for the restoration
of invalid measurements, bilateral temporal averaging for
dynamic scenes, and guided filtering for edge-preserving
denoising. Furthermore, we show that the transformation
from range measurements to 3-D world coordinates can be
computed efficiently on the GPU. The pipeline has been
evaluated on real data from a Time-of-Flight sensor and Mi-
crosoft’s Kinect. In a run-time performance study, we show
that for VGA-resolution data, our preprocessing pipeline
runs at ∼100 fps on an off-the-shelf consumer GPU.

1. Introduction
Recently, several range imaging (RI) sensor technolo-

gies have been introduced that allow for metric 3-D sur-
face acquisition at high resolutions (up to 307k points) and
real-time frame rates (up to 60 Hz). In particular, Time-of-
Flight (ToF) based devices [13] and Microsoft’s low-cost
Kinect [7] are of special interest and popularity. Among
others, these real-time capable RI sensors are currently de-
ployed in controller-free gaming in consumer electronics
and hold potential for biometric face recognition [3] or
pedestrian detection in automotive industry [18]. Further-
more, the deployment of RI technologies in medical engi-

neering is subject to current research with a broad range of
applications such as fractionated radiotherapy [19] or image
guided liver surgery [15]. However, for the majority of these
applications, direct usage of the raw data obtained from RI
sensors is not feasible as the underlying sampling princi-
ples and physical limitations lead to sensor noise and may
involve unreliable measurements. With ToF imaging, erro-
neous range values typically result from overexposed and
saturated sensor elements caused by specular reflections or
so-called flying pixels at sharp object boundaries [13]. For
the Kinect sensor principle, difficulties arise due to illumi-
nation issues, when capturing reflective or transparent ob-
jects, and in regions that are not covered by the infra-red
projector pattern. These effects are depicted in Fig. 1 for
Kinect data, for ToF issues see Fig. 4. Consequently, as a

Figure 1. Close-up view of a 3-D scene showing triangulated raw
3-D Kinect data. Note the ubiquitous staircase artifacts and the
missing regions around the male’s chin and nose that result from
illumination issues. For the large white areas no depth measure-
ments exist as the corresponding regions were not covered by the
infrared projector pattern. Here, this was the case as the sensor
was positioned in front of the mannequins.

2011 IEEE International Conference on Computer Vision Workshops
978-1-4673-0063-6/11/$26.00 c©2011 IEEE

1221

prerequisite for subsequent data analysis, denoising and en-
hancement of RI data is a key component. However, the
immense amount of data in the scale of 500 Mbit/s poses a
challenge for preprocessing and analysis algorithms.

In this paper, we show that real-time constraints for the
task of RI data preprocessing can be faced by exploiting the
inherent degree of parallelism in the employed algorithms
for implementation on the graphics processing unit (GPU)
using NVIDIA’s CUDA architecture. GPUs, which were
originally used exclusively for visualization purposes, have
evolved into powerful co-processors for general purpose
computing. Compared to a CPU, a much larger portion of
GPU resources is devoted to data processing than to caching
or flow control, increasing throughput and reducing compu-
tation time. Today’s massively parallel GPU hardware ar-
chitectures yield the best performance for algorithms that
exhibit high data parallelism and high arithmetic intensity,
respectively. Therefore, we propose efficient GPU imple-
mentations of normalized convolution for restoring invalid
depth measurements, bilateral temporal averaging for dy-
namic scenes, and guided filtering for edge-preserving de-
noising. As another element, we demonstrate that the trans-
formation from range measurements to 3-D world coordi-
nates can be performed efficiently on the GPU and seam-
lessly integrates into the preprocessing pipeline.

2. Related Work
In the field of image processing and computer vision,

a variety of denoising approaches have been introduced in
recent years. Here, edge-preserving filters for smoothing
homogeneous regions while preserving manifest disconti-
nuities are of special interest and importance. One of the
most popular and established methods is the bilateral fil-
ter [2, 20]. Beyond its application for a multitude of con-
ventional imaging modalities, it is a common choice for RI
data denoising [14]. The filter is straightforward to im-
plement, but exhibits a poor run-time performance due to
its non-linear nature. Recent algorithmic acceleration con-
cepts have attempted to overcome the inherent computa-
tional complexity by quantization and approximation tech-
niques, however with the drawback of impairing accuracy
[16, 17, 23, 24]. In contrast, the concept of guided filter-
ing [9] is based on a non-approximative algorithm with a
computational complexity that is independent of the filter
kernel size. At the same time, it exhibits a comparable de-
gree of edge-preserving smoothing and does not suffer from
gradient reversal artifacts.

Besides algorithmic acceleration concepts, GPUs as-
sume a prominent role for high-performance data process-
ing. Chen et al. demonstrated real-time framerates for high-
definition video processing by accelerating the bilateral grid
on the GPU [4]. Furthermore, GPUs were successfully de-
ployed for accelerating denoising and resolution enhance-

ment of RI data, however, without explicitly addressing
real-time constraints [10].

Prior to denoising of RI data, the restoration of invalid
measurements has to be taken into consideration. In con-
trast to static defect pixels, these invalid measurements
occur unpredictable and can affect both an isolated pixel
or connected local regions. In the literature, a plural-
ity of methods for defect pixel correction have been pro-
posed. Given the tradeoff between effectiveness and com-
plexity, conventional approaches like normalized convolu-
tion [6, 12] provide satisfying results. For applications with
more challenging demands, defect pixel interpolation in the
spectral domain may be employed [1].

3. Range Image Preprocessing Pipeline
We propose a generic and modality-independent prepro-

cessing pipeline for range data streams obtained from RI
devices (Fig. 2). Range data preprocessing is performed in
the 2-D sensor domain. The pipeline setup is motivated by
the observation that independent of the underlying physical
causes and characteristics, erroneous range measurements
can be roughly grouped into three categories: (i) missing
or invalid information, (ii) temporal noise and (iii) sensor
noise or quantization issues. Consequently, we restore in-
valid depth measurements (Sec. 3.1) as a first step. This
renders an extra conditioning of invalid data unnecessary
for subsequent algorithms. Second, we propose a bilateral
temporal averaging scheme for dynamic scenes (Sec. 3.2).
Third, we perform edge-preserving denoising using the re-
cently introduced guided filtering technique (Sec. 3.3). In
contrast to a joint approach combining the abovementioned
steps, this modular setup has the advantage that individual
modules can be disabled or replaced by algorithms tailored
to a specific RI device. Furthermore, the integration of ad-
ditional processing modules is enabled by design [11, 22].

Note that we do not incorporate additional photometric
information such as RGB data into the preprocessing algo-
rithms. Even though this might enhance results for certain
scenes and illumination conditions, such additional infor-
mation is not granted to be available for RI sensors and thus
contradicts a modality-independent pipeline.

CPU GPU

RI sensor
readout

Temporal
averaging

Application

Edge-
preserving
denoising

Restoration of
invalid measurements

2-D/3-D
transformation

Mesh generation
& rendering

Figure 2. Flowchart of our proposed modality-independent RI data
preprocessing pipeline. Note that solely the sensor readout is per-
formed on the CPU.

1222

Nomenclature Below, g(x) denotes the corrupted input
range image, f(x) the restored and denoised output. The
variable x = (x, y) represents a position within the sen-
sor image matrix, N being the total number of pixels. We
further introduce ωx as the set of coordinates in a local
quadratic subimage window (neighborhood) of size |ωx| =
(2r + 1)2, centered at position x. In terms of filters, the
window radius r denotes the kernel size.

3.1. Restoration of Invalid Measurements

In this work, we adopt the concept of normalized con-
volution (NC) proposed by Knutsson and Westing [12].
We use the method for restoring missing or corrupted depth
measurements. As a prerequisite, in addition to the range
data g(x), we assume the availability of a binary mask
image m(x) holding information whether a pixel is valid
m(x) = 1 or invalid m(x) = 0. The availability of such
a mask image can be taken for granted for the sensors em-
ployed in this work. ToF sensors directly provide a scalar
reliability indicator regarding flying pixels or saturated and
overexposed sensor elements. The mask image for the
Kinect sensor can be obtained by checking the range mea-
sures for zero entries. For different sensors, software based
methods have to be applied. Consequently, the restoration
of invalid depth measurements can be formulated as:

fNC(x) =

∑
x′∈ωx

g(x′) a(x,x′)m(x′)∑
x′∈ωx

a(x,x′)m(x′)
, (1)

where the applicability function a(x,x′) is given as a Gaus-
sian:

a(x,x′) = exp

(
−‖x− x′‖22

σ2
s

)
. (2)

Here, the parameter σs controls the spatial similarity.
As valid pixels are supposed to remain unchanged we
rewrite equation (1) and express the actual filter output as:

f̃NC(x) = g (x)m (x) + fNC(x) (1−m (x)) . (3)

3.2. Temporal Averaging for Dynamic Scenes

The averaging of successive frames is a common denois-
ing technique in range imaging. However, this inherently
introduces blurring artifacts in dynamic scenes. We there-
fore propose a constrained temporal averaging (TA) tech-
nique based on the concept of bilateral filtering [20]. The
basic idea is that range gradients along the temporal di-
mension are typical for dynamic scenes and that averaging
across theses edges falsifies the output. For a series of T
temporally successive frames {g0 (x) , . . . , gT−1 (x)} with
the subscript denoting the relative temporal shift, the filter
output is given as:

fTA (x) =

∑T−1
i=0 gi (x) c (i) s (g0 (x)− gi (x))∑T−1

i=0 c (i) s (g0 (x)− gi (x))
. (4)

Here, the temporal closeness c (i) and range similarity
s (g0 (x)− gi (x)) are in analogy to the Gaussian in Eq. 2
with parameters σc and σs to control the temporal extent
and level of dynamic scene preservation, respectively.

3.3. Edge-Preserving Denoising

For the purpose of high performance edge-preserving de-
noising, we employ the non-approximative guided filtering
(GF) technique as proposed by He et al. [9]. The guided
filter output fGF(x) can be deduced as the following linear
model:

fGF(x) = Eωx (A (x)) · i(x) + Eωx (B (x)) . (5)

Here, i(x) is the guidance image that, without loss of gen-
erality, can be the input image g(x) itself. Eωx denotes the
expectation value of a uniformly distributed random vari-
able in a local quadratic region ωx centered at x. A (x) and
B (x) can be found as:

A (x) =
Covωx (i(x), g(x))

Varωx (i(x)) + ε
, (6)

B (x) = Eωx (g(x))−A (x) · Eωx (i(x)) , (7)

where ε is a regularization parameter that controls the edge-
preserving functionality. Covωx and Varωx denote the co-
variance and variance, respectively. Again, the subscript
ωx indicates that only a local region is considered. For
two random variables X and Y the covariance is given as
Cov (X,Y) = E (XY) − E (X)E (Y). Thus, the guided
image filter can be formulated solely in terms of expecta-
tion values which can be computed by using mean filters.
Mean filtering techniques that exhibit an algorithmic com-
plexity ofO (N) such as integral images [5, 21] eventually
provide the basis for a filter run-time that is decoupled from
the kernel size.

4. Implementation Details

In this section we outline important implementation de-
tails for porting the presented algorithms to the graphics
card using the CUDA architecture. We aim to exploit the
GPU’s single instruction multiple data (SIMD) architec-
ture by one single kernel and the assignment of one thread
to each pixel in the input data g(x). This scheme natu-
rally arises from the mathematical definitions of the nor-
malized convolution (Eq. 1) and bilateral temporal averag-
ing (Eq. 4). In contrast, implementing the linear-time al-
gorithm of the guided filter in one single kernel is not fea-
sible, as a complex infrastructure in terms of intermediate
image representations and sequential workflows is required
(Eqs. 5,6,7). However, each of these subtasks can again be
computed efficiently using the SIMD concept.

1223

3.5

2.5

1.5

0.5

Figure 3. Erroneous filter output (error in mm) for guided filtering
using standard integral images (left) and our modified approach
using separated mean filter (right) compared to double-precision
CPU results. The test scene shows a plane at a distance of 1 m in
front of the camera.

4.1. Performance Aspects

The summation over a local neighborhood ωx in the def-
inition of the normalized convolution (Eq. 1) entails non-
coalesced memory access patterns. Non-coalesced memory
access is a crucial performance bottleneck when porting al-
gorithms to the CUDA architecture. Therefore, we bind the
input data as a texture which is a common strategy to cope
with read-only and non-coalesced memory access. We fur-
ther note that the applicability function a(x,x′) (Eq. 2) and
the temporal closeness c (i) (Eq. 4) rely on a Gaussian that
is independent of the actual input data. Therefore, we pre-
compute these values and hold them in a look-up-table.

4.2. Numerical Issues

As the majority of CUDA capable GPUs do not sup-
port double-precision floating-point numbers, special care
has to be taken with respect to numerical issues. In par-
ticular, we observed a strong impact for efficient mean fil-
tering using integral images as proposed by He et al. for
linear-time guided filtering [9]. Due to the accumulative
nature of integral images and the range of values of single-
precision floating-point numbers this may lead to erroneous
results as depicted in Fig. 3. To lessen this problem, we ex-
ploit the separability of 2-D mean filtering and perform two
successive 1-D mean filtering operations along both image
axes. 1-D mean filtering can again be performed indepen-
dent from the kernel size by using cumulative sums that can
be computed efficiently on the GPU using the parallel prefix
sum technique [8].

5. Experiments and Results

In this section we evaluate the preprocessing modules
described in Sec. 3 on real data acquired with a PMD Cam-
Cube 3.0 ToF sensor and a Microsoft Kinect. First, we ana-
lyze the run-time performance of our GPU filter implemen-
tations. Afterwards, we present qualitative results for the
two RI modalities.

5.1. Run-time Performance Study

The run-time study in this paper is conducted on an off-
the-shelf consumer desktop computer running an NVIDIA
GeForce GTX 285 GPU and an AMD Phenom II X4 920
CPU. Table 1 depicts the run-times for the individual pre-
processing modules. We have investigated the overall mean
run-times (including software or CPU overhead) and the ac-
tual GPU times neglecting such overhead. Please note that
GPU times are considerably smaller than the overall run-
times, however being hard to achieve in practice. We thus
focus on the overall run-time in the benchmarks below.

As the sensor readout is performed on the CPU, we
first evaluate the transfer time of range data from the CPU
(host) to the GPU (device). For the employed system,
we measured transfer times of 1.09 ms (1.13 GB/s) and
0.23 (0.70 GB/s) for Kinect (640 · 480 · 4 bytes) and ToF
(200 · 200 · 4 bytes) data, respectively.

The Run-times for the restoration of invalid measure-
ments using the proposed normalized convolution concept
depend on the actual scene as the filter is applied for invalid
pixels only (Eq. 3). For comparison purposes and in order to
establish an upper run-time boundary for a worst-case sce-
nario, we apply the filter for all pixels, however, solely re-
placing invalid measurements. Using this approach, a max-
imum run-time for the restoration of invalid measurements
is 4 ms for Kinect and 2 ms for ToF data, respectively.

The run-times of 1.5 ms (0.5 ms) for Kinect (ToF) data
for our bilateral temporal averaging method (T = 40 frames)
demonstrate that algorithms featuring a high computational
complexity can be implemented very efficiently on the
GPU. Its runtime increases approximately linearly when in-
crementing the number of frames to be considered. How-
ever, experimental tests show that even for T = 200 frames
a real-time satisfying run-time of 7 ms for Kinect data and
2 ms for ToF data is feasible.

Despite its complex infrastructure in terms of interme-
diate image representations and sequential workflows, our
GPU implementation of the linear-time guided filtering
algorithm achieved run-times of approximately 2 ms for
Kinect data and 1 ms for ToF data, respectively. Again, we
emphasize that the run-time is independent from the ker-
nel size, thus allowing arbitrary large kernels without per-
formance losses. This is of particular importance for high-
resolution range data as obtained from the Kinect device.

We also investigated the performance for transforming
range measurements to 3-D world coordinates on the GPU.
The standard pinhole camera model fits perfectly to the
SIMD paradigm. Our implementation achieved run-times
of 0.3 ms for Kinect and 0.2 ms for ToF data.

For the final transfer of the filtered range data and the
corresponding 3-D world coordinates from the device to the
host, we measured a transfer-time of 1.4 ms and 0.5 ms
for Kinect and ToF data, respectively. However, note that

1224

Step Kinect Kinect Kinect CamCube CamCube CamCube

(GPU) (overall) (percentage) (GPU) (overall) (percentage)

Host/Device Transfer 0.66 1.09± 0.07 10.7% 0.11 0.23± 0.01 05.4%

Normalized Convolution 2.92 4.00± 0.06 39.2% 0.80 1.88± 0.05 44.2%

Bilateral Temporal Averaging 1.30 1.49± 0.04 14.6% 0.27 0.48± 0.04 11.3%

Guided Filtering 1.31 1.93± 0.21 18.9% 0.46 0.97± 0.01 22.8%

2-D/3-D Transformation 0.17 0.34± 0.01 03.3% 0.04 0.20± 0.03 04.7%

Device/Host Transfer 1.20 1.39± 0.02 13.6% 0.33 0.49± 0.07 11.5%

Total 7.56 10.2 100% 2.01 4.25 100%

Table 1. Run-time performance evaluation for the Kinect (640×480 px) and the CamCube 3.0 (200×200 px). Run-times are given in [ms]
and are averaged over 100 frames. The supplement ’GPU’ denotes pure GPU times neglecting software and CPU overhead. Normalized
convolution employs a 15×15 kernel and bilateral temporal averaging is performed with T = 40 frames.

this step can be omitted if subsequent post-processing algo-
rithms run on the GPU, too.

Given a total run-time of ∼10 ms for Kinect data, the
pipeline runs at ∼100 fps. Comparing this achieved run-
time to the maximum frame rate of the Kinect sensor (30
fps), we explicitly note that residuary GPU resources can
be devoted to postprocessing tasks, for instance.

5.2. Experiments on Real Data

Results of our preprocessing pipeline for the Kinect sen-
sor and the CamCube are given in Fig. 4. Note that for facil-
itating the visual interpretation of filter effects, the studies
are conducted on a triangulated 3-D mesh computed from
the preprocessed and transformed range data. Furthermore,
for the same reason, the restoration of invalid measurements
is illustrated after bilateral temporal averaging and guided
filtering. However, recall that the restoration is actually per-
formed as the first step in the preprocessing pipeline (see
Fig. 2).

As expected, our bilateral temporal averaging method
and edge-preserving denoising in the 2-D sensor domain
significantly increases the smoothness of the mesh sur-
face while retaining distinctive surface contours (Fig. 4c,d).
Here, we note that ToF data still exhibits minor fluctuations
after bilateral temporal averaging of T = 40 frames, whereas
for Kinect data the effect of temporal noise is considerably
smaller and a steady surface could be established by aver-
aging less than T = 10 frames.

In contrast to ToF data, edge-preserving denoising is a
delicate problem with Kinect range data due to staircase
quantization artifacts present in the raw data. Thus, the filter
parameters have to be chosen properly such that these arti-
facts are not classified erroneously as representative topo-
logical features being subject to preservation. For our ex-
periments, we have chosen the parameters in a way that
gives priority to the smoothness of the surface.

The restoration of invalid measurements using normal-
ized convolution effectively interpolates missing regions in
Kinect data (Fig. 4e) and removes spikes due to specular
reflections in the ToF data (Fig. 4f). However, for ToF
data, minor artifacts remain as the sensor’s built-in valid-
ity mechanism fails to recognize unreliable measurements
at the boundaries of invalid regions.

6. Discussion and Conclusion

In this work, we have proposed and evaluated a GPU
based and modality-independent preprocessing pipeline for
dense 3-D range image streams. The pipeline is built in a
modular fashion and is explicitly designed to enable real-
time preprocessing of high resolution range data. For the
Kinect device, featuring the highest RI resolution at real-
time frame rates available to date, we have shown that pre-
processing can be performed at ∼100 fps on an off-the-
shelf GeForce GTX 285 consumer GPU. This is a promis-
ing result with regard to next-generation RI sensors that
will feature even higher resolutions. Furthermore, these low
run-times enable the usage of residuary GPU resources for
postprocessing and visualization tasks. To our knowledge,
this work is the first study covering a real-time preprocess-
ing pipeline for RI sensors that entirely runs on the GPU.
Though the experiments conducted on real data demon-
strated the fitness of the proposed algorithms, further inves-
tigations concerning alternative real-time capable prepro-
cessing modules will be subject of our upcoming research.

Acknowledgments

J. Wasza and S. Bauer gratefully acknowledge the sup-
port by the European Regional Development Fund and the
Bayerisches Staatsministerium für Wirtschaft, Infrastruktur,
Verkehr und Technologie, in the context of the R&D pro-
gram IuK Bayern under Grant No. IUK338.

1225

(a) (b)

(c) (d)

(e) (f)
Figure 4. Triangulated 3-D Kinect data with RGB texture overlay (left column) and ToF data with intensity texture overlay (right column).
The raw kinect data (a) shows staircase artifacts and holes due to missing range information. Note that the raw ToF data (b) exhibits an
exceptional low signal-to-noise ratio (SNR). Bilateral temporal averaging and guided filtering effectively produce a steady and smooth
surface for Kinect data (c) and significantly increases the SNR for ToF data (d). Performing normalized convolution for the restoration
of invalid measurements as the first step in the preprocessing pipeline interpolates missing regions for Kinect data (e) and removes spikes
being characteristic for specular reflections in ToF imaging (f).

1226

References
[1] T. Aach and V. Metzler. Defect Interpolation in Digital Ra-

diography - How Object-Oriented Transform Coding Helps.
In Proc. SPIE Medical Imaging, volume 4322, pages 824–
835, Feb 2001.

[2] V. Aurich and J. Weule. Non-Linear Gaussian Filters Per-
forming Edge Preserving Diffusion. In Proc. DAGM, pages
538–545. Springer, 1995.

[3] S. Bauer, J. Wasza, K. Müller, and J. Hornegger. 4D Photo-
geometric Face Recognition with Time-of-Flight Sensors. In
Proc. IEEE Workshop on Applications of Computer Vision,
2011.

[4] J. Chen, S. Paris, and F. Durand. Real-time edge-aware im-
age processing with the bilateral grid. ACM Trans. Graph.,
26, 2007.

[5] F. C. Crow. Summed-area tables for texture mapping. In
Proc. SIGGRAPH, pages 207–212. ACM, 1984.

[6] M. Frank, M. Plaue, and F. A. Hamprecht. Denoising of
Continuous-Wave Time-Of-Flight Depth Images using Con-
fidence Measures. Optical Engineering, 48(7), Jul 2009.

[7] J. Garcia and Z. Zalevsky. Range mapping using speckle
decorrelation. US patent No.7433024, 2008.

[8] M. Harris, S. Sengupta, and J. D. Owens. Parallel Prefix Sum
(Scan) with CUDA. In GPU Gems 3. Addison Wesley, Aug
2007.

[9] K. He, J. Sun, and X. Tang. Guided Image Filtering. In Proc.
European Conference on Computer Vision: Part I, volume
6311, pages 1–14. Springer, 2010.

[10] B. Huhle, T. Schairer, P. Jenke, and W. Straßer. Fusion
of range and color images for denoising and resolution en-
hancement with a non-local filter. Computer Vision and Im-
age Understanding, 114:1336–1345, Dec 2010.

[11] F. Jargstorff. A framework for image processing. In GPU
Gems. Addison Wesley, 2004.

[12] H. Knutsson and C.-F. Westin. Normalized and Differential
Convolution: Methods for Interpolation and Filtering of In-
complete and Uncertain Data. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, pages 515–523,
Jun 1993.

[13] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-Flight
Sensors in Computer Graphics. In Eurographics 2009 - State
of the Art Reports, pages 119–134. Eurographics, Mar 2009.

[14] M. Lindner, I. Schiller, A. Kolb, and R. Koch. Time-of-Flight
sensor calibration for accurate range sensing. Computer Vi-
sion and Image Understanding, 114(12):1318 – 1328, 2010.
Special issue on Time-of-Flight Camera Based Computer Vi-
sion.

[15] K. Müller, S. Bauer, J. Wasza, and J. Hornegger. Automatic
Multi-modal ToF/CT Organ Surface Registration. In Pro-
ceedings of Bildverarbeitung für die Medizin, pages 154–
158, 2011.

[16] S. Paris and F. Durand. A Fast Approximation of the Bi-
lateral Filter Using a Signal Processing Approach. Interna-
tional Journal of Computer Vision, 81:24–52, Jan 2009.

[17] F. Porikli. Constant time O(1) bilateral filtering. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1 –8, Jun 2008.

[18] M. Rapus, S. Munder, G. Baratoff, and J. Denzler. Pedestrian
recognition using combined low-resolution depth and inten-
sity images. In IEEE Intelligent Vehicles Symposium, pages
632–636, Jun 2008.

[19] P. J. Schöffel, W. Harms, G. Sroka-Perez, W. Schlegel, and
C. P. Karger. Accuracy of a commercial optical 3D sur-
face imaging system for realignment of patients for radio-
therapy of the thorax. Physics in Medicine and Biology,
52(13):3949–3963, Jul 2007.

[20] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In Proc. IEEE International Conference on
Computer Vision, pages 839–846, 1998.

[21] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, volume 1, pages
I–511–I–518, 2001.

[22] J. Wasza, S. Bauer, S. Haase, M. Schmid, S. Reichert, and
J. Hornegger. RITK: The range imaging toolkit - a frame-
work for 3-D range image stream processing. In Proceedings
of International Workshop on Vision, Modeling, and Visual-
ization, Oct 2011, accepted for publication.

[23] Q. Yang, K.-H. Tan, and N. Ahuja. Real-time o(1) bilateral
filtering. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 557 –564, Jun 2009.

[24] S. Yoshizawa, A. Belyaev, and H. Yokota. Fast gauss bi-
lateral filtering. Computer Graphics Forum, 29:60–74(15),
2010.

1227

